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Exercises for Chapter 1.

Exercises for Chapter 1.1.

1.1. Find three de�nitions from later chapters in this textbook. Copy

the de�nitions carefully, and give the page on which they appear. In-

dicate the context (if any), category, and verb.

1.2. Carefully write de�nitions for the following terms. Underline the

category and verb in each. [Hint 229]

a. pair of consecutive integers

b. perfect square

c. perfect cube

d. perfect power

e. purely imaginary number

1.3. Find a mathematical de�nition from any other published source,

for a term that does not appear in this text. Copy the de�nition care-

fully, and give the source where you found it. Indicate the context (if

any), category, and verb.

1.4. Let's say that a curve in the plane is even+ if there is some vertical

line of symmetry1. That is, we can fold the paper on that line and the

two halves of the curve will exactly coincide. Prove that y = x2, y =

(x+ 3)2 + 5, y = 7 are all even+. Prove that y = x3 is not even+. [Hint

206]

1.5. Let's say that a curve in the plane is odd+ if there is some point

of rotational symmetry2. That is, we can rotate the paper 180 degrees

1not necessarily the y-axis
2not necessarily the origin
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at that point and the curve pre-rotation will exactly coincide with the

curve post-rotation. Prove that y = x, y = x3, y = (x + 3)3 + 5 are all

odd+. Prove that y = x2 is not odd+. [Hint 295]

1.6. Prove that y = sin x is both even+ and odd+. [Hint 41]

Exercises for Chapter 1.2.

1.7. Prove that 6 is even and 7 is odd. [Hint 99]

1.8. Apply Theorem 1.5 to a = −100, b = 3. (i.e. �nd q, r) [Hint 143]

1.9. Let a, b be odd. Prove that a+ b is even. [Hint 224]

1.10. Let a, b be odd. Prove that ab is odd.

1.11. Let a be even, and let b, c be odd. Prove that ab+ac+bc is odd.

[Hint 184]

1.12. Prove Theorem 1.7, by assuming n that is both odd and even,

and deriving a contradiction. [Hint 273]

Exercises for Chapter 1.3.

1.13. Prove the unproved parts of Theorem 1.10. [Hint 279]

1.14. Prove the unproved parts of Theorem 1.11. [Hint 275]

1.15. Let a, b, c, d ∈ Z. Suppose that a ≤ b < c. Prove that a + d ≤
b+ d < c+ d. [Hint 234]

1.16. Let a, b, c, a ′, b ′, c ′ ∈ Z. Suppose that a < b ≤ c and a ′ < b ′ < c ′.
Prove that a+ a ′ < b+ b ′ < c+ c ′. [Hint 201]

1.17. Let a, b ∈ Z. Suppose that 0 ≤ a ≤ b. Prove that 0 ≤ a2 ≤ b2.

1.18. Prove the unproved parts of Theorem 1.12.

1.19. Calculate ddπedπee− dπ2e. [Hint 178]

1.20. Find x, y ∈ R such that x < y < 0 but dxe > byc.
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1.21. Suppose that x ∈ R. Prove that if bxc = dxe, then x ∈ Z. [Hint 77]

1.22. Suppose that a|b and c ∈ Z. Prove that a|(bc).

1.23. Suppose that a|b and b|c. Prove that a|c.

1.24. Suppose that a|b and a|c. Prove that a|(b+ c).

1.25. For each of the following numbers, classify as prime, compos-

ite, both, or neither: 6, 5, π, 1, 0,−1,−5,−6. Be sure to justify your

answers. [Hint 13]

1.26. Suppose that p is prime. Prove that p2 is composite.

1.27. Calculate (d9.9e)!
(b9.9c)! . [Hint 177]

1.28. For arbitrary n ∈ N, calculate and simplify (n+2)!
n!

. [Hint 236]

1.29. Let a, b ∈ N0 with a ≥ b. Prove that
(
a
0

)
=

(
a
a

)
= 1, and that(

a
b

)
=

(
a
a−b

)
. [Hint 94]

1.30. Let a, b ∈ N0 with a > b. Prove that
(
a
b

)
+
(
a
b+1

)
=

(
a+1
b+1

)
. [Hint 37]
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Exercises for Chapter 2.

Exercises for Chapter 2.1.

The following three exercises should be done by cases (not truth tables).

2.1. Let p, q be propositions. Prove that p∧ q∧ (¬p) ≡ F. [Hint 274]

2.2. Prove Theorem 2.7. (6 parts) [Hint 122]

2.3. Prove Theorem 2.8. (2 parts) [Hint 231]

Exercises for Chapter 2.2.

The remaining proofs in Chapter 2 should be done with truth tables.

2.4. Prove the unproved half of Theorem 2.10.

2.5. Prove Theorem 2.11. (2 parts)

2.6. Prove Theorem 2.12. (2 parts)

2.7. Simplify ¬((p∧q)∨((r∨¬q)∧¬s)) as much as possible (i.e. where

only basic propositions are negated). [Hint 87]

2.8. Prove or disprove that (p∨ q)∧ r ≡ p∨ (q∧ r). [Hint 237]

Exercises for Chapter 2.3.

2.9. Rewrite (p→ q)→ (r→ s) to use only ¬,∨,∧. [Hint 158]

2.10. Simplify ¬((p∧q)∨ (r→ s)) as much as possible (i.e. where only

basic propositions are negated).

2.11. Simplify ¬(((p → q) → r) ∧ s) as much as possible (i.e. where

only basic propositions are negated).

2.12. Let p, q be propositions. Prove that p⊕q ≡ (p∧(¬q))∨((¬p)∧q).

[Hint 80]
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2.13. Let p, q be propositions. Prove that p↔ q ≡ (p∧q)∨((¬p)∧(¬q)).

2.14. Let p, q be propositions. Prove that p ↑ q ≡ ¬(p∧ q).

2.15. Let p, q be propositions. Prove that p ↓ q ≡ ¬(p∨ q).

2.16. Let p, q, r be propositions. Prove that (p∧q)∨ (¬r) is not equiv-

alent to q∨ (r→ p). [Hint 98]

2.17. Prove Theorem 2.17. (2 parts) [Hint 23]

2.18. Let p, q be propositions. Prove each of the following equivalences.

a. ¬p ≡ p ↑ p,
b. p∧ q ≡ (p ↑ q) ↑ (p ↑ q), and
c. p∨ q ≡ (p ↑ p) ↑ (q ↑ q).

These equivalences show that ↑ is �universal�; i.e. all other operators

can be built using just ↑.
2.19. Let p, q be propositions. Prove each of the following equivalences.

a. ¬p ≡ p ↓ p,
b. p∧ q ≡ (p ↓ p) ↓ (q ↓ q), and
c. p∨ q ≡ (p ↓ q) ↓ (p ↓ q).

These equivalences show that ↓ is �universal�; i.e. all other operators

can be built using just ↓.
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Exercises for Chapter 3.

Exercises for Chapter 3.1.

3.1. Prove the unproved part of Theorem 3.2. [Hint 284]

3.2. Let p, q, r be propositions. Use a truth table to prove the �Hypo-

thetical Syllogism� Theorem: (p→ q), (q→ r) ` (p→ r).

3.3. Let p, q, r be propositions. Use a truth table to prove the �Compo-

sition� Theorem: (p→ q)∧ (p→ r) ` (p→ (q∧ r)).

3.4. Let p, q, r, s be propositions. Use a truth table to prove p→ q, q→
r, r→ s, p ` s. [Hint 297]

3.5. Let p, q, r, s be propositions. Use a truth table to prove the �Con-

structive Dilemma� Theorem: (p → q), (r → s), (p ∨ r) ` (q ∨ s). [Hint

9]

Exercises for Chapter 3.2.

3.6. Use truth tables to prove Theorem 3.5. (6 parts) [Hint 162]

A moment of silence please, for the era of truth tables is over. For all of the

remaining exercises in the book, you may no longer use truth tables.
For the rest of chapter 3, you should use semantic theorems, proof by cases, and

the proof methods from section 3.3.

3.7. Prove modus ponens (Theorem 3.3) using conditional interpreta-

tion (Theorem 2.15). [Hint 3]

3.8. Let p, q, r, s be propositions. Prove p → q, q → r, r → s, p ` s
without truth tables. [Hint 32]

3.9. Prove modus tollens (Theorem 3.5.a.) using conditional interpre-

tation (Theorem 2.15). [Hint 152]
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3.10. Prove disjunctive syllogism (Theorem 3.5.e.) using conditional

interpretation and double negation. [Hint 238]

3.11. Let p, q, r, s be propositions. Prove the �Constructive Dilemma�

Theorem: (p→ q), (r→ s), (p∨ r) ` (q∨ s). [Hint 34]

3.12. Let p, q, r, s be propositions. Prove the �Destructive Dilemma�

Theorem: (p→ q), (r→ s), ((¬q)∨ ¬s) ` ((¬p)∨ ¬r). [Hint 250]

3.13. Let p, q, r be propositions. Prove the �Composition� Theorem:

(p→ q)∧ (p→ r) ` (p→ (q∧ r)). [Hint 6]

3.14. Let p, q, r be propositions. Prove the �Hypothetical Syllogism�

Theorem: (p→ q), (q→ r) ` (p→ r). [Hint 276]

3.15. Let p, q, r, s be propositions. Suppose that (p∧q)∨ r, T → s, and

r→ ¬s are all T . Prove that p must be T .

Exercises for Chapter 3.3.

3.16. Let x ∈ R. Prove that if 2 is irrational, then x is rational. [Hint

10]

3.17. Let x ∈ R. Prove that if x is rational, then 2 is rational. [Hint

221]

3.18. Let x ∈ R. Prove that if x is rational, then 2+x is rational. [Hint

259]

3.19. Let x ∈ R. Prove that if x is irrational, then 2 + x is irrational.

[Hint 241]

3.20. Compute the converse of the converse of conditional proposition

p→ q. [Hint 211]

3.21. Compute the contrapositive of the contrapositive of conditional

proposition p→ q. [Hint 95]

3.22. Compute the contrapositive of the inverse of the converse of con-

ditional proposition p→ q. [Hint 133]

3.23. Prove the unproved part of Theorem 3.13. [Hint 188]

3.24. Prove Theorems 3.14 and 3.15. Note: although the theorems

look similar, the proofs need to be very di�erent. [Hint 289]
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Exercises for Chapter 4.

Exercises for Chapter 4.1.

4.1. Classify each of the following statements as proposition, predicate,

or not well-formed:

a. (x > 6)∧ (y > x).

b. ∃x ∈ Z, ∃y ∈ Z, (x > 6)∧ (y > x).

c. ∃x ∈ Z, (x > 6)∧ (∃y ∈ Z, y > x).

d. ∃y ∈ Z, (x > 6)∧ (∃x ∈ Z, y > x).

e. ∃x ∈ Z, (x > 6)∧ (y > x).

f. ∃x ∈ R, ∃y ∈ Z, x+ y = z.

g. ∃x ∈ R, ∃y ∈ Z, x+ y = z, ∃z ∈ Z.

h. ∃x ∈ R, ∃y ∈ Z, (x < y)∧ (∃z ∈ Z, x+ y = z).

[Hint 66]

4.2. Find a well-formed expression with one bound and two free vari-

ables. [Hint 137]

Exercises for Chapter 4.2.

