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Foreword

This text was written to be a printed version of the one-

semester course which I had previously taught �ve times, over

seven years, from several not entirely suitable texts. The

course is taken by math majors, computer science majors,

and computer engineering majors, in roughly equal propor-

tions. The purpose of this course is to advance students from

consumption of mathematics to production of same. Though

the topic is, broadly, discrete mathematics (with an eye to-

ward computer science), this is merely the context in which

students are taught proof techniques and how to use them.

This desired goal is often called, vaguely, �mathematical

maturity�, which embodies not only the methods of proof,

but the methods of thought needed to construct and inter-

pret a proof. Teaching these methods of thought is di�cult.

Like most mathematicians, probably, I learned these methods

of thought early in my career not from them being explicitly

explained, but from watching them being used. Unfortu-

nately, many students �nd this approach frustrating. Their

�rst proofs course appears to be a mathematics course, like so

many taken previously. However, the content is di�erent, the

methods are di�erent, and suddenly there are secrets that the

student needs to discover, rather than being taught explicitly.

Like other texts in the subject, this one presents a standard
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Foreword

corpus of de�nitions, theorems, and proof techniques. Unlike

other texts, it tries to explain to students how to read, in-

terpret, and use de�nitions. It explains how mathematical

thought in proofbuilding di�ers from the student's previous

patterns of thought. It demonstrates not only general proof

strategies, like proof by induction, but speci�c methods of

thought in how to implement those strategies. Also, it builds

almost all of its techniques from scratch, giving an intellec-

tually consistent whole.

Although this text is designed for a one-term course for

lower-division students (e.g. sophomores), it does not provide

dumbed down material (or language) and useless toy exam-

ples. This text is fairly short, by design. Many supposedly

one-semester textbooks are far too long to read, much less

to read carefully. This text includes ideas from the math-

ematical disciplines of logic and proof theory � enough to

make the proofs connect rigorously, but not so much as to

overwhelm the student with jargon and notation. Students

can be con�dent that almost all of the content and exercises

are meaningful and useful in future coursework. To empha-

size this, connections are shown to more advanced material,

throughout the text.

Each chapter contains approximately 25 exercises. Stu-

dents are expected to solve them all, or at minimum 20 from

each chapter. The skill of writing a proof is similar to the

skill of performing a sport. Watching a proof being written

is akin to watching a video of a sport � it is useful to under-

stand technique, but a poor substitute for doing it yourself.

My feelings regarding solutions to exercises are decidedly

mixed. Students love them, and complain when they are

missing. Hence, from a customer service perspective, they

xiv



should be provided. However, my 25 years of teaching expe-

rience indicates that exercise solutions have a strong negative

impact on student learning. The temptation is very strong

to look at the solutions before one has �nished working on

a problem. Once the solution is seen, the learning stops.

Sometimes students even look at the solutions before start-

ing the problem � this eliminates any possibility of learning.

Consequently, this text provides only hints, and no complete

solutions. Instructors can feel con�dent that students are not

copying solutions from the back.

The most important de�ned terms are listed in the front.

Students absolutely need to memorize all numbered course

de�nitions in full detail, as well as the most important, named,

theorems. Instructors are encouraged to ask for precise state-

ments of these de�nitions and theorems on the various exams

of the course. The text contains many other de�nitions and

theorems, which are less essential to memorize (and can be

located using the index).

Should the reader �nd an error in this text, I would be

most grateful if it is pointed out. I will pay a bounty of up to

$5, or up to 1% course extra credit if currently enrolled in my

course, to the �rst person identifying each error. All errors are

eligible for this bounty � mathematical, grammatical, even

typesetting � though the size of the prize will depend on the

signi�cance of the error.

This work was produced entirely with LATEX, which is a

typesetting language that has grown to be standard in math-

ematics and many other �elds. Its text is set in Computer

Concrete font, designed by Donald Knuth; its mathematics

is set in AMS Euler font, designed by Hermann Zapf.
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Chapter 1

Mathematical De�nitions

In a natural1 language such as English, normally we do not

have much use for de�nitions. We build up our knowledge of

the language through complicated and not very well-under-

stood means. As children, we are not told that a spoon is

a utensil consisting of a handle and a shallow bowl, used

for eating food. Instead, we are shown examples of spoons.

When we call a fork �spoon�, we are corrected; hence, we also

get examples of non-spoons. With enough practice we all

converge on (more or less) the same de�nition, even without

knowledge of a speci�c de�nition expressed in words. Even if

we know that de�nition, we would hardly ever be called upon

to use it. Dictionaries are used only rarely, typically when we

come across a word we don't know.

1.1 The Role of Definitions

In mathematics, however, de�nitions play a dramatically dif-

ferent role. Almost every mathematical concept has a precise

1Non-natural languages include programming languages such as Java,

and formal languages used in mathematics.
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Chapter 1. Mathematical Definitions

de�nition. Further, that de�nition is critically important. It

is used every time that the concept is used2. Imagine if every

time you used the word spoon, you immediately followed up

with �a spoon is a utensil consisting of a handle and a shal-

low bowl, used for eating food�. That would be very strange

in English, but in mathematics this is not only normal but

essential.

A dictionary is circular, in that each word is de�ned in

terms of other words, which in turn are de�ned in terms of

other words, and so on. Similarly, mathematics would be

circular, if we allowed it, but that would be very bad. Since

de�nitions are such an important part of mathematics, there

must be a way to get started. In a mathematical conversation,

such as this text, some terms or concepts must be taken as

unde�ned starting points, and everything else is built upon

them.

In this text, we will take as our entry point �numbers�.

We include in this entry point the natural numbers N =

{1, 2, 3, . . .}, the whole numbers N0 = {0, 1, 2, 3, . . .}, the in-

tegers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the rationals Q =

{ab : a, b ∈ Z, b 6= 0}3, the reals R, the complex numbers C.
For more details, see the Appendix (found on p. 201). We

will assume that you know what all of these are, and are fa-

miliar with standard operations and facts about them. No

de�nitions for any of these �numbers� will be given, nor will

2The sole exception is if we prove that some other thing is equivalent

to a de�nition. Then we can use that other thing instead of the de�ni-

tion, but it will always be one or the other. Our �rst example of this

will be Theorem 5.17.
3The symbol ∈ means �is an element of�. This notation is explained

in depth in Chapter 8. This, and all other symbols, may also be found

in the index.
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1.1. The Role of Definitions

we prove things like: the sum/di�erence/product of two in-

tegers is always an integer, or the quotient of two integers

might not be an integer, or the square of a real number is

nonnegative. In an abstract algebra course (which a student

might take after this present course), these things are studied

carefully and proved, using words like �ring�, ��eld�, �group�,

�semigroup�. However, in this text, we take numbers and

their basic properties for granted.

