Math 254-2 Exam 7: 11/4/8

Please read the exam instructions.

Notes, books, papers, calculators and electronic aids are all forbidden for this exam. Please write your answers on **the attached page only** (front and back if necessary). Indicate clearly what work goes with which problem. Cross out work you do not wish graded; incorrect work can lower your grade. You may use this first page as scratch paper; keep it for your records. Show all necessary work in your solutions; if you are unsure, show it. Extra credit may be earned by handing in revised work in class on Thursday 11/6; for details see the syllabus. Each problem is worth 10 points; your total will be doubled to fit the standard 100 point scale. You have approximately 30 minutes.

- 1. Carefully define the linear algebra term "degenerate". Give two examples.
- 2. Carefully define the linear algebra term "inner product". Give two examples on \mathbb{R}^2 .

The remaining three problems all concern the vector space $M_{2,2}(\mathbb{R})$ with standard inner product $\langle A, B \rangle = tr(B^T A)$.

- 3. Find all values of k such that $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ k & 3 \end{pmatrix}$ are orthogonal.
- 4. Find a basis for $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}^{\perp}$.
- 5. Use the Gram-Schmidt process to find an orthogonal basis for the space $Span\left\{ \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \right\}$.

ID Code:
