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Abstract

Improving on a recent result of Zhong, we characterize the eigenvalues
of AB and A+B, for square matrices A,B satisfying AB +BA = 0.

Square matrices A,B are called anticommuting if AB = −BA. Such matri-
ces are important in mathematical physics, e.g. as Pauli spin matrices. They
are of continued mathematical interest (see, e.g., [2, 3, 4]). The recent paper [5]
presented the following theorem.

Theorem 1 (Zhong). Let A,B be square matrices with σ(A) = {λ1, . . . , λn}, σ(B) =
{µ1, . . . , µn}. Suppose that A,B anticommute, and for each eigenvalue λi of A,
the algebraic multiplicity equals the geometric multiplicity. Then

1. σ(AB) ⊆ {λjµki : all j, k}; and

2. σ(A+B) ⊆
{
±
√
λ2j + µ2

k : all j, k
}

.

We improve on the previous theorem by slightly weakening the hypotheses,
and finding σ(AB) and σ(A + B) exactly (in addition to various structural
results). We will put A into Jordan canonical form, which will impose a (to be
defined) correspondence between eigenvalues of A and of B. Our main result is:

Main Theorem. Let A,B be square matrices with σ(A) = {λ1, . . . , λn}, σ(B) =
{µ1, . . . , µn}. Suppose that A,B anticommute, and for each nonzero eigenvalue
λi of A, the algebraic multiplicity equals the geometric multiplicity. Then

1. σ(AB) = {λjµki : corresponding j, k}; and

2. σ(A+B) =
{
±
√
λ2j + µ2

k : corresponding j, k
}

.

Proof. Corollaries 7 and 9, to follow.

∗San Diego State University, corresponding author
†San Diego State University

1



Before proceeding, we set some notation. We define C• as C \ {0}. Given a
square n× n matrix M , we recall the characteristic polynomial pM (t) = |tIn −
M |. A key property of characteristic polynomials is that pAB(t) = pBA(t). If
AB+BA = 0, then pAB(t) = pBA(t) = p−AB(t) = |tIn+AB| = (−1)n|(−t)In−
AB| = (−1)npAB(−t). Consequently, for even (resp. odd) n, the function
pAB(t) is even (resp. odd). Since pAB(t) is a polynomial, it must therefore be
a sum of monomials in only even (resp. odd) powers of t. In general, pAB(t)
cannot be determined from pA(t) and pB(t).

We now present a familiar definition, generalized to nonsquare matrices.

Definition 2. Let m,n ∈ N, and let C be an m× n matrix. We say that C is
upper triangular if it satisfies Ci,j = 0 for all i, j with j − i < max(0, n−m).

For upper triangular matrix C, its nonzero entries are confined to a triangle
in the upper-right corner, whose sides are horizontal, vertical, and of slope −1.
This triangle has one corner at C1,n, and the other corners at either {C1,1, Cn,n}
(if m ≥ n), or at {C1,n−m+1, Cm,n} (if m ≤ n). For m = n, this coincides with
the usual definition of “upper triangular.”

The product of upper triangular matrices satisfies a useful property.

Theorem 3. Let m,n ∈ N. Let F be an upper triangular m × n matrix, and
E an upper triangular n×m matrix. Then FE is an m×m matrix satisfying
(FE)i,j = 0 for all i, j with j − i < |n−m|. In particular, if n 6= m, then FE
is strictly upper triangular, and hence satisfies pFE(t) = tm.

Proof. Note that (FE)i,j =
∑n
k=1 Fi,kEk,j . Suppose first that n ≥ m, and

j − i < n −m. Then Fi,k = 0 for all i, k with k − i < n −m. Also, Ek,j = 0
for all k, j with j − k < 0. Hence, if k > j, then Ek,j = 0; if instead k ≤ j, then
k− i ≤ j− i < n−m, so Fi,k = 0. Thus (FE)i,j = 0. Suppose now that n < m,
and j − i < m− n. Then Fi,k = 0 for all i, k with k − i < 0. Also, Ek,j = 0 for
all k, j with j− k < m−n. Hence, if k < i, then Fi,k = 0; if instead k ≥ i, then
j − k ≤ j − i < m− n, so Ek,j = 0. Thus (FE)i,j = 0.