Here is an example of a mathematical de�nition, for the

term discriminant.

De�nition 1.1. Let f(x) = ax2 + bx + c be a quadratic

polynomial in x. The discriminant of f(x) is the number

b2 − 4ac.

Read the above de�nition carefully, then set these notes

aside and try writing the de�nition from memory onto a sep-

arate scrap of paper. After you've done this, read on to see

how well you did.

It is important to read de�nitions with great care. Typi-

cally each word and symbol of a de�nition is essential. Learn-

ers of mathematics very often do not read de�nitions with

su�cient attention to detail. It is very tempting to focus on

the dramatic conclusion, b2 − 4ac, as the most important

part of the de�nition. Students frequently do this, and �nd

to their dismay that they have ignored or forgotten the rest.

As a mnemonic to help write correct mathematical de�-

nitions, consider the three C's: Context, Category, Correct

English. Most de�nitions have context; however, some sim-

ple ones do not. In De�nition 1.1, the context is that f(x)

is a quadratic polynomial. The rest of the de�nition doesn't

apply, or even make sense, if f(x) is not a quadratic polyno-

mial. There is no discriminant of the function f(x) = sin x,

3



Chapter 1. Mathematical Definitions

or at least this de�nition doesn't de�ne one. This de�nition

de�nes �discriminant�, not �quadratic polynomial�; however,

to make sense of the de�nition we need to already know what

a �quadratic polynomial� is. Either we have another de�ni-

tion for that, or it's part of our unde�ned entry point, such

as here.

An extremely common error that learners of mathematics

make is in confusing or ignoring the categories of objects.

Things we de�ne are almost all special kinds of something

else. That something else is the category, which every def-

inition (except for the unde�ned entry points) must have.

A spoon is a special kind of utensil. A discriminant is a

special kind of number. Some common categories are num-

ber, integer, rational number, function, polynomial, variable,

equation, set, element, proposition, relation, predicate, and

statement. Since de�nitions are extremely important, and

categories are a mandatory component of a de�nition, be sure

to learn them as part of the de�nition.

In De�nition 1.1, the category of discriminant is �number�.

In other words, the discriminant is a number � not a function

or a set or a utensil. Note: the discriminant is not b2 − 4ac

(which is an object without a category), it is the number b2−

4ac. In mathematics texts, often the category �number� is

assumed as obvious. This is unfortunate, because it reinforces

the learner's bad habit of ignoring categories.

In natural languages it is surprisingly common, particu-

larly colloquially, to avoid discussion of categories. This is

sometimes accomplished by using �when� or �where�, or by

writing the de�nition as a command or an activity to be per-

formed4. If your de�nition includes any of these, it is almost

4Example of a very poor de�nition: �The discriminant is where you

4



1.2. Evens and Odds

certainly wrong5. Rewrite to avoid these terms, by instead

giving the object's category.

The �nal C is for Correct English. This is not nitpicking.

Mathematical de�nitions are, among other things, English

sentences. They must parse as sentences, be readable as sen-

tences, and have correct grammar6. Any symbols must also

be readable in English. �The discriminant of e� of ecks is the

number bee squared minus four ay see�. Note that this is a

sentence, with a subject (discriminant), and a verb (is). Def-

initions typically have far fewer symbols than words. If your

de�nition has almost all symbols, that is a clue that perhaps

you are missing important features.

1.2 Evens and Odds

We now present a rigorous study of even and odd integers.

Their properties are not part of our entry point. Of course, we

all have intuition about this subject. We expect every integer

to be either even or odd. We do not expect any integer to

be both even and odd. We do not expect any integer to

be neither even nor odd. We expect the sum of two even

numbers to be even. And so on.

However, intuition is not adequate for a proof, merely as

a guide. Be warned: henceforth, any claim concerning even

or odd properties must be supported by a de�nition or a

theorem. Unsupported claims will be assumed to be merely

intuition, and marked as incorrect.

take b2 − 4ac.�
5Rare exceptions do exist, such as �Lunchtime is when we eat our

lunch�.
6. . . and, if possible, correct spelling.
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Chapter 1. Mathematical Definitions

De�nition 1.2. We say that n ∈ Z is even if there is some

m ∈ Z such that n = 2m.

De�nition 1.3. We say that n ∈ Z is odd if there is some

m ∈ Z such that n = 2m+ 1.

De�nition 1.2 is simple enough to need no context. In large

part, this is because we have assumed many properties of Z
as our entry point. If we didn't have this toolbox at our

disposal, we would need to give certain of those properties as

context. The category of �even� is integer. Only an integer

can possess the property of being even, at least according

to De�nition 1.2. And that property consists of an integer

existing with a certain property.

Note that, given our de�nitions above, it is not correct

to say that an integer is odd if it is not even. There is no

reason to believe at this point that an integer must be one or

the other, or that it can't be both. We will prove that each

integer is at least one of {odd, even} in Theorem 1.6. We

will prove that each integer is at most one of {odd, even} in

Theorem 1.7. After we have proved both results, we will know

that every integer is exactly one of {odd, even}; however, the

de�nitions of odd and even will remain De�nitions 1.2 and

1.3. Should you later wish to claim that every integer is

exactly one of {odd, even}, you will need to cite Corollary

1.8. If you don't, you will be using intuition only, which is

not permitted in a proof.

First let's prove a di�erent, simpler, theorem.

Theorem 1.4. Let a, b be even. Then a+ b is even.

Proof. Because a, b are even, there are c, d ∈ Z such that

a = 2c and b = 2d. We have a+b = 2c+2d = 2(c+d) = 2e,

for some e ∈ Z. Hence a+ b is even.

6



1.2. Evens and Odds

Read Theorem 1.4 and its proof carefully. Though short, it

is very rich in important details. Most relevant to this chapter

is the observation that De�nition 1.2 is used no less than �ve

times (!). We begin with the hypothesis of the theorem, which

is that a, b are even. Because a is even, c must exist. Also

because b is even, d must exist. We now want to add a, b.