4.3. Prove that ∀x ∈ N, 2x+ 5 ≥ 7. [Hint 29]

4.4. Disprove that ∀x ∈ N, 2x+ 5 ≥ 10. [Hint 153]

4.5. Prove or disprove that ∀x ∈ N, x2 − 4x+ 5 ≥ 0. [Hint 219]

4.6. Prove or disprove that ∀x ∈ N, x2 − 6x+ 5 ≥ 0. [Hint 252]

4.7. Prove that ∃x ∈ N, |3x− 5| ≤ 1. [Hint 107]

9



4.8. Disprove that ∃x ∈ N, |3x− 5| < 1. [Hint 296]

4.9. Prove or disprove that ∃x ∈ N, |3x− 8| = 1. [Hint 198]

4.10. Prove or disprove that ∃x ∈ N, |3x− 8| = 3. [Hint 287]

Exercises for Chapter 4.3.

4.11. Let p denote � ∀x, ∀y, ∃z, P(x, y, z)�, and let q denote the propo-

sition � ∀x, ∃z, ∀y, P(x, y, z)�. Is one of these propositions stronger

than the other? [Hint 213]

4.12. Let p denote � ∀x, ∃z, ∀y, P(x, y, z)�, and let q denote the propo-

sition � ∃z, ∀x, ∀y, P(x, y, z)�. Is one of these propositions stronger

than the other? [Hint 245]

4.13. Consider the two doubly quanti�ed propositions p=�to every thing

there is a season�, and q=�there is a season to every thing�. Is one of

these propositions stronger than the other?

4.14. Simplify the proposition ¬(∃x, ∃y, ∀z, x + y = z) as much as

possible (no quanti�ers or compound propositions should be negated).

[Hint 269]

4.15. Simplify the proposition ¬(∀x, ∃y, ∀z, x ≤ y < z) as much as

possible (no quanti�ers or compound propositions should be negated).

[Hint 148]

4.16. Simplify the proposition ¬(∃x, ∀y, ∀z, (x < y) → (x < z)) as

much as possible (no quanti�ers or compound propositions should be

negated). [Hint 136]

4.17. Simplify the proposition ¬(∃x, ∀y, ∀z, (x < y) ↔ (x < z)) as

much as possible (no quanti�ers or compound propositions should be

negated). [Hint 144]

4.18. Prove the proposition ∀x ∈ R, ∀y ∈ R, ∃z ∈ R, (x− z)2 ≤ (x− y)2.

[Hint 205]

4.19. Prove the proposition ∀x ∈ R, ∃y, z ∈ R, y2 ≤ x2 < z2. [Hint 242]
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4.20. Disprove the proposition ∀x ∈ N, ∃y ∈ N, y < x. [Hint 246]

4.21. Disprove the proposition ∃x ∈ N, ∀y ∈ N, y < x. [Hint 138]

4.22. Prove or disprove the proposition ∀x ∈ N, ∃y ∈ N, x2 < y <

(x+ 1)2. [Hint 89]

4.23. Prove or disprove the proposition ∀x ∈ Z, ∀y ∈ Z, ∃z ∈ Z, (x <

y)→ (x < z < y). [Hint 44]

4.24. Prove or disprove the proposition ∀x ∈ R, ∀y ∈ R, ∃z ∈ R, (x <

y)→ (x < z < y). [Hint 232]
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Exercises for Chapter 5.

Exercises for Chapter 5.1.

5.1. Let a, b be odd. Use proof by contradiction to prove that a + b is

even. [Hint 112]

5.2. Let a be irrational. Use proof by contradiction to prove that a+ 2

is irrational. [Hint 200]

5.3. Let n ∈ Z. Prove that n(n−3)
2

is an integer. [Hint 132]

5.4. Let n ∈ Z. Prove that n2−3n+2
2

is an integer. [Hint 261]

5.5. Let n ∈ Z. Use the Division Algorithm (Theorem 1.5) with b = 3

to prove that n(n−1)(n−2)
3

is an integer. [Hint 155]

5.6. Let x ∈ R. Use cases to prove that |x− 1|+ |x+ 1| ≥ 2. [Hint 167]

5.7. Let x ∈ R. Use cases to prove that |x − 1| + |x + 1| + |x| ≥ 2. [Hint

262]

5.8. Prove that
√
3 is irrational. [Hint 182]

Exercises for Chapter 5.2.

5.9. Re-prove Example 5.10 using the proof structure {a ` c, c ` b, b `
d, d ` a}. [Hint 46]

5.10. Give �ve di�erent proof structures, any of which would prove

Example 5.10. You do not need to actually write all these proofs, just

state the proof structures. [Hint 258]

5.11. Let w, x, y, z ∈ N. Prove that the following are equivalent:

(a) w
x
= y

z
; (b) wz−xy

xz
= 0; (c) wz− xy = 0; (d) w

y
= x

z
. [Hint 17]

5.12. Let n ∈ Z be even. Prove that there is a unique m ∈ Z with

n = 2m, i.e. ∃!m ∈ Z, n = 2m. [Hint 253]
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5.13. Prove or disprove that !n ∈ N, |2n− 1| = 3. [Hint 56]

5.14. Prove or disprove that !n ∈ Z, |2n− 2| = 3. [Hint 58]

5.15. Prove or disprove that !n ∈ Z, |2n− 2| = 4. [Hint 50]

5.16. Let n ∈ N. Prove !m ∈ N, n = m(m+ 1). [Hint 105]

Exercises for Chapter 5.3.

5.17. Let x ∈ R. Prove that bxc ≤ dxe. [Hint 142]

5.18. Let x ∈ R. Prove that bbxcc = bxc. [Hint 170]

5.19. Let n ∈ Z. Prove that bn
2
c ≥ n−1

2
. [Hint 244]

5.20. Let x ∈ R. Prove that b−xc = −dxe. [Hint 55]

5.21. Prove the unproved part of Theorem 5.17. [Hint 109]

5.22. Prove the unproved part of Theorem 5.18. [Hint 115]

5.23. Prove the unproved part of Theorem 5.19. [Hint 173]

5.24. Prove the unproved part of Theorem 5.20. [Hint 223]

5.25. Let x ∈ R. Prove that 2bxc ≤ b2xc ≤ 2bxc+ 1. [Hint 150]

5.26. Let x ∈ R. Prove that bx + 1
2
c = bxc if and only if x − bxc < 1

2
.

[Hint 196]
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Exercises for Chapter 6.

All of the Chapter 6 exercises should be done with some form of induction.

Exercises for Chapter 6.1.

6.1. Prove that, for every n ∈ N, 3n > 2n. [Hint 256]

6.2. Prove that, for every n ∈ N, 10n > n2. [Hint 40]

6.3. Prove that, for every n ∈ N,
∑n

i=1
1

i(i+1)
= n

n+1
. [Hint 175]

6.4. Prove that, for every n ∈ N,
∑n

i=1 i
2 = n(n+1)(2n+1)

6
. [Hint 168]

6.5. Prove that, for every n ∈ N,
∑n

i=1 i
3 = n2(n+1)2

4
.

6.6. Prove that, for every n ∈ N,
∑n

i=1(−1)
ii2 = n(n+1)(−1)n

2
. [Hint 260]

6.7. Prove that, for every n ∈ N, (2n)!
n!n!
≥ 4n

2n+1
. [Hint 282]

6.8. Prove that, for every n ∈ N,
∑n

i=0(2i+ 1) = (n+ 1)2. [Hint 28]

Exercises for Chapter 6.2.

6.9. Prove that, for every n ∈ N0, 2n > n. [Hint 171]

6.10. Prove that, for every n ∈ N with n ≥ 2, n3 ≥ 2n+ 1. [Hint 11]

6.11. Prove that, for every n ∈ N with n ≥ 4, n! > n2. [Hint 291]

6.12. (Bernoulli's inequality) Let x ∈ R with x > −1. Prove that, for

every n ∈ N0, (1+ x)n ≥ 1+ nx. [Hint 12]

6.13. (sum of arithmetic series) Let a, d ∈ R. Prove that, for every

n ∈ N0,
∑n

i=0(a+ id) = n+1
2
(2a+ nd). [Hint 26]

6.14. (sum of geometric series) Let a, r ∈ R with r 6= 1. Prove that,

for every n ∈ N0,
∑n

i=0 ar
i = a 1−r

n+1

1−r
. [Hint 249]
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6.15. Prove that, for every n ∈ N0, the Fibonacci numbers satisfy

Fn+2 = 1+
∑n

i=0 Fi. [Hint 83]

6.16. Prove that, for every n ∈ N0, the Fibonacci numbers satisfy

FnFn+1 =
∑n

i=0 F
2
i . [Hint 92]

6.17. Prove that, for every n ∈ N, the Fibonacci numbers satisfy

F2n+1 = 1+
∑n

i=0 F2i. [Hint 270]

6.18. Prove that, for every n ∈ N, the Fibonacci numbers satisfy F2n =∑n−1
i=0 F2i+1. [Hint 290]

6.19. (Cassini's identity) Prove that, for every n ∈ N with n ≥ 2, the
Fibonacci numbers satisfy F2n−1 − FnFn−2 = (−1)n. [Hint 14]

6.20. Prove that, for every n ∈ N with n ≥ 11, the Fibonacci numbers

satisfy Fn ≥ 1.5n. This is a counterpoint to Theorem 6.13. [Hint 118]

Exercises for Chapter 6.3.

6.21. Let x ∈ R. Use minimum element induction to prove that there

is a unique n ∈ Z such that n− 1 < x ≤ n. This proves that the ceiling
function is well-de�ned. [Hint 191]

6.22. Let x ∈ R. Use minimum element induction to prove that there

is a unique n ∈ Z such that n ≤ x < n + 1. Note: this is exactly the

statement of Thm 6.17, but proved with minimum element induction

instead of maximum element induction. [Hint 1]

6.23. Let a, b ∈ Z with b ≥ 1. Use minimum element induction to

prove that there are q, r ∈ Z satisfying a = bq + r and 0 < r ≤ b. [Hint

166]

6.24. Let a, b ∈ Z with b ≥ 1. Use minimum element induction to

prove that there are q, r ∈ Z satisfying a = bq+ r and 0 ≤ r < b. Note:
this is exactly the statement of Thm 6.18, but proved with minimum

element induction instead of maximum element induction. [Hint 271]
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6.25. Let a, b ∈ Z with b ≥ 1. Use maximum element induction to

prove that there are q, r ∈ Z satisfying a = bq + r and −1 ≤ r < b − 1.

[Hint 106]

6.26. Find a formula for the nth smallest element in Z, by the non-

standard order ≺ given by 0 ≺ 1 ≺ −1 ≺ 2 ≺ −2 ≺ 3 ≺ −3 ≺ · · · . The

smallest is 0, the second smallest is 1, the nth smallest is . . . ? [Hint

141]

6.27. Find a non-standard ordering ≺ so that the positive rationals

{a
b
: a, b ∈ N} are well-ordered by ≺. [Hint 7]
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Exercises for Chapter 7.

Exercises for Chapter 7.1.

7.1. Determine the order, if any, of each of the following recurrence

relations. (a) an = 7an−2; (b) bn = bn−1 − 3bn−3 + bn−2; (c) cn =∑n−1
i=1 2

ici; (d) dn = 7+dn−2; (e) en = 2en−2−4en−1; (f) fn = 3. [Hint 113]

7.2. Consider the recurrence with initial conditions a0 = 1, a1 = 1, and

relation an = 5an−1−6an−2 (n ≥ 2). Compute a5 by iteratively applying

the relation to the initial conditions. [Hint 272]

7.3. Solve the recurrence with initial conditions a0 = 5, a1 = 12, and

relation an = 5an−1 − 6an−2 (n ≥ 2). [Hint 102]

7.4. Solve the recurrence with initial conditions a0 = 1, a1 = 1, and

relation an = 5an−1 − 6an−2 (n ≥ 2).

