Math 524 Exam 3: 9/25/8

Please read the exam instructions.
Notes, books, papers, calculators and electronic aids are all forbidden for this exam. Please write your answers on separate paper, indicate clearly what work goes with which problem, and put your name on every sheet. Cross out work you do not wish graded; incorrect work can lower your grade, even compared with no work at all. Keep this list of problems for your records. Show all necessary work in your solutions; if you are unsure, show it. Each problem is worth 10 points. You have approximately 30 minutes.

Problems 1-4 are for the vector space $\mathbb{R}_{2}[t]$, real polynomials of degree at most 2. We define $L: \mathbb{R}_{2}[t] \rightarrow \mathbb{R}_{2}[t]$ via $L(f)=(t-1) \frac{d f}{d t}$.

1. Directly calculate $[L]_{E}$, for the basis $E=\left\{1, t, t^{2}\right\}$.
2. Directly calculate $[L]_{B}$, for the basis $B=\left\{1, t-1,(t-1)^{2}\right\}$.
3. Calculate $P_{B E}, P_{E B}$, and demonstrate the relationship between them and $[L]_{B},[L]_{E}$.
4. Find a basis for the kernel of L. Find a basis for the range of L.
5. Consider the operator $M: \mathbb{R}[t] \rightarrow \mathbb{R}[t]$, an operator on real polynomials given by $M(f)=\frac{d^{2} f}{d t^{2}}$. Calculate the nullity of M, and prove that M is onto. Why doesn't this contradict the Dimension Theorem?