But we can't add a palm tree to a spoon � we need to know

the categories of a, b, and they need to be numbers which

admit addition. We were given that a is even. Implicitly,

this means that a is an integer, because De�nition 1.2 only

applies to integers. Similarly, b is an integer. Hence, a, b are

both integers, and we know how to add integers. Further, we

know (from our basic properties of integers) that e, the sum

of integers c, d, is again an integer. Now we use De�nition

1.2 a �fth time, in reverse. We know that a+b is an integer,

and that a+b = 2e, where e is an integer. Hence a+b must

be even.

Note also that although De�nition 1.2 contains the letters

n,m, those letters do not appear in either Theorem 1.4 or its

proof. This is very common; it is important to understand

that variables in a de�nition have names that are merely

placeholders. They can be renamed as needed, and often

are. In fact the proof above uses three di�erent combina-

tions of names: (1) n = a,m = c; (2) n = b,m = d; (3)

n = a+ b,m = e.

It would be a mistake to try to simplify the proof by using

fewer letters. For example, suppose we tried to stick to the

letters of the de�nition more closely, writing a = 2m, b = 2m.

Now we have a problem, because we seem to have a = 2m =

b. But Theorem 1.4 is about all even a, b, including those

where a 6= b. The issue is that De�nition 1.2 gives each even

7



Chapter 1. Mathematical Definitions

integer n its own integer m. In writing a = 2m, b = 2m, we

have given even integers a, b the same integer m.

Before continuing with even and odd integers, we need to

state the powerful Theorem 1.5. We will prove it later, in two

parts, as Theorems 5.16 and 6.18. We will use it now, but just

a little. If we were to make a dependency loop in our de�ni-

tions, this would be called a �circular de�nition�. In natural

languages, all de�nitions are circular; but in mathematics cir-

cular de�nitions are considered very bad. Instead we want all

de�nitions to �ow from the unde�ned entry point(s).

Theorem 1.5 (Division Algorithm). Let a, b ∈ Z with b ≥
1. Then there are unique q, r ∈ Z satisfying a = bq + r

and 0 ≤ r < b.

If we forget for the moment that we haven't yet proved

Theorem 1.5, we can use it to prove other things. For exam-

ple, we can now prove that every integer is odd or even (or

perhaps both):

Theorem 1.6. Take n ∈ Z. Then n is odd or n is even.

Proof. Apply Theorem 1.5 to n, 2 to get q, r ∈ Z satisfying

n = 2q + r and 0 ≤ r < 2. Since we have r ∈ Z, either r = 0
or r = 1. If r = 0, then n = 2q, so n is even by De�nition 1.2.

If r = 1, then n = 2q+ 1, so n is odd by De�nition 1.3.

Theorem 1.7. Take n ∈ Z. It is not possible for n to be

both odd and even.

Proof. Exercise 1.9.

Corollary 1.8. Let n ∈ Z. Then n is exactly one of {odd,

even}.

8



1.3. Some Important Definitions

Proof. Combine Theorems 1.6 and 1.7.

1.3 Some Important Definitions

The de�nitions from this section are useful not only for the

remainder of this text, but in all of mathematics.

De�nition 1.9. Consider a, b ∈ Z. We say that a is less

than or equal to b, and write a ≤ b (or b ≥ a), to mean

that b − a ∈ N0. We say that a is less than b, and write

a < b (or b > a), to mean that b− a ∈ N0 and a 6= b.

We can also negate the above statements, writing a 6≤ b to

mean that a ≤ b is not true (i.e. b − a /∈ N0), and a 6< b to

mean that a < b is not true (i.e. either b−a /∈ N0 or a = b).

Inequality has various useful properties, some of which are

summarized below. We will study inequalities in more detail

in Chapter 12. We could de�ne inequality on rationals and

reals similarly7; all of the properties of Theorem 1.10 would

still hold (but not the properties of Theorem 1.12).

Theorem 1.10. Let a, b, c ∈ Z. Then

a. a ≤ a;
b. a 6< a;
c. If a ≤ b then a 6> b;
d. If a ≤ b and b ≤ a, then a = b;

e. If a ≤ b and b ≤ c, then a ≤ c;
f. If a ≤ b and b < c, then a < c; and

g. If a < b and b ≤ c, then a < c.

Proof. We will prove parts (a) and (d), leaving the others for

Exercise 1.10.
7However, it is not possible to de�ne inequality on C and keep all of

these nice properties.

9



Chapter 1. Mathematical Definitions

(a) We have a− a = 0 ∈ N0, so a ≤ a.
(d) Set d = b−a. Because a ≤ b, we must have d = b−a ∈
N0. Because b ≤ a, we must have −d = a−b ∈ N0. There is
only one element of N0 whose negative is also in N0, namely

0. Hence d = 0, so a = b.

Inequalities respect some of our arithmetic operations. This

is detailed in Theorem 1.11.

Theorem 1.11. Let a, b, c, d ∈ Z. Then

a. If a ≤ b then a+ c ≤ b+ c;
b. If a ≤ b and c ≥ 0, then ac ≤ bc;
c. If a ≤ b and c ≤ 0, then ac ≥ bc; and
d. If a ≤ b and c < d, then a+ c < b+ d.

Proof. (b) Since a ≤ b, we must have b−a ∈ N0. Since c ∈ Z
and c ≥ 0 hold, we have c ∈ N0. The product of two whole

numbers is a whole number, so (b − a)c ∈ N0. Expanding,

we have bc− ac ∈ N0, so ac ≤ bc.
The other parts are proved in Exercise 1.11.

Sometimes we combine inequalities. If we write a < b < c,

we mean that a < b AND b < c. Various combinations are

possible, such as a ≤ b < c or a ≤ b ≤ c. Note that we do

not write a < b > c, as this is confusing.

Theorem 1.12 gives some properties of inequality that are

special to Z. They will be particularly useful when we study

rounding functions.

Theorem 1.12. Let a, b ∈ Z. Then

a. If a < b, then a ≤ b− 1;
b. If a ≤ b < a+ 1, then a = b;

10



1.3. Some Important Definitions

c. If a− 1 < b ≤ a, then a = b; and

d. If a− 1 < b < a+ 1, then a = b.

Proof. (a) Since a < b, we must have b− a ∈ N0. Since b−
a 6= 0, we must have b− a = k, for some k ∈ N. Subtracting
one from both sides, we have b−a−1 = k−1, so (b−1)−a =

k− 1 ∈ N0. Hence a ≤ b− 1.
(b) Since b < a + 1, we apply part (a) to conclude that

b ≤ (a + 1) − 1 = a. We combine a ≤ b with b ≤ a, using
Theorem 1.10.d. to conclude that a = b.