7.5. Solve the recurrence with initial conditions a0 = 3, a1 = −16, and

relation an = an−1 + 6an−2 (n ≥ 2). [Hint 125]

7.6. Solve the recurrence with initial conditions a0 = 1, a1 = −9, and

relation an = 9an−2 (n ≥ 2). [Hint 292]

7.7. Solve the recurrence with initial conditions a0 = 3, a1 = 4, and

relation an = 4an−1 − 4an−2 (n ≥ 2). [Hint 31]

7.8. Solve the recurrence with initial conditions a0 = 0, a1 = 10, and

relation an = 4an−1 − 4an−2 (n ≥ 2).

7.9. Solve the recurrence with initial conditions a0 = 2, a1 = 5, and

relation an = 2an−1 − an−2 (n ≥ 2).

7.10. Solve the Fibonacci recurrence. It has initial conditions F0 =

0, F1 = 1, and relation Fn = Fn−1 + Fn−2 (n ≥ 2). Hint: The roots are

irrational. [Hint 68]
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7.11. Carefully adapt the second-order algorithm for �rst-order recur-

rences. You will only have one initial condition, one root, and one

parameter. [Hint 145]

7.12. Solve the recurrence with initial condition a0 = 5, and relation

an = 3an−1 (n ≥ 1). [Hint 169]

Exercises for Chapter 7.2.

7.13. Let an = 1, 000, 000n + 3, 000, 000. Prove that an = O(n). [Hint

216]

7.14. Let an = 5+ 1
n
+ 1

n+1
. Prove that an = O(1).

Note: here limn→∞ an = 5, rather than the more common ∞. [Hint 176]

7.15. Let an = n2 + n+ 1+ 1
n
+ sinn. Prove that an = O(n2). [Hint 62]

7.16. Let an = n2.1. Without using the classi�cation theorem, prove

that an 6= O(n2). [Hint 154]

7.17. Let an = 2.1n. Without using the classi�cation theorem, prove

that an 6= O(2n). [Hint 163]

7.18. Let an = 3n2 + 7. Prove that an = Θ(n2). [Hint 165]

7.19. Let an be a sequence and bn a test sequence. Let k ∈ R. Prove

that if an = O(bn), then (kan) = O(bn). [Hint 186]

7.20. Let an, a
′
n be sequences, and let bn be a test sequence. Suppose

that an = O(bn), and a
′
n = O(bn). Prove that (an + a

′
n) = O(bn). [Hint

103]

Exercises for Chapter 7.3.

7.21. An algorithm to print each entry of a balanced binary tree has

runtime speci�ed by the recurrence relation Tn = 2Tn/2 + 3. Determine

what, if anything, the Master Theorem tells us. [Hint 146]

7.22. Suppose that an algorithm has runtime speci�ed by recurrence

relation Tn = Tn/2 + 2
n. Determine what, if anything, the Master The-

orem tells us. [Hint 85]
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7.23. Suppose that an algorithm has runtime speci�ed by recurrence

relation Tn = 16Tn/4 + n. Determine what, if anything, the Master

Theorem tells us. [Hint 179]

7.24. Suppose that an algorithm has runtime speci�ed by recurrence

relation Tn = 4Tn/2 + n2. Determine what, if anything, the Master

Theorem tells us.

7.25. Suppose that an algorithm has runtime speci�ed by recurrence

relation Tn = nTn/2 + n2. Determine what, if anything, the Master

Theorem tells us.

7.26. Suppose that an algorithm has runtime speci�ed by recurrence

relation Tn = 3Tn/3 +
√
n. Determine what, if anything, the Master

Theorem tells us.

7.27. Suppose that an algorithm has runtime speci�ed by recurrence

relation Tn = 8Tn/3 + n2. Determine what, if anything, the Master

Theorem tells us. [Hint 53]

7.28. Prove Theorem 7.9. Note: this is Chapter 7.2 material, but there

were already a lot of exercises for that chapter. [Hint 120]

7.29. Prove the unproved parts of Theorem 7.10. (8 parts, some harder

than others) Note: this is Chapter 7.2 material, but there were already

a lot of exercises for that chapter. [Hint 130]

19



Exercises for Chapter 8.

Exercises for Chapter 8.1.

8.1. Give �ve di�erent names for the set {1, 2, 3, 4}. Be sure to include

examples with list, description, and set-builder notation. [Hint 235]

8.2. Let S = {1, 2, 3}. Find any set T , so that S ∈ T and S ⊆ T both

hold. Specify T in list notation. [Hint 100]

8.3. Let S be a set. Prove that ∅ ⊆ S. Note that, by Theorem 8.14,

this means that ∅ ∩ S = ∅ and ∅ ∪ S = S. [Hint 214]

8.4. Let S = {x ∈ Z : ∃y ∈ Z, x = 12y}, and T = {x ∈ Z : ∃y ∈ Z, x = 3y}.
Prove that S ⊆ T . [Hint 97]

8.5. Let S = {x ∈ Z : ∃y ∈ Z, x = 12y}, and T = {x ∈ Z : ∃y ∈ Z, x = 8y}.
Prove that S * T . [Hint 81]

8.6. Let S = {x ∈ Z : ∃y ∈ Z, x = 24y}, and T = {x ∈ Z : ∃y, z ∈ Z, x =

8y∧ x = 3z}. Prove that S = T . [Hint 60]

8.7. Let S = {x ∈ Z : ∃y ∈ Z, x = 24y}, and T = {x ∈ Z : ∃y, z ∈ Z, x =

4y∧ x = 6z}. Prove that S 6= T . [Hint 2]

8.8. Let R, S, T be sets. Suppose that R ⊆ S, and S ⊆ T . Prove that

R ⊆ T . [Hint 208]

Exercises for Chapter 8.2.

8.9. Let R, S, T be sets. Draw a Venn diagram representing (R∪ S)∪ T .
[Hint 63]

8.10. Let R, S, T be sets. Draw a Venn diagram representing (R∆S)∆T .

[Hint 27]

8.11. Let R, S, T be sets. Draw a Venn diagram representing (R \ S) ∪
(S \ T). [Hint 239]
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8.12. Let S = {x ∈ Z : ∃y ∈ Z, x = 12y}, and T = {x ∈ Z : ∃y ∈ Z, x =

8y}. Write S ∩ T in a nice way, using set-builder notation. [Hint 278]

8.13. Let S, T be sets. Prove that S ∩ T ⊆ S. [Hint 195]

8.14. Let S, T be sets. Prove that S ⊆ S ∪ T . [Hint 24]

8.15. Let S, T be sets. Prove that S \ T ⊆ S. [Hint 110]

8.16. Let S be a set. Prove that S ∩ S = S, and that S ∪ S = S. [Hint 75]

8.17. Let S be a set. Prove that S∆∅ = S, and that S∆S = ∅. [Hint 45]

8.18. Let S, T be sets. Prove that S = T if and only if S\T = T \S. [Hint

15]

8.19. Prove the unproved part of Theorem 8.12. [Hint 4]

Exercises for Chapter 8.3.

8.20. Simplify (R ∩ S) ∩ (S ∩ (R ∩ S)) as much as possible, using the set

property theorems and Exercise 8.16. [Hint 36]

8.21. Prove Theorem 8.13, parts a,b,c,e. If you want a messy chal-

lenge, you may do part f (optional). [Hint 174]

8.22. Prove the unproved parts of Theorem 8.14. [Hint 76]

8.23. Prove the unproved parts of Theorem 8.15. [Hint 257]
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Exercises for Chapter 9.

Exercises for Chapter 9.1.

9.1. Let U be a set, and let S ⊆ U. Prove that Sc ⊆ U. [Hint 39]

9.2. Prove the unproved parts of Theorem 9.2. (4 parts) [Hint 190]

9.3. Let S, T,U be sets, with S ⊆ U and T ⊆ U. Prove that S\T = S∩T c.
[Hint 129]

9.4. Let S, T,U be sets, with S ⊆ U and T ⊆ U. Prove that Sc\T c = T \S.
Hint: use the previous exercise. [Hint 240]

9.5. Let S, T,U be sets, with S ⊆ T ⊆ U. Prove that T c ⊆ Sc. This is the
set theory parallel of Theorem 3.13.

9.6. Prove the unproved part of Theorem 9.3. [Hint 8]

9.7. Write down twelve di�erent objects: three elements of Z, then

three subsets of Z, then three elements of 2Z, then three subsets of 2Z.

[Hint 203]

9.8. Let S = {x, y, z}. Write 2S in list notation. [Hint 128]

9.9. Let S, T be sets. Prove that S ⊆ T , if and only if, 2S ⊆ 2T . [Hint

199]

9.10. Let S, T be sets. Prove that 2S ∩ 2T = 2S∩T . [Hint 54]

9.11. Find all partitions of set S = {x, y, z}. [Hint 116]

9.12. Find a partition of set Z into three parts. Then �nd a di�erent

one. [Hint 217]

Exercises for Chapter 9.2.
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9.13. Write down twelve di�erent objects: three elements of Z×Z, then
three subsets of Z× Z, then three elements of 2Z×Z, then three subsets

of 2Z×Z. [Hint 204]

9.14. Let S = {1, 2, 3}, T = {2, 3, 4}. Write down, in list notation, (S ×
T) \ (T × S). [Hint 43]

9.15. Let A,B,C,D be sets. Suppose that A ⊆ C, and that B ⊆ D.

Prove that (A× B) ⊆ (C×D). [Hint 61]

9.16. Prove the unproved parts of Theorem 9.13. [Hint 91]

9.17. Let R, S, T be sets. Prove that (R ∩ S) × T = (R × T) ∩ (S × T).
Similarly the other parts of Theorem 9.13 are true from the other

side.

9.18. Let A,B,C,D be sets. Prove that (A ∩ B) × (C ∩D) = (A × C) ∩
(B×D). [Hint 20]

9.19. Find sets A,B,C,D, for which (A∪B)×(C∪D) 6= (A×C)∪(B×D).

[Hint 71]

Exercises for Chapter 9.3.

9.20. Set S = 2Z = {2x : x ∈ Z}, the set of even integers. Prove that S

is equicardinal with Z. [Hint 149]

9.21. Let A,B be sets. Prove that A × B is equicardinal with B × A.
[Hint 227]

9.22. Let A,B,C be sets. Prove that (A × B) × C is equicardinal with

A× (B× C). [Hint 264]

9.23. Consider the pairing given in Theorem 9.16. Write the �rst 20

pairs, i.e. the pairs containing naturals 1, 2, . . . , 20. [Hint 194]

9.24. Consider the pairing given in Theorem 9.17. Write the �rst 20

pairs, i.e. the pairs containing naturals 1, 2, . . . , 20. [Hint 159]

9.25. Prove the unproved part of Corollary 9.19. That is, prove that

|S| ≤ |2S|, by pairing o� S with a subset of 2S. [Hint 267]
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Exercises for Chapter 10.

For all of the Chapter 10 exercises, let S? = {1, 2, 3}. On this set S?, de-

�ne the relations R?
1 = {(1, 2), (2, 3), (3, 2)}, and R?

2 = {(1, 1), (2, 2), (3, 3), (2, 3)}.

Exercises for Chapter 10.1.

10.1. Let S = {a, b}. Find all relations on S. [Hint 79]

10.2. Draw digraphs for relations R?
1 and R

?
2 on S

?. [Hint 57]

10.3. Consider relations Rempty, Rfull, and Rdiagonal on S
?. For each of

these three relations, write the relation explicitly in list notation, and

draw the corresponding digraph. [Hint 48]

10.4. Compute the relations R?
1 ∩ R?

2 and R
?
1 ∪ R?