We recall the (square) upper shift matrix Un (of size n ∈ N), which has ones
on the superdiagonal and zeroes elsewhere. Using the Kronecker delta function,
we may define (Un)i,j = δi+1,j . For future use, we define matrix U?n to be
any integer matrix whose entries satisfy 0 ≤ (U?n)i,j ≤ (Un)i,j . We next recall
(square) Jordan blocks, which exist for any eigenvalue α and any size n ∈ N,
defined as Jn(α) = αIn + Un.

We recall that a matrix is in Jordan canonical form if it is a block diagonal
matrix, whose diagonal blocks are each Jordan blocks (of any size and any
eigenvalues). The celebrated Jordan canonical form theorem states that every
square matrix is similar to one in Jordan form. We now apply this similarity
to the anticommutative relation. If AB + BA = 0, choose P so that PAP−1

is in Jordan form. We have PAP−1PBP−1 + PBP−1PAP−1 = P0P−1 = 0.
Set A′ = PAP−1, B′ = PBP−1; we have A′B′ + B′A′ = 0. A is similar to A′

and B is similar to B′, and similarity preserves characteristic polynomials (and
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hence eigenvalues). Henceforth we simply assume that AB +BA = 0 and that
A is in Jordan form.

We now partition A,B into blocks, based on the block diagonal structure of
A’s Jordan form. Considering an arbitrary m × n block C of B we find that
the anticommuting relation forces Jm(α)C + CJn(β) = 0, for some diagonal
Jordan blocks Jm(α), Jn(β) of A. This forces most such blocks C to be zero,
and imposes upper triangularity on the rest.

Theorem 4. Let m,n ∈ N, and let C be an m × n matrix. Suppose that
Jm(α)C +CJn(β) = 0, for some α, β ∈ C. If α+ β 6= 0, then C = 0. If instead
α+ β = 0, then C must be upper triangular.

Proof. Note that (UmC)m,j = 0, and (UmC)i,j = Ci+1,j for i < m. Similarly,
(CUn)i,1 = 0, and (CUn)i,j = Ci,j−1 otherwise. Conventionally, define Ci,j = 0
if i > m or j < 1. We have 0 = Jm(α)C + CJn(β) = (α+ β)C + UmC + CUn.
Now, UmC moves the rows of C upward, inserting a zero row, while CUn moves
the columns of C to the right, inserting a zero column. Hence, in UmC +CUn,
the southwest frontier of C must move northeast.

We first consider α + β 6= 0. Set S to be the set of those (i, j) ∈ N2 ∩
[1,m] × [1, n] which correspond to a nonzero entry in C. Suppose, by way
of contradiction, that S is nonempty. Take (i, j) ∈ K ′ that is minimal with
respect to j − i, i.e. on the southwest frontier of C. If there is more than one
with this minimal j − i, take the one with maximal i. Look at the (i, j) entry
of 0 = (α + β)C + UmC + CUn. We have 0 = (α + β)Ci,j + Ci+1,j + Ci,j−1.
Either since i + 1 > m or since j − (i + 1) < j − i, we must have Ci+1,j = 0.
Either since j − 1 < 1 or since (j − 1)− i < j − i, we must have Ci,j−1 = 0. In
other words, the southwest frontier of UmC +CUn has moved away from (i, j).
Hence 0 = (α+ β)Ci,j . But since α+ β 6= 0, Ci,j = 0, which is a contradiction.
Consequently S is empty.

We now consider the case of α + β = 0. First we take the case m ≥ n. Set
K to be the set of those (i, j) ∈ N2 ∩ [1,m] × [1, n] such that j − i < 0. Let
K ′ be those elements of K which correspond to a nonzero entry in C. Suppose,
by way of contradiction, that K ′ is nonempty. Take (i, j) ∈ K ′ that is minimal
with respect to j − i. If there is more than one with this minimal j − i, take
the one with minimal i. We have 0 = (α+ β)C + UmC + CUn = UmC + CUn.
Note that if i = 1 then j < 1, which is impossible. Hence i ≥ 2. Look at the
(i− 1, j) entry of this matrix. We have 0 = Ci,j +Ci−1,j−1. Either since j < 1,
or since (j − 1)− (i− 1) = j − i and i− 1 < i, we must have Ci−1,j−1 = 0. But
then Ci,j = 0, a contradiction. Hence K ′ is empty.