(c),(d) Exercise 1.15.

We now de�ne some very useful rounding functions on R.

De�nition 1.13. Let x ∈ R. Then there is a unique inte-

ger n such that n ≤ x < n + 1. We call n the �oor of x,

and write n = bxc.

De�nition 1.14. Let x ∈ R. Then there is a unique inte-

ger m such that m− 1 < x ≤ m. We call m the ceiling of

x, and write m = dxe.

The �oor and ceiling of x are integers that straddle x. If

x is an integer, then x = bxc = dxe. If x is not an integer,

then bxc < x < dxe. For example, b3.9c = 3 = b3c. Also

b−2.9c = −3 = b−3c. Be careful, as you may be used to

rounding in some other way. Floor rounds to the next lower

integer, as ordered by ≤. It does not necessarily round to

the nearest integer, nor toward zero. Ceiling rounds in the

opposite direction from �oor.

There is something to prove in De�nitions 1.13 and 1.14.

Why should there be integers bxc and dxe with those proper-

ties? We think this ought to be true, based on our knowledge

of how the integers are spaced out among the reals, but that
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is not very persuasive. We will prove that such integers exist

and are unique later, in Theorem 6.17. For now, just take

this de�nition for granted as part of our entry point.

We close this chapter with some de�nitions very useful for

number theory.

De�nition 1.15. Let m,n ∈ Z. We say that m divides n if

there exists some s ∈ Z such that ms = n. We can write

this compactly as m|n. If m does not divide n, we write

this compactly as m - n.

Note the category in De�nition 1.15. �m|n� is the state-

ment �m divides n�, with verb �divides�. Contrast this with
m
n and m/n, which are numbers (speci�cally, fractions). In

fact, �m|n� is a special kind of statement called a proposition,

which will be studied at length in Chapter 2.

De�nition 1.16. Take n ∈ N with n ≥ 2. If there is

some a ∈ N such that 1 < a < n and a|n, then we call n

composite. If not, then we call n prime.

Note that the number 1 is neither prime nor composite;

it is a special kind of number called a unit8. One property

that a prime p must have is that if p|mn then p|m or p|n.

In the set of numbers N, De�nition 1.16 and this property

coincide (i.e. any number that has one property must have

the other). In more advanced courses you may learn about

other types of numbers9, where these two properties no longer

coincide. What we call �prime� in De�nition 1.16 will instead

be called �irreducible�, while the term �prime� is reserved for

8A unit is a number that divides 1. In Z there are just two units: −1

and 1.
9Sets of numbers, like Z, that admit addition, subtraction, multipli-

cation, but not necessarily division are called �rings�.
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the property in the paragraph above. In this course we use

the terms interchangeably.

De�nition 1.17. The factorial is a function from N0 to

N, denoted by !, as speci�ed by: 0! = 1, 1! = 1, and n! =

(n− 1)! · n for n ≥ 1.

Note that 0! = 1. Some people don't like this. There are

excellent reasons why we would want this to be true10, but

the most compelling reason is: People that use factorials want

it to be de�ned this way, and if you don't like it then go make

your own function. If your function turns out to be useful or

better, it might catch on.

De�nition 1.18. Take a, b ∈ N0 with a ≥ b. The binomial

coe�cient is a function from such pairs a, b to N, denoted
by
(
a
b

)
, as speci�ed by

(
a
b

)
= a!

b!(a−b)! .

Note that we need a ≥ b, or else (a− b)! isn't de�ned11.

1.4 Exercises

Exercises for Section 1.1.

1.1. Carefully write down each of the numbered de�ni-

tions from this chapter (from all three sections). Deter-

mine the category and verb of each.

1.2. Carefully write de�nitions for the following terms.

Underline the category and verb in each.

a. pair of consecutive integers

b. perfect square

10For example, we need 0! = 1 to have the usual binomial theorem.
11In an advanced course you may encounter a broader de�nition of

binomial coe�cients that are de�ned on a larger domain.
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c. perfect cube

d. perfect power

e. purely imaginary number

1.3. Find a mathematical de�nition from any other pub-

lished source, for a term that does not appear in this text.

Copy the de�nition carefully, and give the source where

you found it. Indicate the context (if any), category, and

verb.

Exercises for Section 1.2.

1.4. Prove that 6 is even and 7 is odd.

1.5. Apply Theorem 1.5 to a = −100, b = 3.

1.6. Let a, b be odd. Prove that a+ b is even.

1.7. Let a, b be odd. Prove that ab is odd.

1.8. Let a be even, and let b, c be odd. Prove that ab +

ac+ bc is odd.

1.9. Prove Theorem 1.7, by assuming n that is both odd

and even, and deriving a contradiction.

Exercises for Section 1.3.

1.10. Prove the unproved parts of Theorem 1.10.

1.11. Prove the unproved parts of Theorem 1.11.

1.12. Let a, b, c, d ∈ Z. Suppose that a ≤ b < c. Prove

that a+ d ≤ b+ d < c+ d.

1.13. Let a, b, c, a ′, b ′, c ′ ∈ Z. Suppose that a < b ≤ c and
a ′ < b ′ < c ′. Prove that a+ a ′ < b+ b ′ < c+ c ′.

1.14. Let a, b ∈ Z. Suppose that 0 ≤ a ≤ b. Prove that

0 ≤ a2 ≤ b2.

14



1.4. Exercises

1.15. Prove the unproved parts of Theorem 1.12.

1.16. Calculate ddπedπee− dπ2e.

1.17. Find x, y ∈ R such that x < y < 0 but dxe > byc.

1.18. Suppose that x ∈ R. Prove that if bxc = dxe, then
x ∈ Z.

1.19. Suppose that a|b and c ∈ Z. Prove that a|(bc).

1.20. Suppose that a|b and b|c. Prove that a|c.

1.21. Suppose that a|b and a|c. Prove that a|(b+ c).

1.22. For each of the following numbers, classify as prime,

composite, both, or neither: 6, 5, π, 1, 0,−1,−5,−6. Be

sure to justify your answers.