2, in list notation, and

give their digraphs. [Hint 25]

10.5. Determine the relation R≤∩Rx2∩Rb/2c, and write it in list notation.

[Hint 151]

10.6. Determine the relation R≤ ∩ Rb/2c, and write it in set-builder no-

tation. [Hint 111]

Exercises for Chapter 10.2.

10.7. Find a set S and a relation R on S, such that R is both re�exive

and irre�exive. Hint: S needs to be very special. [Hint 222]

10.8. Prove that the relation R?
1 on S

? is not symmetric, not antisym-

metric, and not trichotomous. [Hint 74]

10.9. Let S be a set. Suppose that relation R on S is both symmetric

and antisymmetric. Prove that R ⊆ Rdiagonal. [Hint 69]

10.10. Let R be a relation on S. Suppose that R has the property that

∀x, y ∈ S, xRy↔ yRx. Prove that ∀x, y ∈ S, xRy→ yRx. [Hint 157]
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10.11. Let R be a relation on S. Suppose that R has the property that

∀x, y ∈ S, xRy → yRx. Prove that ∀x, y ∈ S, xRy ↔ yRx. This exercise,

together with the previous, proves that the two de�nitions of symmetry

are actually equivalent. [Hint 19]

10.12. Prove that the two de�nitions of antisymmetric are logically

equivalent. [Hint 181]

10.13. Prove that the two de�nitions of trichotomous are logically

equivalent. [Hint 189]

10.14. Let S be a set, and R a transitive relation on S. Use induction to

prove that, for all n ∈ N with n ≥ 2, and any elements x1, x2, . . . , xn ∈ S,
(x1Rx2 ∧ x2Rx3 ∧ · · ·∧ xn−1Rxn)→ x1Rxn. [Hint 33]

10.15. Let S be a set, and R a symmetric relation on S. Prove that Rc

is also symmetric on S. [Hint 78]

Exercises for Chapter 10.3.

10.16. Compute the relations R?
1 ◦ R?

2 and R
?
2 ◦ R?

1, in list notation, and

give their digraphs. [Hint 38]

10.17. Set T ? = {1, 3}. Compute the relations R?
1|T? and R?

2|T?, in list

notation, and give their digraphs. [Hint 247]

10.18. Set T = {1, 2, 3, 4}. Compute the relations R≤|T , Rx2 |T , Rb/2c|T , in

list notation, and give their digraphs. [Hint 134]

10.19. Let S be a set, T ⊆ S, and R a symmetric relation on S. Prove

that R|T is symmetric. [Hint 84]

10.20. Let S be a set, T ⊆ S, and R a transitive relation on S. Prove

that R|T is transitive. [Hint 124]

10.21. Let S be a set, and R a transitive relation on S. Prove that R−1

is also transitive on S. [Hint 161]

10.22. Compute the re�exive closure, symmetric closure, and transi-

tive closure, of R?
1. Give them in list notation, and give their digraphs.

(3 relations) [Hint 104]
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10.23. Compute the re�exive closure, symmetric closure, and transi-

tive closure, of R?
2. Give them in list notation, and give their digraphs.

(3 relations) [Hint 202]

10.24. Let S be a set, and R a relation on S. Prove that (R−1)−1 = R.

[Hint 22]

10.25. Let S be a set, with re�exive relation R. Prove that R ⊆ R ◦ R.
[Hint 67]

10.26. Let S be a set, with transitive relation R. Prove that R ◦ R ⊆ R,
without using Theorem 10.16. [Hint 251]

10.27. Let S be a set, with relation R. Let R ′ be the re�exive closure of

R. Prove that R ′ is re�exive. [Hint 121]

10.28. Let S be a set, with relation R. Let R ′ be the symmetric closure

of R. Prove that R ′ is symmetric. [Hint 49]

10.29. Prove the unproved parts of Theorem 10.20. [Hint 254]
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Exercises for Chapter 11.

Exercises for Chapter 11.1.

11.1. De�ne relation R on Q via R = {(a, b) : a − b ∈ Z}. Prove that R

is an equivalence relation. [Hint 35]

11.2. De�ne relation R on Q via R = {(a, b) : a + b ∈ Z}. Prove that R

is not an equivalence relation. [Hint 18]

For exercises 11.3-11.5, Z[x] is the set of all polynomials with integer

coe�cients, in the variable x. Six examples of elements of Z[x] are:
5x2 − 2x+ 1, − x3 − 7, 100x100 + x99, x, 8, 0

If p(x) ∈ Z[x], it is a polynomial, and you can do anything to it that

you do with other polynomials. For example, if p(x) = −x3− 7, we can

calculate p(0) = −03 − 7 = −7, p(x) + p(x) = −2x3 − 14, p ′(x) = −3x2.

11.3. De�ne relation R on Z[x] via R = {(p(x), q(x)) : p(0) − q(0) = 0}.

Prove that R is an equivalence relation. [Hint 187]

11.4. De�ne relation R on Z[x] via R = {(p(x), q(x)) : p(0) + q(0) = 0}.

Prove that R is not an equivalence relation. [Hint 82]

11.5. De�ne relation R on Z[x] via R = {(p(x), q(x)) : p ′(x) = q ′(x)}.

Here ′ denotes the derivative operator: p ′(x) is the derivative of p(x),

and q ′(x) is the derivative of q(x). Prove that R is an equivalence

relation. [Hint 281]

Exercises for Chapter 11.2.

11.6. Let n ∈ N, and de�ne relation R on Z via (a, b) ∈ R if a, b have

the same remainder upon dividing by n (via the Division Algorithm).

Prove that (a, b) ∈ R, if and only if, a ≡ b (mod n). This gives another

way of understanding modular equivalence. [Hint 283]

11.7. Let m,n ∈ N. Suppose that x ≡ y (mod mn). Prove that x ≡ y
(mod m), and that x ≡ y (mod n). [Hint 180]
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11.8. Prove the unproved portions of Theorem 11.4. [Hint 93]

11.9. Find an integer x ∈ [0, 11) such that x ≡ 28 (mod 11). Then �nd

an integer y ∈ [0, 11) such that y ≡ x · x (mod 11). Note that y ≡ 216
(mod 11). [Hint 42]

11.10. Use the method of Exercise 11.9 to �nd an integer z ∈ [0, 11)

such that z ≡ 2128 (mod 11). Do not actually compute 2128. [Hint 268]

11.11. Use the work from Exercise 11.10, and the observation that

100 = 64 + 32 + 4, to �nd an integer z ∈ [0, 11) such that z ≡ 2100

(mod 11). Do not actually compute 2100. [Hint 147]

11.12. Compute 21 (mod 11), 22 (mod 11), 23 (mod 11), . . ., and �nd a

pattern. Use that pattern to �nd an integer z ∈ [0, 11) such that z ≡ 2100
(mod 11). [Hint 70]

11.13. Find all integers x ∈ [0, 12) satisfying the modular equation

5x ≡ 10 (mod 12). [Hint 183]

11.14. Find all integers x ∈ [0, 12) satisfying the modular equation

5x ≡ 11 (mod 12). [Hint 140]

11.15. Find all integers x ∈ [0, 12) satisfying the following modular

equations (one at a time, not all at once):

a. 2x ≡ 10 (mod 12)

b. 2x ≡ 8 (mod 12)

c. 2x ≡ 9 (mod 12)

d. 10x ≡ 10 (mod 12)

e. 10x ≡ 8 (mod 12)

f. 12x ≡ 12 (mod 12)

g. 12x ≡ 11 (mod 12)

[Hint 263]
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11.16. Use the method given in the proof of the Chinese Remainder

Theorem (Theorem 11.8) to solve the linear modular system {x ≡ 5

(mod 9), x ≡ 1 (mod 11)}. [Hint 51]

11.17. Use the method given in the proof of the Chinese Remainder

Theorem (Theorem 11.8) to solve the linear modular system {x ≡ 5

(mod 9), x ≡ −5 (mod 11)}.

11.18. Let m,n ∈ N, and set d = gcd(m,n). Let b ∈ Z with d - b.
Prove that mx ≡ b (mod n) has no solutions. [Hint 160]

11.19. Let m,n ∈ N, and set d = gcd(m,n). Let b ∈ Z with d|b. Prove

that mx ≡ b (mod n) has exactly d solutions in [0, n). [Hint 277]

Exercises for Chapter 11.3.

11.20. Let S = {0, 1, 2, . . . , 19}. Draw the graph for equivalence, modulo

3, on S. [Hint 123]

11.21. Let S = {0, 1, 2, . . . , 19}. Draw the graph for equivalence, modulo

5, on S. [Hint 30]

11.22. Consider the equivalence relation from exercise 11.1. Find [0.4];

give this in set-builder notation, without any direct reference to R. [Hint

164]

11.23. Consider the equivalence relation from exercise 11.3. Find [x2+

3x + 1]; give this in description notation, without any direct reference

to R. [Hint 114]

11.24. Consider the equivalence relation from exercise 11.5. Find [x2+

3x + 1]; give this in description notation, without any direct reference

to R. [Hint 119]

11.25. Let n ∈ N, and let ≡ be the equivalence relation modulo n, on

Z. Let a, b ∈ Z. De�ne [a] + [b] = {x + y : x ∈ [a], y ∈ [b]}. Prove that

[a] + [b] = [a+ b]. (equal as sets) [Hint 73]

11.26. Let n ∈ N, and let ≡ be the equivalence relation modulo n, on

Z. Let a, b ∈ Z. De�ne [a] · [b] = {t ∈ Z : ∃x ∈ [a], ∃y ∈ [b], t ≡ xy}.
Prove that [a] · [b] = [a · b]. (equal as sets) [Hint 52]
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Exercises for Chapter 12.

Exercises for Chapter 12.1.

12.1. Let S = Z, and let R be the relation of divisibility, |. Prove that

R is not a partial order. [Hint 65]

12.2. Prove that the three relations in Example 12.3 are partial orders.

[Hint 59]

12.3. Draw the Hasse diagram for the relation | on S = {4, 6, 8, 10, 12, 14, 16, 18,

20, 22, 24}. [Hint 185]

12.4. Draw the Hasse diagram for the diagonal relation on S = {x, y, z}.

[Hint 266]

12.5. Consider the relation ≤ on N. Draw the Hasse diagram for the

interval poset [4, 7]. [Hint 16]

12.6. Consider the relation | on N. Draw the Hasse diagram for the

interval poset [4, 700]. [Hint 101]

Exercises for Chapter 12.2.

12.7. Consider the relations from Exercises 12.3, 12.4, 12.5, 12.6.

Identify any greatest, maximal, least, minimal elements. [Hint 96]

12.8. Let R be a partial order on set S, and T ⊆ S. Suppose that a is

greatest in T . Prove that a is maximal in T . [Hint 47]

12.9. Let R be a partial order on set S, and T ⊆ S. Suppose that

a, a ′ ∈ T are both greatest in T . Prove that a = a ′. [Hint 293]

12.10. Let R be a partial order on set S, and T ⊆ S. Suppose that

a, a ′ ∈ T are both maximal in T . Prove that a = a ′ ∨ a ‖ a ′. [Hint 86]

12.11. Let R be a partial order on set S, and T ⊆ S. Suppose that

a, a ′ ∈ T , where a is greatest and a ′ is maximal. Prove that a = a ′.

