
Math 524 Final Exam Solutions

1. Carefully define the term “vector space”.

A vector space is a set of vectors, a field of scalars, and two operations –
vector addition and scalar multiplication – that are each closed. There are
eight axioms these operations must satisfy (each for all vectors x, y, z and all
scalars a, b): x + y = y + x, (x + y) + z = x + (y + z), ∃0 with 0 + x = x,
∀x∃(−x) with x+(−x) = 0, a(x+ y) = ax+ ay, (a+ b)x = ax+ bx, 1x = x,
(ab)x = a(bx)

2. Carefully define the term “complex inner product”.

A complex inner product is a function from Cn to C satisfying five axioms
(each for all vectors x, y, z and all scalars a, b): 〈ax+ by|z〉 = ā〈x|z〉+ b̄〈y|z〉,
〈x|ay + bz〉 = a〈x|y〉 + b〈x|z〉, 〈x|y〉 = 〈y|x〉, 〈x|x〉 is real and positive for
x 6= 0, 〈0|0〉 = 0.

3. Carefully define the term “power vector” (generalized eigenvector).

Let L be a linear operator (or matrix). A nonzero vector ξ is a power vector
if (L− λI)pξ = 0, for some eigenvalue λ and some positive integer p.

4. Carefully state Thm 3.7, the Dimension Theorem.

Given any vector spaces V, W , and any linear transformation L : V → W ,
the dimension of V equals the dimension of the kernel of L, plus the dimen-
sion of the range of L.
Note: technically, this theorem only holds if the three vector spaces involved have dimen-
sions – this may require the axiom of choice.

5. Carefully state Thm 7.2, concerning representation of the adjoint of an operator.

Given a finite dimensional inner product space V , an orthonormal basis B,
and a linear operator L, we have [L†]B = [L]TB. Alternatively, using bras and
kets, L† =

∑n
i,j=1 |bi〉〈Lbi|bj〉〈bj|.

6. Solve the system of difference equations

{
x(n)=2y(n-1)
y(n)=3x(n-1)+y(n-1)

}
with x(0) = 1, y(0) =

0.

We have
(

x(n)
y(n)

)
= ( 0 2

3 1 )
(

x(n−1)
y(n−1)

)
= ( 0 2

3 1 )n
(

x(0)
y(0)

)
= ( 0 2

3 1 )n ( 1
0 ). The matrix

has eigenvalues −2, 3 with eigenvectors ( 1
−1 ) and ( 2

3 ) (respectively). Set

P = ( 1 2
−1 3 ); P−1 =

(
3/5 −2/5
1/5 1/5

)
, and D = ( −2 0

0 3 ). Hence ( 0 2
3 1 ) = PDP−1

and ( 0 2
3 1 )n = PDnP−1 = 1/5

(
3(−2)n+2·3n (−2)(−2)n+2·3n

−3(−2)n+3·3n 2(−2)n+3·3n

)
. Hence x(n) =

(3(−2)n + 2 · 3n)/5, y(n) = (−3(−2)n + 3 · 3n)/5.



For the next two problems, let A =
(

1 −1 −1
−1 1 −1
2 2 4

)
.

7. Find all eigenvalues of A; give a basis for each eigenspace. HINT: column sums

The hint tells us that λ = 2 is one eigenvalue. The determinant is 8, the
trace is 6, hence the other eigenvalues multiply to 4 (= 8/2) and add to 4
(= 6 − 2); we conclude that λ = 2 is the only eigenvalue, with (algebraic)

multiplicity 3. We calculate A − 2I = B =
( −1 −1 −1

−1 −1 −1
2 2 2

)
. This has row

canonical form
(

1 1 1
0 0 0
0 0 0

)
. Therefore x2, x3 are free (2-dimensional eigenspace),

and x1 = −x2 − x3. One basis for E2 is {(−1, 1, 0)T , (−1, 0, 1)T}.