1.23. Suppose that p is prime. Prove that p2 is composite.

1.24. Calculate (d9.9e)!
(b9.9c)! .

1.25. For arbitrary n ∈ N, calculate and simplify (n+2)!
n! .

1.26. Let a, b ∈ N0 with a ≥ b. Prove that
(
a
0

)
=
(
a
a

)
= 1,

and that
(
a
b

)
=
(
a
a−b

)
.

1.27. Let a, b ∈ N0 with a > b. Prove that
(
a
b

)
+
(
a
b+1

)
=(

a+1
b+1

)
.
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Appendix: Details of the entry point

Here are some basic facts about number systems, made ex-

plicit. Each of N, N0, Z, Q, R, and C is closed under addition

and multiplication. That is, if you take any a, b from the

same number system, then both their sum a + b and their

product ab will again be in that number system. If a, b were

both integers, then their sum is an integer. If a, b were both

real, then their sum is real, and so on.

The special numbers 0, 1 satisfy 0 + x = x, 1x = x, and

0x = 0, for all numbers x. Each of these number systems

has both 0, 1, apart from N which only has 1. These are

called neutral elements under addition and multiplication,

respectively.

Addition and multiplication are commutative and asso-

ciative ; that is, a+b = b+a, ab = ba, a+(b+c) = (a+b)+c,

and a(bc) = (ab)c, for a, b, c drawn from any of our number

systems. Also, multiplication distributes over addition; that

is, a(b+ c) = ab+ ac.

In Z,Q,R, and C, every number has an additive inverse,

or negative . That is, if a is a number (from any of these

four number systems), then there is also a number −a in

that same number system, satisfying a+ (−a) = 0. Number

systems with all the properties to this point are called rings ;

they are studied at length in abstract algebra courses.
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In Q,R, and C, every number except 0 has amultiplicative

inverse, or reciprocal. Rings that also have this property are

called �elds ; they too are studied in abstract algebra courses.

Each of N, N0, Z, Q, and R has a natural order , which is

the order you're very familiar with. 3 < 5 and so on. Orders

have various properties (studied at length in Chapter 12).

The natural orders are all total orders , where from every

pair of distinct numbers from the same number system, one

must be larger than the other. If x is a number from any2

of Z, Q, or R, then x2 ≥ 0; further, x2 = 0 occurs only for

x = 0.

If x is a number from any of Z, Q, or R, then we may de�ne

an absolute value function |x| =

{
x if x ≥ 0,
−x if x < 0.

Working

with absolute value very frequently involves separating out

these cases. For example, if we have |x + 7|, we consider

separately the case of x ≥ −7 (in which case |x+ 7| = x+ 7),

and the case of x < −7 (in which case |x + 7| = −(x + 7) =

−x− 7).

There are various ways to precisely de�ne R. These proper-
ties are studied at length in real analysis or advanced calculus

courses. In this course, we only need the expression of every

real number as a decimal3, namely n.d1d2d3 · · · , where n ∈ Z
and d1, d2, d3, . . . are each decimal digits from 0 to 9.

Complex numbers C are generally viewed as {a+bi : a, b ∈
R}, where a, b are real numbers and i is the imaginary con-

stant, satisfying i2 = −1. Operations on C are just as one

might expect, remembering that i2 = −1. For example,

(3 + 2i) + (4 + 7i) = 7 + 9i, (3 + 2i)(4 + 7i) = 3 · 4 + 3 ·

2It's also true if x is from N, N0; it's just not very helpful.
3This expression might not be unique, as 0.999 . . . = 1.000 . . ..
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7i+ 2i · 4+ 2i · 7i = 12+ 21i+ 8i+ (−14) = −2+ 29i.

Each complex number a + bi has a conjugate , denoted

a+ bi, de�ned as a−bi. This satis�es the nice property that

(a + bi)(a+ bi) = a2 + b2, which is real and nonnegative.

This is helpful in division: to divide 6 + 5i by 4 + 3i, we

compute 6+5i4+3i . Now, we multiply numerator and denominator

by 4+ 3i, as follows, to get
(
39
25

)
+
(
2
25

)
i after simpli�cation.

6+ 5i

4+ 3i
=

(6+ 5i)(4− 3i)

(4+ 3i)(4− 3i)
=
24− 18i+ 20i+ 15

16+ 9
=
39+ 2i

25
.

We may also de�ne a norm function on C. We write it

as |x|, which is reminiscent of absolute value. If x ∈ R, then
(the absolute value) |x| is a nonnegative real number, and is

zero only for x = 0. This same property holds for this new

function: If x ∈ C, then (the norm) |x| is a nonnegative real

number, and is zero only for x = 0. The norm is de�ned

as |x| =
√
xx, or, equivalently, as |a + bi| =

√
a2 + b2. This

norm also applies to real numbers, for which b = 0, in which

case it is also called the absolute value and coincides with the

earlier de�nition. The norm (and absolute value) satis�es the

properties |xy| = |x||y| and |x+ y| ≤ |x|+ |y|, for all x, y.
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Hints to Selected Exercises

1.2 It would be a good idea to look up these terms (in some

outside source, not this text) even if you are fairly sure you

know their de�nitions already.

1.4 There are two things to prove, each by applying a de�-

nition.

1.6 There are two hypotheses, both of which must be used

to get the conclusion.

1.8 There are three hypotheses, all of which must be used

to get the conclusion. You will need to apply the de�nition

four times.

1.9 For the contradiction, use Theorem 1.12.

1.10 Your proofs should be similar to the proofs of the other

parts.

1.11 For (c), prove that ac− bc ∈ N0.

1.13 Prove the two inequalities separately.

1.16 π ≈ 3.14 and π2 ≈ 9.9.

1.22 Six of them are neither.
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1.24 10! = 10 · 9!.

1.25 First step: (n+ 2)! = (n+ 2) · (n+ 1)!.

1.27 Use the de�nition of binomial coe�cients. Use the

properties of factorial to �nd a common demoninator and

add.

2.1 We need to consider p, q, of course, and also p∧ q, ¬p,

and (p∧ q)∧ (¬p).

2.2 All the parts are short, and matters of perspective.

2.3 Both parts are matters of perspective.

2.8 Multiple uses of conditional interpretation, among other

rules.

2.11 We need columns for p, q, of course, and also for ¬p,¬q,

(p∧ ¬q), ((¬p)∧ q), and (p∧ ¬q)∨ ((¬p)∧ q).

2.15 Just one line of the truth table is enough, provided it

is the right line.

3.2 The proof isn't really di�erent from that of Theorem 3.3,

just a di�erent perspective of the truth table.