[Hint 225]
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12.12. Consider the partial order | on N, and set T = {6, 10}. Find

three elements a, a ′, a ′′ ∈ N such that a|a ′, a ‖ a ′′, a ′ ‖ a ′′ and each of

a, a ′, a ′′ are upper bounds for T . [Hint 288]

12.13. Consider the partial order | on N, and set T = {6, 10}. Find

three elements a, a ′, a ′′ ∈ N such that a ‖ a ′, a ‖ a ′′, a ′ ‖ a ′′ and each

of a, a ′, a ′′ are upper bounds for T . [Hint 230]

12.14. Let R be a partial order on set S, and let a, b ∈ S with aRb.

Prove that the interval poset [a, b] has a greatest and a least element.

[Hint 248]

12.15. Let R be a relation on S, and let a, b ∈ S with aRb. Suppose

that R is a total order. Prove that the interval poset [a, b] is a total

order. [Hint 210]

12.16. Let R be a well-order on S. Prove that R is a total order. [Hint

220]

12.17. Prove that the product order, as given in De�nition 12.7.b., is

a partial order. For a messy challenge, prove that the lex order in

De�nition 12.7.a., is a partial order (optional). [Hint 294]

12.18. Let R1, R2 both be the usual order ≤ on N. Let T = {(1, 3), (2, 2), (4, 1)}.

Identify any greatest and maximal elements in T , in the lex order on

N× N. [Hint 156]

12.19. Let R1, R2 both be the usual order ≤ on N. Let T = {(1, 3), (2, 2), (4, 1)}.

Identify any greatest and maximal elements in T , in the product order

on N× N. [Hint 265]

12.20. Find three partial orders on C; one in which 1 − i < 1 + i, one

in which 1− i > 1+ i, and one in which 1− i ‖ 1+ i. [Hint 21]

Exercises for Chapter 12.3.

12.21. Consider the relation | on S = {1, 2, 3, 4, 6}. Find all linear ex-

tensions of | on S. (this is really from Chapter 12.2, but that section

had too many exercises) [Hint 286]
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12.22. Consider the relation | on S = {1, 2, 3, 5, 6}. Find all linear ex-

tensions of | on S. (this is really from Chapter 12.2, but that section

had too many exercises) [Hint 207]

12.23. Consider the partial order | on {1, 2, 3, . . . , 10}. Without using

Dilworth's Theorem, prove that it has no antichain of size 6. [Hint 212]

12.24. Set T = {a, b, c, d, e}. Find a maximal clutter from T . [Hint 72]

12.25. Consider the relations from Exercises 12.3, 12.4, 12.5, 12.6.

Find the height and width of each. Be sure to justify. [Hint 285]

12.26. Let R be a total order on set S. Prove that the width of R is 1,

and the height of R is |S|. [Hint 215]

12.27. Let R1, R2 both be the usual order ≤ on S = {1, 2, 3}. Let R be the

product order on S × S. Find the width and height of R. Be sure to

prove your answer. [Hint 126]
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Exercises for Chapter 13.

Exercises for Chapter 13.1.

13.1. Verify the forty properties of relations R1, R2, . . . , R10, as given in

the table below them. Yes, it's a lot! [Hint 255]

13.2. Let S = [0, 1], an interval in R. Find a relation on S that is not

left-total, not left-de�nite, not right-total, and not right-de�nite. Be

sure to justify your answer. [Hint 135]

13.3. Let S = [0, 1], an interval in R. Find a relation on S that is not

left-total and not right-total, but is left-de�nite and right-de�nite. Be

sure to justify your answer. [Hint 228]

13.4. Let R be a relation from S to T ; hence, R−1 is a relation from T

to S. Prove that R is left-total if and only if R−1 is right-total.

Exercises for Chapter 13.2.

13.5. Consider the relation R : R → R given by {(x, y) : x2 + y3 = 1}.

Determine whether R is a well-de�ned function. [Hint 209]

13.6. Consider the relation R : R→ R given by {(x, y) : sin2 x+ cos2 x =

y}. Determine whether R is a well-de�ned function. [Hint 108]

13.7. Consider the relation R : R → R given by {(x, y) : y = tan x}.

Determine whether R is a well-de�ned function. [Hint 131]

13.8. Consider the relation R : Q→ Q given by {(x, y) : xy = 1}. Deter-

mine whether R is a well-de�ned function. [Hint 127]

13.9. Consider the relation f : R→ R given by {(x, y) : y =
√
x}. Restrict

the domain so that the resulting restricted relation becomes a function.

[Hint 192]

13.10. Prove Theorem 13.4. [Hint 5]
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13.11. Prove Theorem 13.9. [Hint 139]

13.12. Consider the function f : Z → Z given by f(x) = x + 3. Prove

that f is bijective. [Hint 218]

13.13. Consider the function f : R → R given by f(x) = cos x. Prove

that f is not surjective and not injective. [Hint 193]

13.14. Consider the function f : N → N given by f(n) = n(n+1)
2

. Prove

that f is injective and not surjective. [Hint 243]

13.15. Consider the function f : R → R given by {(x, y) : y = x2}.

Restrict the domain so that the resulting function becomes injective.

13.16. Consider the function f : R → R given by {(x, y) : y = x2}.

Restrict the domain and the codomain so that the resulting function

becomes bijective.

13.17. Prove Theorem 9.16, by proving that the function f : N → Z

given by f : n 7→ {n/2 n is even,

−(n− 1)/2 n is odd.
is a bijection. Hint: there

will be cases, based on even vs. odd. [Hint 90]

Exercises for Chapter 13.3.

13.18. Let S, T be sets, and f : S→ T be a function. Prove that idT ◦f =
f. [Hint 226]

13.19. Let S, T be sets, and f : S→ T be a function. Prove that f◦ idS =
f. [Hint 280]

13.20. Prove the unproved parts of Theorem 13.15. [Hint 88]

13.21. Consider F1, F2, functions on R, given by F1(x) = e
x, F2(x) = x

2.

Recall that F1 is injective (as proved in Example 13.11). Prove that

F2 is not injective, and that F2 ◦ F1 is injective. This speaks to the

�missing� part of Theorem 13.15.b. [Hint 197]
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13.22. Consider F1, F2, functions on R, given by F1(x) = e
x, and F2(x) ={

ln x x > 0

5 x ≤ 0
. Recall that F1 is not surjective (as proved in Example

13.11). Prove that F2 is surjective, and that F2 ◦ F1 is surjective. This
speaks to the �missing� part of Theorem 13.15.d. [Hint 172]

13.23. Prove the unproved part of Theorem 13.16. [Hint 233]

13.24. Let S, T be sets, and F : S → T a function. Suppose we had

a function G : T → S such that G ◦ F = idS and F ◦ G = idT . By

the discussion following Theorem 13.16, we know that F,G are both

bijective. Prove that G = F−1. [Hint 117]

13.25. Consider the function f : Z → Z given by f(x) = x + 3. Use the

method of Exercise 13.24 to (re-)prove that f is bijective. [Hint 64]
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Hints to Selected Exercises

Warning: Do not look at any hint until you have made a good-

faith e�ort to solve the exercise on your own. Relying too much

on hints will limit your ability to master the material.

1. You will need to start by de�ning S = {m ∈ Z : p}, where p is a

carefully chosen predicate involving m,x. Try various options for p

until you �nd one that works. You need S to have a lower bound to

use minimum element induction.

2. You have a choice: Either �nd some x that is in S and not in T , or

�nd some x that is in T but not in S.

3. You will also need disjunctive syllogism.

4. Part b is simpler than part a, because the propositions that each

side work out to, turn out to be the same. There are still two ⊆
relationships to prove.

5. Suppose �rst that R is right-total. Now prove that the two sets Im(R)

and T are equal (⊆ and ⊇). Now, suppose that Im(R) = T . Let y ∈ T
be arbitrary. Now prove there is some x ∈ S with (x, y) ∈ R.

6. Try breaking into two cases: p might be T or F.

7. Write the set down on a grid, then zig-zag through the grid.

8. For one direction: Let x ∈ (S ∩ T)c. Now prove x ∈ Sc ∪ T c. For the
other direction: Let x ∈ Sc ∪ T c. Now prove x ∈ (S ∩ T)c.

9. Your truth table will need 16 rows. Yikes!

10. The hypothesis and conclusion don't appear to be related in any way.

Perhaps Theorem 3.7?

11. Algebra hint: (n+1)3 = n3+3n2+3n+1 ≥ (2n+1)+3n2+3n+1 =

3n2 + 5n+ 2. Now prove 3n2 + 5n+ 2 ≥ 2(n+ 1) + 1.
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12. Use induction on n (not x). Algebra hint: Multiply both sides of the

inductive hypothesis by 1+ x.

13. Six of them are neither.

14. Still no need for strong induction. Algebra hint: Work with F2n −

Fn+1Fn−1, replacing Fn+1 by Fn+ Fn−1 and simplifying with the induc-

tive hypothesis.

15. Note that x ∈ (S \ T) ∩ (T \ S) means that x ∈ S ∧ x /∈ S, i.e. this is
impossible. Hence (S \ T) ∩ (T \ S) = ∅.

16. Your diagram should contain four elements and three edges.

17. Many proof structures will work, such as a ` b, b ` c, c ` d, d ` a.

18. This relation is symmetric, but it is neither re�exive nor transitive.

You may choose either of those two properties to disprove.

19. This exercise is more di�cult than 10.10. You will need to use your

hypothesis twice, with di�erent choices for x, y.

20. There are two directions to prove. For one, let x ∈ (A∩B)× (C∩D).

Hence x = (u, v), an ordered pair, with u ∈ A∩B and v ∈ C∩D. Now
prove that x ∈ A×C and that x ∈ B×D, and from there prove that

x ∈ (A×C)∩(B×D). For the other direction, let x ∈ (A×C)∩(B×D),

and prove that x ∈ (A ∩ B)× (C ∩D).

21. Two of these were given as sample partial orders in the chapter; the

third you must construct on your own. Think about choosing a fa-

miliar partial order, or its reverse, and combining with another via

lex or product order.

22. There are two things to prove. First, suppose that a, b ∈ S with

(a, b) ∈ R. Now prove that (a, b) ∈ (R−1)−1. Second, suppose that

a, b ∈ S with (a, b) ∈ (R−1)−1. Now prove that (a, b) ∈ R.

23. You can use a truth table for each part.
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24. Convert to propositional notation, then use addition.

25. The �rst relation will contain only one ordered pair; the second will

contain six.

26. Algebra hint: add a+(n+1)d to both sides of the inductive hypoth-

esis.

27. Start with an empty Venn diagram with sets R, S, T , then shade R∆S

in one color, and treat it as one of the sets (together with T) to get

your �nal shading.

28. Algebra hint: Add 2(n+1)+1 = 2n+3 to both sides of the inductive

hypothesis.

29. Start with: Let x ∈ N be arbitrary. Hence x ≥ 1. (etc.)

30. The graph should have �ve big clumps of vertices, with all vertices

connected within each clump.

31. The characteristic polynomial has a double root.

32. You will use modus ponens several times.

33. Your inductive hypothesis is (x1Rx2∧x2Rx3∧ · · ·∧xn−1Rxn)→ x1Rxn.

Your desired conclusion is (x1Rx2∧x2Rx3∧· · ·∧xn−1Rxn∧xnRxn+1)→
x1Rxn+1; prove it using a direct proof.

34. Try breaking into two cases: p is T , or r is T .

35. You need to prove that R is re�exive, symmetric, and transitive. For

example, to prove that R is transitive, you let a, b, c ∈ Q be arbitrary,

assume that (a, b) ∈ R and (b, c) ∈ R, and try to prove that (a, c) ∈ R.