8. Find the kernel and image of the linear operator L : R3 → R3 defined by multiplication
by A; that is, L(x) = Ax. Is L one-to-one? onto?

We use elementary row operations to put A into row canonical form; we get
I. Hence the rank of A is 3, and the nullity of A is 0. Hence the kernel of L
is {0}, which makes L one-to-one. Because A is rank 3, the image of L is all
of R3, hence L is onto.

For the next four problems, consider the vector space R2[t], real polynomials of degree

at most 2, with the real inner product 〈f |g〉 =
∫ 1

0
f(t)g(t)dt. Set u(t) = t − 1, v(t) =

t2 − 1, and V = Span(u, v) = {at2 + bt− (a + b)} = {p(t) : p(1) = 0}.

9. Pick any w /∈ V , and set B = {u, v, w}. Prove that B is a basis for R2[t], and calculate
[1 + 2t + 3t2]B.

Many solutions are possible, depending on choice of w. w(t) may be any
polynomial, of degree at most 2, such that w(1) 6= 0. For example, w(t) = t.
To prove this is a basis, calculate the representation of B in the standard

basis E = {1, t, t2}:
(

−1 −1 0
1 0 1
0 1 0

)
. Using elementary row operations, we find

the row canonical form to be I; hence this has column rank 3, and B is
independent. Since |B| = 3, the dimension of R3, B is a basis. We can
find [1 + 2t + 3t2]B using a change-of-basis matrix, or in an ad-hoc manner
since B has a nice form: 1 + 2t + 3t2 = a(t − 1) + b(t2 − 1) + ct, hence
b = 3,−a− b = 1, a + c = 2, so [1 + 2t + 3t2]B = [−4, 3, 6]T .

10. Let W = {at : a ∈ R}. Prove that R2[t] is the internal direct sum of V, W .

This is a consequence of Theorem 2.13. V, W are subspaces of R2[t]. To
complete the proof, we need to show two things:

(a) The dimension of V (known to be 2 since u, v are independent), plus the
(unknown) dimension of W , equals the dimension of R2[t] (known to be
3).



(b) V ∩W = {0}.
We prove that W is one-dimensional (1) by observing that every polynomial
in W is a scalar multiple of every other; hence an independent set can have
only one vector in it. We next note that for f(t) = at, an element of W ,
f(1) = a. Hence for this to be in V we must have a = 0; in this case f(t) = 0
which is the zero polynomial (zero vector). This proves (2).
Note: W is not V ⊥; there are many subspaces S with R2[t] an internal direct sum of V, S.

11. Let L be the linear operator that projects onto V . Find a representation of the adjoint
[L†]B, for B a basis of your choice. Is L symmetric? orthogonal?

The best possible basis B = {b1, b2, b3} is one that is orthonormal, with b1, b2

a basis for V , and b3 a basis for W . We could find this using Gram-Schmidt
on the basis from problem 9, but it is actually not necessary to find B.
L(b1) = b1, L(b2) = b2, L(b3) = 0, hence [L]B = ([L(b1)]B[L(b2)]B[L(b3)]B) =(

1 0 0
0 1 0
0 0 0

)
. Hence [L†]B = [L]TB = [L]B. This is symmetric, but not orthogonal

(it’s not invertible, it has 0 as an eigenvalue).

12. Let B = {u, v}, a basis for V . Calculate two bases for V ? by specifying their action
on each element of V . (1) the dual basis {φ1, φ2}, (2) the bra basis {〈u|, 〈v|}.

We have x(t) = at2 + bt− (a + b) = au + bv. Hence [x]B = [ a
b ], and φ1(x) =

a, φ2(x) = b. 〈u|u〉 =
∫ 1

0
(t − 1)2dt =

∫ 1

0
t2 − 2t + 1dt = 1/3. 〈v|v〉 = 8/15.

〈u|v〉 = 〈v|u〉 = 5/12. Hence 〈u|x〉 = 〈u|au + bv〉 = a〈u|u〉 + b〈u|v〉 = a/3 +
5b/12 = 4a+5b

12
. Similarly, 〈v|x〉 = 〈v|au + bv〉 = a〈v|u〉+ b〈v|v〉 = 5a/12 + 8b/15.