3.4 It is not enough to provide a truth table. We must

also justify certain rows being removed, and interpret what

remains.

3.6 You will also need modus ponens.

3.11 Break into two cases: q might be T or F.

3.13 The hypothesis and conclusion don't appear to be re-

lated in any way.
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3.14 The hypothesis and conclusion don't appear to be re-

lated in any way.

3.15 Use a direct proof.

3.16 Use a contrapositive proof.

3.17 First compute the converse. Then, compute the con-

verse of that.

3.21 For 3.14, use a direct proof. For 3.15, use a contrapos-

itive proof together with Cor. 1.8.

4.1 Two are not well-formed, and three are propositions.

4.2 Many solutions are possible. One, for a, b, c ∈ Z, is
∀a, a+ b = c. Find another.

4.3 D is small enough, we can just test all four elements.

4.4 We need a counterexample.

4.7 We need a single, speci�c, element of D, to satisfy the

inequality.

4.8 Show that none of the four elements satisfy the inequal-

ity.

4.9 To prove, we need a single element. To disprove, we

need to test all four.

4.12 The answer is yes, now explain why.

4.14 A fully simpli�ed expression will have = replaced by

6=.

4.15 A fully simpli�ed expression will have (x ≤ y)∧(y < z)
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replaced by (x > y)∨ (y ≥ z).

4.18 Your nemesis gives you some x, y, and you need to use

your knowledge of these to �nd a z to make the inequality

true.

4.19 Your nemesis gives you some x, and you need to use

your knowledge of this to �nd y, z to make the inequality

true.

4.20 First state and simplify the negation, then prove that.

4.22 It's true. Algebra hint: since x ∈ N, 2x+ 1 ≥ 3. Hence
x2 + 2x+ 1 ≥ x2 + 3.

4.23 It's false. Algebra hint: take x = 12, y = 13.

4.24 It's true. Algebra hint: take z = x+y
2 .

5.3 Two cases: By Corollary 1.8, n must be either even or

odd. Now use the de�nitions of even, odd.

5.5 Three cases, r = 0, 1, 2. With r = 1, we have n = 3q+1,

so n− 1 = 3q.

5.6 Three cases: x < −1, −1 ≤ x ≤ 1, x > 1. With x < −1,

|x − 1| = −x + 1 and |x + 1| = −x − 1. For a quick refresher

on absolute value, see the Appendix (p. 201).

5.8 Mimic the proof that
√
2 is irrational, and use the fact

that 3 is prime. Note that even and odd have nothing to do

with this problem.

5.11 Many proof structures will work, such as a ` b, b `
c, c ` d, d ` a.
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5.12 Existence is by de�nition of even. Uniqueness is slightly

harder.

5.13 Use the quadratic formula on m2 +m = (m ′)2 +m ′,

then eliminate a solution, to prove m = m ′.

5.15 Note that bxc ∈ Z.

5.16 By Corollary 1.8, n must be either even or odd.

5.21 Combine various inequalities to prove ≤, then again to

prove ≥.

5.23 If 0 ≤ x−bxc < 0.5, then you can prove that b2xc = 2bxc
and bx+ 1

2c = bxc.

6.2 Algebra hint: 10n2 = n2 + 2n2 + 7n2, now prove that

2n2 ≥ 2n and 7n2 ≥ 1.

6.3 Algebra hint: Add 1
(n+1)(n+2) to both sides.

6.6 Algebra hint: Add (−1)n+1(n+ 1)2 to both sides.

6.7 Algebra hint: Multiply both sides by (2n+2)(2n+1)
(n+1)(n+1) .

6.10 Algebra hint: (n + 1)3 = n3 + 3n2 + 3n + 1 ≥ (2n +

1) + 3n2 + 3n+ 1 = 3n2 + 5n+ 2. Now prove 3n2 + 5n+ 2 ≥
2(n+ 1) + 1.

6.11 Algebra hint: Multiply both sides by n+ 1.

6.12 Use induction on n (not x). Algebra hint: Multiply

both sides by 1+ x.

6.19 Algebra hint: Work with F2n− Fn+1Fn−1, replacing Fn+1
by Fn + Fn−1 and simplifying with the inductive hypothesis.
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6.20 Algebra hint: 1.52 = 2.25 < 2.5 = 1.51 + 1.50.

6.24 It's easier to get a piecewise-de�ned formula, for odd

and even n separately.

6.25 Write the set down on a grid, then zig-zag through the

grid.

6.26 Try working through n = 2.

7.1 One will have no order, one will have zero-th order, three

will have second order, one will have third order.

7.3 The characteristic polynomial has two distinct roots,

both positive.

7.5 The characteristic polynomial has two distinct roots, one

positive and one negative.

7.6 The characteristic polynomial has two distinct roots, one

positive and one negative.

7.7 The characteristic polynomial has a double root.

7.10 The equation r2−r−1 = 0 has two solutions, φ = 1+
√
5

2 ,

and φ ′ = 1−
√
5

2 . It is easier to work with φ,φ ′ than with the

messy fractions. Note that φ+ φ ′ = 1, and φ− φ ′ =
√
5.

7.13 Take M = 1, 000, 001, or larger.

7.14 Algebra hint: For n ∈ N, 1n ≤ 1 and
1
n+1 ≤ 1.

7.16 There are two things to prove, using two di�erent M.

7.18 You are given two M's and two n0's, and need to �nd

a third M and a third n0. Use the ones you have to �nd the

new ones.
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7.22 cn is small.

7.23 No k is possible.

7.24 cn is small.

7.28 31 = 3 and 32 = 9.

8.2 T must contain at least four elements.

8.3 (x ∈ ∅)→ (x ∈ S) is vacuously true.

8.4 Let x ∈ S. Use properties of S to prove that x ∈ T .

8.5 Find some speci�c x ∈ S such that x /∈ T .

8.6 Prove that S ⊆ T , and that T ⊆ S.

8.7 You have a choice: Either �nd some x ∈ S \ T , or �nd

some x ∈ T \ S.

8.12 Note that S \ T = T \ S can only happen if both are

equal to the empty set.

8.13 lcm(8, 12) = 24.

8.14 Convert to propositional notation, then use simpli�ca-

tion.

8.15 Convert to propositional notation, then use addition.

8.20 You should get R∩S, but remember to justify each step

carefully.

9.1 Convert to propositional notation, then use simpli�ca-

tion.