36. You should get R ∩ S, but remember to justify each step carefully.

37. Use the de�nition of binomial coe�cients. Use the properties of fac-

torial to �nd a common denominator and add.
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38. (x, z) ∈ R?
1 ◦ R?

2 with x = 1, z = 2, because there is y = 1 ∈ S? with

(x, y) ∈ R?
2 and (y, z) ∈ R?

1

39. Convert to propositional notation, then use simpli�cation.

40. Algebra hint: 10n2 = n2 + 2n2 + 7n2, now prove that 2n2 ≥ 2n and

7n2 ≥ 1.

41. You need a vertical line, and a point. Your line should not pass

through your point.

42. This and the next two problems show how it is possible for a com-

puter to calculate ab (mod n), when each of a, b, n are hundreds of

digits long. It is not possible to calculate ab (it's too big to store,

and too slow to calculate), but ab (mod n) is quick and easy using

this algorithm, which is the basis for much of modern cryptography.

Multiply, then subtract 11 the right amount of times to leave a result

in [0, 11).

43. Note that (2, 2) is an element of both S × T and T × S, but (1, 2) is

not.

44. The statement is false. Algebra hint: take x = 12, y = 13.

45. Two set equalities means four ⊆ relationships to prove. Here's one:

Let x ∈ S∆∅ be arbitrary. Then (x ∈ S∧x /∈ ∅)∨ (x /∈ S∧x ∈ ∅). But
x ∈ ∅ is false, so (x /∈ S ∧ x ∈ ∅) is false, so by disjunctive syllogism

x ∈ S∧ x /∈ ∅. By simpli�cation, x ∈ S. This proves that S∆∅ ⊆ S.

46. Your proof will have four parts. The �rst will start by assuming a

(n− 1 is even), and trying to prove c (n+ 2 is odd).

47. Assume that a is greatest. Step 1: prove a ∈ T . Step 2: Let x ∈ T be

arbitrary. Apply the hypothesis and addition.

48. Rempty will contain no ordered pairs (Rempty = ∅), Rfull will contain 9
ordered pairs, Rdiagonal will contain 3 ordered pairs.
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49. To prove that R ∪ R−1 is symmetric, let (a, b) ∈ R ∪ R−1. Now there

are two cases, (a, b) ∈ R and (a, b) ∈ R−1. In each case, you need to

end with (b, a) ∈ R ∪ R−1.

50. The statement is false. You need to �nd two di�erent integers that

satisfy the equation.

51. 9 × 5 ≡ 1 (mod 11) and 11 × 5 ≡ 1 (mod 9), so take m = 9,m ′ =

5, n = 11, n ′ = 5.

52. For one direction, let z ∈ [a] · [b] be arbitrary, and try to prove that

z ∈ [a ·b]. For the other direction, let z ∈ [a ·b] be arbitrary, and try

to prove that z ∈ [a] · [b].

53. 31 = 3 and 32 = 9.

54. For one direction: Let x ∈ 2S ∩ 2T . Hence x ∈ 2S∧ x ∈ 2T . Now prove

that x ∈ 2S∩T . For the other direction: Let x ∈ 2S∩T . Now prove

x ∈ 2S ∩ 2T .

55. Combine various inequalities to prove ≤, then again to prove ≥.

56. The statement is true. Begin by assuming n,n ′ ∈ N with |2n − 1| =

3 = |2n ′ − 1|. End with proving n = n ′.

57. The two digraphs will each have vertices 1, 2, 3, but di�erent edges.

58. The statement is true. Theorem 3.7 may be helpful.

59. For transitivity in 12.3b, let A,B,C ∈ 2T (i.e. A,B,C ⊆ T). Suppose
that A ⊆ B and B ⊆ C. Now, let x ∈ A be arbitrary. Prove that

x ∈ C. This proves that A ⊆ C.

60. Prove that S ⊆ T , and that T ⊆ S. The second one is harder: it helps

to use the fact that 3 is prime.

61. Let x ∈ A × B. Hence x = (u, v), an ordered pair, with u ∈ A and

v ∈ B. Now prove that x ∈ C×D.
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62. | sinn| ≤ 1. Hence, for n ∈ N, |an| ≤ |n2| + |n| + |1| + | 1
n
| + | sinn| ≤

n2 + n+ 1+ 1
n
+ 1.

63. Start with an empty Venn diagram with sets R, S, T , then shade R∪S
in one color, and treat it as one of the sets (together with T) to get

your �nal shading.

64. Find a function g(x) so that g ◦ f = idZ = f ◦ g.

65. R is re�exive and transitive. To prove it is not antisymmetric, you

need to �nd a, b ∈ S with (a, b) ∈ R and (b, a) ∈ R (and a 6= b).

66. Two are not well-formed, and three are propositions.

67. To prove (x, y) ∈ R ◦ R, you need to �nd some z ∈ S with (x, z) ∈ R
and (z, y) ∈ R. Two choices of z stand out.

68. The equation r2−r−1 = 0 has two solutions, φ = 1+
√
5

2
, and φ ′ = 1−

√
5

2
.

It is easier to work with φ,φ ′ than with the messy fractions. Note

that φ+ φ ′ = 1, and φ− φ ′ =
√
5.

69. Take arbitrary (a, b) ∈ R. Use the hypotheses you are given to prove

that a = b; hence (a, b) ∈ Rdiagonal.

70. Something wonderful will happen after 211. This pattern is not a

coincidence; such a pattern will always exist. To learn more, look up

�Fermat's Little Theorem�.

71. Examples are plentiful; try A = {5}, B = {6}, C = {7}, D = {8}.

72. A maximal clutter will be a set of ten subsets of T .

73. To prove set equality, prove ⊆ and ⊇. For one direction, let z ∈
[a]+[b] be arbitrary. Hence, there exist x ∈ [a], y ∈ [b] with z = x+y.

Using this, try to prove that z ∈ [a + b]. For the other direction, let

z ∈ [a+b] be arbitrary. Hence, a+b ≡ z (mod n). Using this, try to

�nd x ∈ [a], y ∈ [b] with z = x+ y; this will prove that z ∈ [a] + [b].
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74. You need three unrelated proofs. To prove that R?
1 is not symmetric,

you must �nd a, b ∈ S? with (a, b) ∈ R?
1 and (b, a) /∈ R?

1. To prove

that R?
1 is not antisymmetric, you must �nd a, b ∈ S? with (a, b) ∈ R?

1

and (b, a) ∈ R?
1. To prove that R?

1 is not trichotomous, you must �nd

a, b ∈ S? with (a, b) /∈ R?
1 and (b, a) /∈ R?

1.

75. Two set equalities means four ⊆ relationships to prove. Here's one:

Let x ∈ S ∩ S be arbitrary. Then x ∈ S ∧ x ∈ S. By simpli�cation,

x ∈ S. This proves S ∩ S ⊆ S.

76. There are two directions to prove. For one, let x ∈ S∪ T be arbitrary.

There will be two cases, and in both you need to get x ∈ T .

77. Using the de�nitions, you get two inequalities involving ceiling, and

two involving �oor. You also get the hypothesis that dxe = bxc.
Combine these �ve tools.

78. Let a, b ∈ S be arbitrary, and suppose that (a, b) ∈ Rc. Now try to

prove that (b, a) ∈ Rc.

79. You should �nd 2|S|
2
= 16 relations in all.

80. We need columns for p, q, of course, and also for ¬p,¬q, (p∧¬q), ((¬p)∧

q), and (p∧ ¬q)∨ ((¬p)∧ q).

81. Find some speci�c x ∈ S such that x /∈ T .

82. This relation is symmetric, but it is neither re�exive nor transitive.

You may choose either of those two properties to disprove.

83. No need for strong induction, just treat this like exercises 6.3-6.6.

84. You will use the de�nition of symmetric (twice), and the de�nition of

restriction.

85. No k is possible.

86. Argue by contradiction; ¬(a = a ′ ∨ a ‖ a ′) is equivalent to a 6=
a ′ ∧ a ∦ a ′. Now apply the hypotheses to get aRa ′ and a ′Ra, which

contradicts antisymmetry.
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87. You will get lots of practice with De Morgan's Law, and also Double

Negation.

88. Suppose that F1, F2 are both surjective. Now, F2 ◦F1 has codomain S3,

so let z ∈ S3 be arbitrary. Now �nd x ∈ S1 so that (F2 ◦ F1)(x) = z.

Suppose instead that F2 ◦ F1 is surjective. Let z ∈ S3 be arbitrary.

Now �nd y ∈ S2 so that F2(y) = z.

89. The statement is true. Algebra hint: since x ∈ N, x ≥ 1, so 2x ≥ 2
and 2x+ 1 ≥ 3. Hence x2 + 2x+ 1 ≥ x2 + 3.

90. Suppose f(n) = f(n ′). Case 1: n,n ′ are both even. Then n/2 = n ′/2,

so n = n ′. Case 2: n is even, n ′ is odd. Then n/2 = −(n ′ − 1)/2, a

contradiction since the LHS is positive while the RHS is not. There

are two more cases, and then you've proved injectivity. Whew!

91. Each of b,c has two directions to prove. For one direction of b, let x ∈
R× (S∪ T) be arbitrary. Then x = (a, b), where a ∈ R and b ∈ S∪ T .
Hence b ∈ S∨ x ∈ T . Two cases: b ∈ S (in which case (a, b) ∈ R× S,
so by addition (a, b) ∈ R × S ∨ (a, b) ∈ R × T), or b ∈ T (in which

case (a, b) ∈ R × T so by addition (a, b) ∈ R × S ∨ (a, b) ∈ R × T).
Both cases allow us to conclude that x = (a, b) ∈ (R× S) ∪ (R× T).

92. Still no need for strong induction.

93. For each part, start by assuming that x1 ≡ y1 (mod n), and that

x2 ≡ y2 (mod n). Then apply the de�nition of mod (twice), the def-

inition of divides (twice), do some algebra, then apply the de�nition

of divides, and the de�nition of mod again, to end up with the desired

goal.

94. a− (a− b) = b

95. First, compute the contrapositive. Then, compute the contrapositive

of that.

96. Two relations have neither least nor greatest elements.
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97. Let x ∈ S. Use properties of S to prove that x ∈ T .

98. Just one line of the truth table is enough, provided it is the right line.

99. There are two things to prove, each by applying a de�nition.

100. T must contain at least four elements.

101. There are six elements in the interval poset: it contains those x ∈ N
that satisfy 4|x and also x|700. For example, it does not contain 8

because 8 - 700.

102. The characteristic polynomial has two distinct roots, both positive.

103. You are given two M's and two n0's, and need to �nd a third M and

a third n0. Use the ones you have to �nd the new ones.

104. The relations should be sets containing six, four, and six ordered

pairs, respectively.

105. Use the quadratic formula on m2+m = (m ′)2+m ′, then eliminate a

solution, to prove m = m ′.

106. You will need to start by de�ning S = {m ∈ Z : p}, where p is a

carefully chosen predicate involving m,a, b. Try various options for

p (e.g. m ≤ a
b
,m ≤ a

b
− 1,m < a

b
,m < a

b
+ 1) until you �nd one that

works. You need S to have an upper bound to use maximum element

induction.

107. You need to �nd one speci�c x? ∈ N. (turns out there is only one

choice that works)

108. For every x ∈ R, sin2 x+ cos2 x = 1.

109. You can mimic the proof of part a, or (more cleverly) use the proof

of part a, together with exercise 5.20.