13.

Consider the Markov chain pictured at right. If the initial
distribution is starting in A, i.e. (1, 0, 0)T , find (approx-
imately) the distribution after 12 time steps. You may
use the approximation that (0.9)12 ≈ 2/7.

A B

C

0.4 0.5

1

0.5

0.4

0.1 0.1

This has transition matrix M =
(

0.4 0.4 0
0.5 0.5 0
0.1 0.1 1

)
. This has known eigenvalue

1, since the column sums are 1. The trace is 1.9, the determinant is 0,
so the remaining two eigenvalues have sum 0.9 and product 0; hence the
three eigenvalues are 0, 0.9, 1, with eigenvectors (−1, 1, 0), (4, 5,−9), (0, 0, 1)

respectively. Hence, the general solution is α(1)n
(

0
0
1

)
+ β(0.9)n

(
4
5
−9

)
+

γ(0)n
(

−1
1
0

)
. The initial condition corresponds to α = 1; β = 1/9; γ = −5/9.

Evaluating at n = 12 gives the approximate solution
(

0
0
1

)
+(1/9)(2/7)

(
4
5
−9

)
=(

8/63
10/63
45/63

)



14. Find a linear operator, on the vector space of your choice, that has two eigenvalues:
λ = 3, with algebraic multiplicity 5 and geometric multiplicity 3, and λ = 4, with
algebraic multiplicity 3 and geometric multiplicity 1.

The characteristic polynomial will have degree 5 + 3 = 8, so the complex
vector space must be eight dimensional. We need to find the right basis,
under which the linear operator’s representation is in Jordan form. Even
better, we can just choose a matrix that is already in Jordan form, and have
our operator be multiplication by this matrix. We need exactly one 3 × 3
Jordan block with λ = 4, and three Jordan blocks with λ = 3, with a total
size of 5. This can be either two 2 × 2 blocks and one 1 × 1 block, or one
3× 3 block and two 1× 1 block. Then, we assemble these four blocks in any
order to form a Jordan matrix.

Let A =


4 1 0 0 0 0 0 0
0 4 1 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 3 1 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 1 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 3

 or A =


4 1 0 0 0 0 0 0
0 4 1 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 3 1 0 0 0
0 0 0 0 3 1 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 3

. Then L : C8 → C8 (or

L : R8 → R8) via L(x) = Ax satisfies the conditions of the problem.
Note: The vector space, if real, can be greater than eight dimensional, if the characteristic
polynomial contains quadratic irreducible factors. However, in this case there is no Jordan
canonical form, and the problem becomes much harder to solve in general.

15. Find all 2× 2 complex matrices that are simultaneously anti-symmetric and unitary.

Let A = ( 0 a
−a 0 ), an anti-symmetric matrix with complex entries. (note:

( a b
c d ) = − ( a c

b d ) yields a = d = 0, b = −c). Since A is unitary, its eigenvalues
must each be of unit length, hence |A| = a2 must be of unit length, so

|a| = 1. We write a = eiθ; so A =
(

0 eiθ

−eiθ 0

)
. For any θ, this satisfies

the requirements: it is anti-symmetric by inspection, and unitary since the
columns are orthonormal.

16. (extra credit) Prove that every probability matrix has eigenvalue λ = 1.

Let A be a probability matrix; that is, its entries are nonnegative real num-
bers, and the column sums are all 1. Set x = (1, 1, . . . , 1), a row vector. We
have xA = x; taking transposes we have (xA)T = AT xT = xT . Hence xT

is an eigenvector of AT , with eigenvalue 1. However, the matrices A and
AT have the same characteristic polynomials (this is true for any matrix be-
cause |λI − A| = |(λI − A)T | = |(λI)T − AT | = |λI − AT |), hence 1 is also
an eigenvalue of A.