9.3 Prove ⊆ and ⊇ separately.

211



Hints to Selected Exercises

9.4 Prove that each side equals Sc ∩ T .

9.7 You will have three numbers, six sets of numbers, and

three sets of sets of numbers.

9.8 Your set should have 23 = 8 elements.

9.11 There are �ve partititions.

9.12 One way: use the division algorithm.

9.13 You will have three ordered pairs of numbers, six sets

of ordered pairs of numbers, and three sets of sets of ordered

pairs of numbers.

9.14 Note that (2, 2) is an element of both S× T and T × S,
but (1, 2) is not.

9.19 Examples are plentiful; try A = {5}, B = {6}, C =

{7}, D = {8}.

9.25 Try pairing each element x ∈ S with the set containing

just that element, {x}.

10.1 You should �nd 2|S|
2
= 16 relations in all.

10.5 Your relation should contain just two ordered pairs.

10.6 There is only one S that can work.

10.8 Argue by contradiction. Suppose (a, b) ∈ R, with a 6=
b, then get a contradiction.

10.9 Use Theorem 2.17.

10.10 Argue by contradiction. Suppose (a, b) ∈ R with

¬(xRy↔ yRx), then get a contradiction.
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10.18 You will use the de�nition of symmetric (twice), and

the de�nition of restriction.

10.24 To prove (x, y) ∈ R ◦ R, you need to �nd some z ∈ S
with (x, z) ∈ R and (z, y) ∈ R. Two choices of z stand out.

10.25 You can't use Theorem 10.16, but you can read its

proof to give you a strategy.

10.27 To prove that R∪R−1 is symmetric, let (a, b) ∈ R∪R−1.
Now there are two cases, (a, b) ∈ R and (a, b) ∈ R−1.

11.2 Hint: (1/3, 5/3) ∈ R.

11.4 First use the de�nition of ≡, then use the de�nition of

|.

11.7 y ·y ≡ 232 (mod 11), then keep going, reducing modulo

11 at each step.

11.8 2100 = 264+32+4 = 26423224.

11.10 There's only one.

11.12.a. There are two.

11.12.c. Prove that 2x− 9 is not even, for every integer x.

11.15 There is a unique solution in [0, 99).

11.19 To prove set equality, prove ⊆ and ⊇.

12.1 R is re�exive and transitive.

12.6 There are six elements in the interval poset.

12.7 One relation has neither least nor greatest elements.
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12.10 Argue by contradiction; ¬(a = a ′ ∨ a ‖ a ′) is equiva-
lent to a 6= a ′ ∧ a ∦ a ′.

12.13 Try 210, 330, 3300.

12.14 Try 210, 300, 330.

12.17 Let a, b ∈ S. Set T = {a, b}, and apply the well-order

property.

12.19 There is a greatest element.

12.20 There is no greatest element.

12.21 Two of these were given as sample partial orders in

the chapter; the third you must construct on your own.

12.22 There are �ve linear extensions.

12.23 There are eight linear extensions.

12.26 The height and width add up to 6.

12.28 The height and width add up to 8.

13.1 For R1, consider y = −0.5, and y = 0.

13.2 Try (x− 1)2 + (y− 1)2 = 1
9 .

13.3 Try {(x, y) : y = 7x,−0.1 ≤ x ≤ 0.1}.

13.5 The answer is yes; now prove it.

13.7 The answer is no; now prove it.

13.12 Prove that f is injective and surjective.

13.14 Algebra hint: From x2 + x = y2 + y, we complete the
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square to get (x+ 1
2)
2 − 1

4 = (y+ 1
2)
2 − 1

4 .

13.17 Suppose f(n) = f(n ′). Case 1: n,n ′ are both even.

Then n/2 = n ′/2, so n = n ′. Case 2: n is even, n ′ is odd.

Then n/2 = −(n ′ − 1)/2, a contradiction since the LHS is

positive while the RHS is not. There are two more cases, and

then you've proved injectivity. Whew!

13.18 They both have domain S. Now determine how each

of them acts on arbitrary x ∈ S.
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|, 12, 147

∧, 19
c, 124
−1, 146, 193
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a
b

)
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absolute value, 202, 203

ABWOC, 62

AC, 89, 178, 180

addition

semantic theorem, 35

additive inverse, 201

Adleman, 161

alphabet, 170

antichain, 178

antisymmetric, 144

Archimedean, 84

argument, 32

arithmetic, 82, 157

arithmetic series, 90

associativity, 201

propositions, 23

sets, 119

atomic, 19

axiom of choice, 89, 178, 180

Banach-Tarski, 89

base case, 75

basic, 19

Bernoulli's inequality, 90

biconditional, 26

big O notation, 98

big omega notation, 101

big theta notation, 102

bijection, 132, 192

binary relation, 139

binary search, 103

binding operator, 45

binomial coe�cient, 13

Boolean algebra, 118

bound, 84, 86

Cantor, 131

Cantor's theorem, 123, 134

cardinality, 126

Cartesian product, 129

Cassini's identity, 91

category, 4

ceiling, 11

central binomial coe�cients,

79

chain, 178

characteristic polynomial, 96

Chebyshev, 49

Chinese Remainder Theorem,

160

circuit design, 28

circular de�nition, 8
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circular proof, 67

class, 123

classi�cation theorem, 100

closed form, 77, 93

closure

re�exive, 148

symmetric, 148

transitive, 149

clutter, 179

codomain, 189

commutativity, 201

propositions, 21

sets, 119

comparable, 170

complement, 124

complete graph, 164

component proposition, 19

composed relation, 147

composite, 12

composition

functions, 194

relations, 147

compound proposition, 19

conclusion, 32

conditional, 26

conjugate, 203

conjunction

operator, 19

semantic theorem, 35

constructive existence proof,

65

constructivism, 65

contradiction

proof technique, 61

proposition, 20

semantic theorem, 35

contrapositive

implication, 40

proof, 38, 61

converse

implication, 40

coordinate, 129

countable, 134

counterexample, 51

CRT, 160

cryptosystem, 161

currying, 139

De Morgan's Law

propositions, 25

sets, 125

de�nition, 3

circular, 8

description notation, 110

diagonal relation, 140, 194

dictionary, 170

digraph of a relation, 141

Dilworth's Theorem, 180

direct product, 129

direct proof, 38, 61

discriminant, 3

disjoint, 127

disjunction, 19
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disjunctive syllogism, 35