110. Let x ∈ S \ T be arbitrary. Now try to prove that x ∈ S.

44



111. Your relation must contain in�nitely many ordered pairs, of two types.

Your solution should look like: R = {(x, y) ∈ Z × Z : p ∨ q}, for

appropriately chosen predicates p and q (each depending on x, y).

112. Start by assuming a, b are odd, and a+b is not even. End by �nding

that a+ b is even, which is a contradiction.

113. One will have no order, one will have zero-th order, three will have

second order, one will have third order.

114. For p(x) = x2 + 3x + 1, we have p(0) = 02 + 3 · 0 + 1 = 1. Hence, if

(p(x), q(x)) ∈ R, we should have q(0) = 1 as well. Your set should

contain in�nitely many polynomials, including x2 + 3x+ 1.

115. You can mimic the proof of part a, or (more cleverly) use the proof

of part a, together with exercise 5.20.

116. There are �ve partitions for you to �nd.

117. G and F−1 both have domain T . Let x ∈ T be arbitrary, and set

y1 = G(x), y2 = F
−1(x). Now prove that y1 = y2.

118. Now you need strong induction. Algebra hint: 1.52 = 2.25 < 2.5 =

1.51 + 1.50.

119. For p(x) = x2+3x+1, we have p ′(x) = 2x+3. Note that
∫
p ′(x)dx =∫

2x + 3dx = x2 + 3x + C. Your set should contain in�nitely many

polynomials, including x2 + 3x+ 1.

120. You are given two M's and two n0's, and need to �nd a third M and

a third n0. Use the ones you have to �nd the new ones.

121. Start with: let x ∈ S be arbitrary. End with: hence (x, x) ∈ R ′.

122. All the parts are short, and matters of perspective. That is, when

p, q are any propositions, one might take p =`p', q =`q'; or p =`p',

q =`p'; or p =`q', q =`p', etc.
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123. The graph should have three big clumps of vertices, with all vertices

connected within each clump.

124. Let a, b, c ∈ T , and suppose that (a, b) ∈ R|T and (b, c) ∈ R|T . Now

prove that (a, c) ∈ R|T .

125. The characteristic polynomial has two distinct roots, one positive and

one negative.

126. The height and width add up to 8.

127. Think about x = 0.

128. Your set should have 23 = 8 elements.

129. Prove ⊆ and ⊇ separately.

130. Algebra hint 1: take logs of nv ≤M2n, getting v lnn ≤ lnM+n ln 2,

which rearranges to n ln 2 − v lnn ≥ − lnM. Now limn→∞ n ln 2 −

v lnn = limn→∞ n(ln 2 − v lnnn ) = ∞ (use L'Hopital's rule). Algebra

hint 2: part (d) is similar to part (e), except n is replaced by 2 in the

base of the exponential.

131. The answer is no; now prove it.

132. You will have two cases, either by Corollary 1.8 or by the Division

Algorithm Theorem.

133. First compute the converse. Then, compute the inverse of that.

Lastly, compute the contrapositive of what you just found.

134. The relations should be sets containing ten, two, and six ordered

pairs, respectively.

135. Try (x− 1
2
)2 + (y− 1

2
)2 = 1

9
.

136. A fully simpli�ed expression will have ¬(p→ q) replaced by p∧(¬q).

(for suitable propositions p, q).
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137. Many solutions are possible. One, for a, b, c ∈ Z, is ∀a, a + b = c.

Find another.

138. Start with: Let x ∈ N be arbitrary. Now set y based on a side

calculation (it can depend on x), to allow the algebra to work out.

With all this, prove y ≥ x.

139. Suppose �rst that R−1 is a function. Prove that R is right-total, and

then prove that R is left-de�nite. Next, suppose that R is both right-

total and left-de�nite. Prove that R−1 is left-total and right-de�nite

(i.e. a function).

140. Modulo 12, we have 11 ≡ 23 ≡ 35 ≡ 47 ≡ · · · . So, we can replace 11

with a more convenient number.

141. It's easier to get a piecewise-de�ned formula, for odd and even n

separately.

142. The de�nition of �oor and ceiling give you four inequalities, but you

only need two of them.

143. q will not be −33, because we need 0 ≤ r < 3.

144. A fully simpli�ed expression will have p↔ q replaced by (p∧¬q)∨

(q∧ ¬p). (for suitable propositions p, q).

145. A �rst-order recurrence must be of the form an = can−1, for some

constant c ∈ R. It will have characteristic polynomial r− c.

146. cn is small.

147. 2100 = 264+32+4 = 26423224.

148. A fully simpli�ed expression will have (x ≤ y)∧ (y < z) replaced by

(x > y)∨ (y ≥ z).

149. You need a pairing of the elements of S with the elements of Z: there
is one that is screaming out as the natural one.
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150. One way: use Theorem 5.20.

151. Your relation should contain just two ordered pairs.

152. You will also need additional semantic theorems.

153. You need to �nd one speci�c x? ∈ N. (pick one out of the two that

work)

154. You need to prove ¬(an = O(n2)), i.e. ∀n0 ∈ N, ∀M ∈ R, ∃n ≥
n0, |an| > M|n2|. Hence, your proof should begin with: let n0 ∈
N,M ∈ R be arbitrary. Now �nd an n (via side calculation) that

simultaneously satis�es n ≥ n0 and |n2.1| > M|n2|. (your n will, of

necessity, depend on both n0 and M).

155. Three cases, r = 0, 1, 2. With r = 1, we have n = 3q+1, so n−1 = 3q.

156. There is a greatest element.

157. Try Theorem 2.17.

158. Multiple uses of conditional interpretation, among other rules.

159. To get you started: 1 = 20(2× 0+ 1), so 1↔ (0, 0). 2 = 21(2× 0+ 1),
so 2 ↔ (1, 0). 3 = 20(2 × 1 + 1), so 3 ↔ (0, 1). 4 = 22(2 × 0 + 1), so
4↔ (2, 0).

160. Argue by contradiction. Suppose x ∈ Z satis�ed the modular equa-

tion. Use the de�nition of modular equivalence, the de�nition of

divides, a bit of algebra, and �nd an equation where d divides one

side but not the other.

161. Let a, b, c ∈ S, and suppose that (a, b) ∈ R−1 and (b, c) ∈ R−1. Now

prove that (a, c) ∈ R−1.

162. It is not enough to provide a truth table. We must also justify certain

rows being removed, and interpret what remains.

163. You need to prove ¬(an = O(2.1n)), i.e. ∀n0 ∈ N, ∀M ∈ R,∃n ≥
n0, |2.1

n| > M|2n|.
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164. Your set should be in�nite, and contain 0.4, 1.4, 2.4,−0.6, and −1.6.

165. There are two things to prove, using two di�erent M.

166. You will need to start by de�ning S = {m ∈ Z : p}, where p is a

carefully chosen predicate involving m,a, b. Try various options for

p (e.g. m ≥ a
b
,m ≥ a

b
− 1,m > a

b
,m > a

b
+ 1) until you �nd one that

works. You need S to have a lower bound to use minimum element

induction.

167. Three cases: x < −1, −1 ≤ x ≤ 1, x > 1. With x < −1, |x−1| = −x+1

and |x+ 1| = −x− 1. For a quick refresher on absolute value, see the

Appendix (p. 221).

168. Algebra hint: Add (n+ 1)2 to both sides of the inductive hypothesis.

169. Use the �rst-order algorithm you worked out in exercise 7.11.

170. Try using Thm 5.19.

171. Start with the base case, n = 0: prove that 2n > n. Then, let n ∈ N0
be arbitrary, assume that 2n > n, and try to prove that 2n+1 > n+ 1.

172. F2 is surjective because ln x is already surjective, so for arbitrary y ∈ R
there is some x > 0 with F2(x) = y. However, F1 is not surjective,

because ex > 0 for every x. Hence you can �nd z ∈ R so that there is

no x ∈ R with (F2 ◦ F1)(x) = z.

173. You can mimic the proof of part a, or (more cleverly) use the proof

of part a, together with exercise 5.20.

174. Commutativity is simpler to prove than associativity. In all cases,

you have two (very similar) directions to prove.

175. Algebra hint: Add 1
(n+1)(n+2)

to both sides of the inductive hypothesis.

176. Algebra hint: For n ∈ N, 1
n
≤ 1 and 1

n+1
≤ 1.

177. 10! = 10 · 9!.
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178. π ≈ 3.14 and π2 ≈ 9.9.

179. cn is small.

180. First use the de�nition of ≡, then use the de�nition of |.

181. Try Theorem 2.15.

182. Mimic the proof that
√
2 is irrational, and use the fact that 3 is prime.

Note that even and odd have nothing to do with this problem.

183. There's only one.

184. There are three hypotheses, all of which must be used to get the

conclusion. You will need to apply the de�nition four times.

185. Your diagram should have �ve numbers on the bottom row, four on

the second row, and two on the top row.

186. You are given n0,M from your hypothesis (an = O(bn)). Using these,

you need to �nd n ′0,M
′, such that ∀n ≥ n ′0, |kan| ≤M ′|bn|.

187. To prove that R is re�exive, let p(x) ∈ Z[x] be arbitrary. Now prove

that (p(x), p(x)) ∈ R. To prove that R is symmetric, let p(x), q(x) ∈
Z[x] be arbitrary, and assume that (p(x), q(x)) ∈ R. Now prove that

(q(x), p(x)) ∈ R. To prove that R is transitive, let p(x), q(x), f(x) ∈
Z[x] be arbitrary, and assume that (p(x), q(x)) ∈ R and (q(x), f(x)) ∈
R. Now prove that (p(x), f(x)) ∈ R.

188. You can either repeat the proof of part a, or (more cleverly) use the

proof of part a, with a change of perspective.

189. Try Theorem 2.15.

190. For part b, there are two things to prove. For the �rst direction, let

x ∈ S ∪ Sc be arbitrary. Hence x ∈ S ∨ x ∈ Sc. We have two cases:

x ∈ S (and since S ⊆ U, x ∈ U), or x ∈ Sc (so x ∈ U \ S and thus

x ∈ U ∧ x /∈ S, so by simpli�cation x ∈ U). In both cases x ∈ U.
For the second direction, let x ∈ U be arbitrary. We have two cases:
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x ∈ S (so x ∈ S ∨ x ∈ Sc by addition), or x /∈ S (so x ∈ U ∧ x /∈ S
by conjunction, hence x ∈ Sc, hence x ∈ S ∨ x ∈ Sc by addition). In

both cases, x ∈ S∨ x ∈ Sc, so x ∈ S ∪ Sc.

191. You will need to start by de�ning S = {m ∈ Z : p}, where p is a

carefully chosen predicate involving m,x. Try various options for p

(e.g. m ≥ x,m ≥ x − 1,m > x,m > x + 1) until you �nd one that

works. You need S to have a lower bound to use minimum element

induction.

192. We can only take square roots of nonnegative real numbers.

193. To prove that f is not surjective, �nd some y ∈ R and use the prop-

erties of f(x) to prove that ∀x ∈ R, f(x) 6= y.

194. To get you started: 1 ↔ 0 (since 0 = −(1 − 1)/2), 2 ↔ 1 (since

1 = 2/2), 3↔ −1 (since −1 = −(3− 1)/2), 4↔ 2 (since 2 = 4/2).

195. Convert to propositional notation, then use simpli�cation.

196. One way: write bx + 1
2
c = bbxc + x − bxc + 1

2
c, apply Corollary 1.8,

and consider cases.

