Math 524 Exam 11: 12/11/8

Please read the exam instructions.
Notes, books, papers, calculators and electronic aids are all forbidden for this exam. Please write your answers on separate paper, indicate clearly what work goes with which problem, and put your name on every sheet. Cross out work you do not wish graded; incorrect work can lower your grade, even compared with no work at all. Keep this list of problems for your records. Show all necessary work in your solutions; if you are unsure, show it. Each problem is worth 10 points. You have approximately 30 minutes.

Set $s(x)=\left\{\begin{array}{ll}1 & 0<x<1 \\ 0 & \text { otherwise }\end{array}\right\}$. These problems all concern propagation of a square wave, with $v=1 / 3$, initial position $f(x, 0)=f_{0}(x)=s(x)$, and initial velocity $\frac{\partial f}{\partial t}(x, 0)=g_{0}(x)=0$.

For each of the following problems, compute $f(x, t)$ for all x, t, and sketch three solutions: for $t=1, t=3, t=60$.

Note: $s(x)$ is not twice-differentiable (or even continuous). Don't worry about this. If it bothers you, think of the wave as the limit of a sequence of waves that are each twice-differentiable.

1. Domain is \mathbb{R}.
2. Domain is $[0, \infty)$, with Dirichlet boundary condition.
3. Domain is $[0, \infty)$, with Neumann boundary condition.
4. Domain is $[0,7]$, with Dirichlet boundary conditions.