disprove, 51, 55

distributivity, 201

propositions, 25

sets, 120

divides, 12

division algorithm, 8, 70, 87

domain, 189

variable, 45

dummy variable, 111

edge, 141

element, 109

empty, 127

empty set, 112

equality of sets, 112

equicardinal, 132

equivalence class, 162

equivalence relation, 155

equivalent propositions, 20

Euler, 48

even, 6

existential quanti�er, 46

extension, 177

factorial, 13

Fermat, 48

Fibonacci numbers, 83

�eld, 202

�oor, 11

FLT, 48

for all, 46

function, 189

bijective, 192

codomain, 189

composition, 194

domain, 189

equality, 191

identity, 194

image, 191

injection, 192

inverse, 193

one-to-one, 192

onto, 192

range, 191

surjection, 192

Fundamental Theorem of

Arithmetic, 82

general solution, 96

generic element, 51

geometric series, 90

graded poset, 179

graph, 143

greatest, 68, 175

Hasse diagram, 171

height, 178

heteronym, 157

hypothesis, 32

identity function, 194

if and only if, 26

image, 191

implication, 26
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incomparable, 170

increasing, 71

induces, 164

induction, 47, 75

maximum element, 86

minimum element, 84

reindexed, 80

shifted, 80

strong, 82

trans�nite, 89

inductive case, 75

inductive hypothesis, 76

inductive reasoning, 47

inequality, 9

in�x, 140

initial conditions, 93

injection, 192

Intermediate Value

Theorem, 194

interpretation, 18

intersecting, 127

intersection, 115

interval poset, 174

intuition, 116

invalid, 32

inverse

additive, 201

function, 193

implication, 40

multiplicative, 202

relation, 146

irrational, 39

irreducible, 12

irre�exive relation, 142

iterated composition, 149

IVT, 194

Kronecker, 132

least, 176

left-de�nite, 185

left-to-right principle, 53

left-total, 185

less, 9

lexicographic order, 24, 176

linear extension, 177

list notation, 110

loop, 141

lower bound, 84, 176

mapping, 189

master theorem, 104

maximal, 175

maximum, 86, 175

maximum element induction,

86

merge sort, 103

Mertens, 49

minimal, 176

minimum, 84, 176

minimum element induction,

84

modular equivalence, 156
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modulo, 156

modus ponens, 33

modus tollens, 35

multiplicative inverse, 202

mutually equivalent, 66

nand, 26

natural order, 202

negation, 19

negative, 201

neutral, 201

nonconstructive existence

proof, 65

nonempty, 127

nor, 26

norm, 203

NP-complete, 22

obvious, 76

odd, 6

one-to-one, 192

onto, 192

operators

propositions, 19

order, 95

natural, 202

total, 202

Order-extension principle, 178

ordered pair, 129

pairing, 132

parallel, 170

partial order, 169

partition, 128

Poincare, 132

Polya, 49

poset, 169

power set, 126

predicate, 45

premise, 32

prime, 12

product order, 176

proof, 32

by cases, 40, 63, 202

by contradiction, 61

circular, 67

constructive, 65

contrapositive, 38, 61

direct, 38, 61

induction, 75

nonconstructive, 65

reindexed induction, 80

shifted induction, 80

strong induction, 82

trivial, 37, 61

vacuous, 37, 61

proof structure, 66, 76, 113,

192

proposition, 17

prove or disprove, 56

Pythagorean theorem, 41

quanti�er

existential, 46

unique, 68
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universal, 46

Ramanujan, 48

range, 191

rationals, 2, 39, 111

reciprocal, 202

recurrence, 93

recurrence relation, 93

re�exive closure, 148

re�exive relation, 142

reindex, 79

reindexed induction, 80

relation, 139

antisymmetric, 144

binary, 139

complement, 146

composed, 147

diagonal, 140, 194

digraph, 141

empty, 140

equivalence, 155

full, 140

intersection, 146

inverse, 146

irre�exive, 142

left-de�nite, 185

left-total, 185

re�exive, 142

re�exive closure, 148

restricted, 147, 188

right-de�nite, 185

right-total, 185

set of arrival, 139

set of departure, 139

symmetric, 143

symmetric closure, 148

transitive, 145

transitive closure, 149

trichotomous, 144

union, 146

relational database, 139

repeated composition, 149

representative, 164

restricted relation, 147, 188

right-de�nite, 185

right-total, 185

ring, 201

Rivest, 161

RSA, 161

Russell's paradox, 123

SAT, 22

Satis�ability Problem, 22

scheduling, 178

scienti�c method, 47

semantics, 18, 21, 31

sequence, 93

set, 109

Cartesian product, 129

complement, 124

countable, 134

De Morgan's Law, 125

description notation, 110

di�erence, 115

224



INDEX

disjoint, 127

empty, 112

equicardinal, 132

intersecting, 127

intersection, 115

list notation, 110

nonempty, 127

partially ordered, 169

partition, 128

product, 129

set-builder notation, 110

symmetric di�erence, 115

union, 115

universe, 124

set equality, 112

set of arrival, 139, 189

set of departure, 139, 189

set-builder notation, 110

Shamir, 161

shifted induction, 80

simpli�cation

semantic theorem, 35

simplify, 26

Skewes, 50

solving a recurrence, 94

speci�c element, 51

speci�c solution, 96

Sperner family, 179

Sperner's Theorem, 179

Stieltjes, 49

strong induction, 82

stronger, 55

subset, 113

Sun Tzu, 160

surjection, 192

symmetric closure, 148

symmetric di�erence, 115

symmetric relation, 143

syntax, 21

tautology, 20

test sequence, 98

TFAE, 66

theorem

semantic, 32

there exists, 46

topological sort, 178

total order, 170, 202

trans�nite induction, 89

transitive closure, 149

transitive relation, 145

trichotomous relation, 144

trivial proof, 37, 61

truth table, 23

truth values, 17

turnstile, 31

union, 115

unique, 68

unique quanti�er, 68

universal quanti�er, 46

universe, 124

upper bound, 86, 175
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valid, 32

variable, 7, 45

Venn diagram, 116

vertex, 141

vertice, 141

vertices, 141

weaker, 55

well-de�ned, 86, 190

well-formed, 21

well-ordered, 88, 176

Weyl, 132

width, 178

Wittgenstein, 132

xor, 26

yields, 31
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Zorn's lemma, 181
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