197. To prove that F2 is not injective, you need to �nd x1, x2 so that

F2(x1) = F2(x2). However, only one of x1, x2 will be in the image

of F1. To prove that F2 ◦ F1 is injective, let x1, x2 ∈ R be arbitrary.

Suppose that F2 ◦ F1(x1) = F2 ◦ F1(x2), and try to prove that x1 = x2.

198. The statement is true. You need to �nd the one speci�c x? ∈ N that

works.

199. For one direction: Assume S ⊆ T . Let x ∈ 2S. Now prove that x ∈ 2T .
For the other direction: Assume 2S ⊆ 2T . Let x ∈ S. Now prove that

x ∈ T .

200. Start by assuming that a is irrational and a + 2 is not irrational,

i.e. rational. End by �nding that a is not irrational, which is a

contradiction.
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201. Prove the two inequalities separately.

202. The relations should each be a set containing four or �ve ordered

pairs.

203. You will have three numbers, six sets of numbers, and three sets of

sets of numbers.

204. You will have three ordered pairs of numbers, six sets of ordered pairs

of numbers, and three sets of sets of ordered pairs of numbers.

205. Your nemesis gives you some x, y, and you need to use your knowledge

of these to �nd a z to make the inequality true.

206. To prove that a curve is even+, you need to �nd a vertical line with

a special property. To prove that a curve is not even+, you need to

prove that no such vertical line can exist.

207. There are eight linear extensions.

208. Assume that R ⊆ S and S ⊆ T . Let x ∈ R be arbitrary. Now prove

that x ∈ T .

209. The answer is yes; now prove it.

210. Let x, y ∈ [a, b]. Prove that xR ′y∨yR ′x in the interval poset relation

R ′ = R|[a,b]. You will need De�nition 10.11.

211. First compute the converse. Then, compute the converse of that.

212. There will be a bunch of cases (Dilworth's theorem is very valuable!)

213. The answer is yes, now explain which and why.

214. (x ∈ ∅)→ (x ∈ S) is vacuously true.

215. To prove the width is 1, prove that no antichain of size 2 can exist

(there is always an antichain of size 1). To prove the height is |S|, �nd

a chain of size |S| (no chain can be larger).
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216. You will need to pick M to be larger than 1, 000, 000.

217. One way: use the division algorithm. Another way: primes/composites/other.

Another way: positive/negative/zero.

218. To prove that f is injective, suppose that f(x1) = f(x2), and prove

that x1 = x2. To prove that f is surjective, let y ∈ Z be arbitrary and

�nd some x ∈ Z with f(x) = y.

219. The statement is true. Start with: Let x ∈ N be arbitrary.

220. Let a, b ∈ S. Set T = {a, b}, and apply the well-order property.

221. The hypothesis and conclusion don't appear to be related in any way.

Perhaps Theorem 3.7?

222. There is only one S that can work.

223. You can mimic the proof of part a, or (more cleverly) use the proof

of part a, together with exercise 5.20.

224. There are two hypotheses, both of which must be used to get the

conclusion.

225. Similar to 12.9. Once a ′Ra, we know that a, a ′ are not parallel.

226. They both have domain S. Now determine how each of them acts on

arbitrary x ∈ S.

227. You need a pairing of the elements of A×B (which are ordered pairs

(u, v) with u ∈ A and v ∈ B), with the elements of B × A. There is

one very natural pairing.

228. Try {(x, y) : y = 7x,−0.1 ≤ x ≤ 0.1}.

229. It would be a good idea to look up these terms (in some outside source,

not this text) even if you are fairly sure you know their de�nitions

already.

230. Try 210, 300, 330.
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231. Both parts are matters of perspective. That is, when p, q are any

propositions, one might take p =`p', q =`q'; or p =`p', q =`p'; or

p =`q', q =`p', etc.

232. The statement is true. Algebra hint: take z = x+y
2
. Why won't this

same strategy work for the preceding problem?

233. Mimic the proof of part (a); show that the two functions have the

same domain and act the same way on each element of that domain.

234. You get two tools: a ≤ b and b < c. Using these, you need to prove

two things: a+ d ≤ b+ d, and also b+ d < c+ d.

235. Another name in list notation is {1, 2, 2, 4, 3}.

236. First step: (n+ 2)! = (n+ 2) · (n+ 1)!.

237. Make the truth table, and see if the corresponding columns agree or

not.

238. You will also need modus ponens.

239. Start with an empty Venn diagram with sets R, S, T , then shade R \ S

in one color and S\T in another color. Treat these two shaded regions

as your two sets in getting your �nal shading.

240. Prove that each side equals Sc ∩ T .

241. Use a contrapositive proof.

242. Your nemesis gives you some x, and you need to use your knowledge

of this to �nd y, z to make the inequality true.

243. Algebra hint: From x2 + x = y2 + y, we complete the square to get

(x+ 1
2
)2 − 1

4
= (y+ 1

2
)2 − 1

4
, and hence |x+ 1

2
| = |y+ 1

2
|.

244. Try using Corollary 1.8.

245. The answer is yes, now explain which and why.
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246. First state and simplify the negation, then prove that.

247. (x, y) ∈ R?
2|T? with x = 1, y = 1, because (x, y) ∈ R?

2 and also x, y ∈ T ?.

248. a will be least, and b will be greatest: use the de�nition of the interval

poset.

249. Algebra hint: add arn+1 to both sides of the inductive hypothesis.

250. Try breaking into two cases: q is F, or s is F.

251. You can't use Theorem 10.16, but you can read its proof to give you

a strategy.

252. The statement is false. You need to �nd one speci�c x? ∈ N. (pick

one out of the three that work)

253. Existence is by de�nition of even. Uniqueness is slightly harder.

254. Each set is automatically a subset of its re�exive closure, and also

of its symmetric closure. This is the easy direction. For the hard

direction, take arbitrary (a, b) in the re�exive/symmetric closure of

R, and try to prove (a, b) ∈ R. [prove the two parts separately, don't

try to do re�exive and symmetric at the same time.]

255. For R1: To prove left-total, let x ∈ S be arbitrary. Set y = +
√
1− x2

(the positive square root). We have y ≥ 0 and x2 + y2 = 1, so

(x, y) ∈ R1. To prove right-de�nite, let x ∈ S, y1, y2 ∈ T , with

(x, y1) ∈ R1 and (x, y2) ∈ R1. Then x2 + y21 = 1 = x2 + y22, so y21 = y22
so |y1| = |y2|. Since y1, y2 ≥ 0, we must have y1 = y2. To prove it is

not right-total, y = −0.5 ∈ T , but there is no x ∈ S with (x,−0.5) ∈ R1
(since −0.5 ≥ 0 is false). To prove it is not left-de�nite, note that

(−1, 0) and (1, 0) are both in R1, but −1 6= 1. 4 down, 36 to go.

256. Start with the base case, n = 1: prove that 3n > 2n. Then, let n ∈ N
be arbitrary, assume that 3n > 2n, and try to prove that 3n+1 > 2n+1.

257. You can mimic the proof of 8.15, or you can rely on distributivity of

propositional calculus.
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258. One possible proof structure is a ` b, b ` c, c ` d, d ` a. Now �nd

four more.

259. Use a direct proof.

260. Algebra hint: Add (−1)n+1(n + 1)2 to both sides of the inductive

hypothesis.

261. You will have two cases, either by Corollary 1.8 or by the Division

Algorithm Theorem.

262. Four cases: x < −1, −1 ≤ x ≤ 0, 0 ≤ x ≤ 1, x > 1.

263. (a) There are two. (c) Prove that 2x− 9 is not even, for every integer

x.

264. You need a pairing of the elements of (A×B)×C (which are ordered

pairs ((u, v), w), with (u, v) ∈ A× B and w ∈ C), with the elements

of A× (B× C). There is one very natural pairing.

265. There is no greatest element.

266. Your diagram should have no edges.

267. Try pairing each element x ∈ S with the set containing just that

element, {x}.

268. y · y ≡ 232 (mod 11), then keep going, reducing modulo 11 at each

step.

269. A fully simpli�ed expression will have = replaced by 6=.

270. Still no need for strong induction.

271. You will need to start by de�ning S = {m ∈ Z : p}, where p is a

carefully chosen predicate involving m,a, b. Try various options for

p until you �nd one that works. You need S to have a lower bound

to use minimum element induction.
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272. With n = 2, we have a2 = 5a1 − 6a0 = 5 × 1 − 6 × 1 = −1. With

n = 3, we have a3 = 5a2 − 6a1 = 5× (−1) − 6× 1 = −11.

273. For the contradiction, you can use your knowledge that 1
2
is not an

integer.

274. We need to consider p, q, of course, and also p∧q, ¬p, and (p∧q)∧

(¬p).

275. For (c), prove that ac− bc ∈ N0.

276. Try breaking into two cases: q might be T or F.

277. Reduce the problem to a modular equation, mod n
d
, with a unique

solution (modulo n
d
). Now write out all the integer solutions, and �nd

how many are in the interval [0, n).

278. lcm(8, 12) = 24.

279. Your proofs should be similar to the proofs of the other parts.

280. Similar to exercise 13.18.

281. You can solve this problem without knowing anything about deriva-

tives. Alternatively, you can write p(x) = anx
n + an−1x

n−1 + · · · +
a1x

1+a0, with some coe�cients ai, and then p ′(x) = nanx
n−1+(n−

1)an−1x
n−2 + · · ·+ 1a1x0.

282. Algebra hint: Multiply both sides of the inductive hypothesis by
(2n+2)(2n+1)
(n+1)(n+1)

.

283. For any a, b ∈ Z, we may apply the division algorithm twice to get

a = nq1 + r1 and b = nq2 + r2. For one direction, we assume that

(a, b) ∈ R, i.e. r1 = r2, and we try to prove that a ≡ b (mod n). For

the other direction, we assume that a ≡ b (mod n), then we try to

prove r1 = r2.
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284. Break the proof into two cases: either p is T , or p is F. In each case,

prove that p, q have the same truth value. The second case is harder.

Alternatively, start with a two-column truth table and eliminate rows

as in the other proofs of this section.

285. Remember that to justify the width requires both a large antichain

and the use of Dilworth's theorem. The height and width of [4, 700]

add up to 6.

286. There are �ve linear extensions.

287. The statement is false. Start with: Let x ∈ N be arbitrary. Two

cases x ≤ 2 or x ≥ 3. If x ≤ 2, then 3x ≤ 6 so 3x − 8 ≤ −2 < 0 so

|3x− 8| = −(3x− 8). (etc.)

288. Try 210, 330, 3300.

289. For 3.14, use a direct proof. For 3.15, use a contrapositive proof

together with Cor. 1.8.

290. Still no need for strong induction.

291. Algebra hint: Multiply both sides of the inductive hypothesis by n+1.

292. The characteristic polynomial has two distinct roots, one positive and

one negative.

293. Use the hypotheses to prove that aRa ′ and a ′Ra, then apply anti-

symmetry.

294. You must prove re�exive, antisymmetric, and transitive. To prove

antisymmetry, suppose that (a, b) ≤ (c, d) and (c, d) ≤ (a, b). Use

the fact that R1, R2 are partial orders, to conclude that a = c and

b = d, hence (a, b) = (c, d).

295. For y = x2, think about how the curve does not dip below the x-axis,

and yet limx→∞ x2 = +∞.
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296. Start with: Let x ∈ N be arbitrary. Two cases: x = 1 or x ≥ 2. If

x = 1, then 3x− 5 = −2 < 0 so |3x− 5| = −(3x− 5). (etc.)

297. Your truth table will need 16 rows. Yikes!
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