Lastly, we consider the case m > n. Set K to be the set of those (i, j) ∈
N2∩ [1,m]× [1, n] such that j− i < n−m. Let K ′ be those elements of K which
correspond to a nonzero entry in C. Suppose, by way of contradiction, that K ′

is nonempty. Take (i, j) ∈ K ′ that is minimal with respect to j − i. If there is
more than one with this minimal j − i, take the one with maximal i. We have
0 = (α+ β)C +UmC +CUn = UmC +CUn. Note that if j = n then −i < −m,
or i > m, which is impossible. Hence j ≤ n − 1. Look at the (i, j + 1) entry
of this matrix. We have 0 = Ci+1,j+1 + Ci,j . Either since i + 1 > m, or since

3



(j + 1) − (i + 1) = j − i and i + 1 > i, we must have Ci+1,j+1 = 0. But then
Ci,j = 0, a contradiction. Hence K ′ is empty.

It turns out that the upper triangular matrices C from Theorem 4 have
additional banded structure, which we will not explore.

We now impose a particular order to the diagonal Jordan blocks of A. By
reordering rows and columns if necessary, we collect together all of the Jordan
blocks of eigenvalue 0 (if any), into one big block A(0) = U?n, for some n ∈ N0

(here n is the algebraic multiplicity of eigenvalue 0 in A). The corresponding
diagonal big block of B, which we call B(0), is upper triangular by Theorem 4.

For each nonzero eigenvalue α, we also collect together all of the Jordan
blocks of ±α, into one big block A(α), which has n copies of α on the diagonal,
followed by m copies of −α. By reversing the roles of α,−α if necessary, we

assume that n ≥ m. We have A(α) =

(
αIn + U?n 0

0 −αIm + U?m

)
. We now

repartition A, B into big blocks, based on the block diagonal structure induced

by these big blocks. We call by B(α) =

(
0 E
F 0

)
the diagonal big block of

B corresponding to A(α). We call this the big block Jordan form for B. By
Theorem 4 again, B will now also be block diagonal. Hence pB(t) is just the
product of all the pB(α)(t).

These big blocks induce a correspondence between the eigenvalues of A(α),
namely ±α, and the eigenvalues of B(α).

We can now compute the characteristic polynomial of B(α) (for nonzero α).

Theorem 5. Let m,n ∈ N with n ≥ m. Suppose E is an n×m matrix, and F

is an m× n matrix. Set B(α) =

(
0 E
F 0

)
. Then pB(α)(t) = tn−mpFE(t2).

Proof. We calculate pB(α)(t) = |tI−B(α)| =
∣∣∣∣tIn −E
−F tIm

∣∣∣∣. Since tIn is invertible,

this equals |tIn||tIm−(−F )(tIn)−1(−E)| = tn|tIm−t−1FE| = tn|t−1Im||t2Im−
FE| = tn−mpFE(t2).

If n > m, then by Theorem 3, pFE(t) = tm. Hence, pB(α) = tn−mt2m =
tn+m, and B(α) has only 0 as an eigenvalue. If we assume instead that big
block B(α) has a nonzero eigenvalue, then n = m. This makes pA(α)(t) =
(t−α)m(t+α)m = (t2−α2)m and pB(α)(t) = pFE(t2) both even. If we assume
that A is invertible, and that every big block B(α) has a nonzero eigenvalue,
then pA(t) and pB(t) must both be even.

We now focus our attention on the case when big block A(α) is diagonal-
izable, for nonzero α. In this case, the geometric multiplicity and algebraic
multiplicity of α coincide.

Theorem 6. Let α ∈ C•, and let m,n ∈ N. Suppose we have A(α) =(
αIn 0

0 −αIm

)
, B(α) =

(
0 E
F 0

)
. Then pA(α)B(α)(t) = (iα)n+mpB(α)(

t
iα ),

and pA(α)+B(α)(t) = (t− α)n−mpFE(t2 − α2).
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Proof. We calculate pA(α)B(α)(t) = |tI−A(α)B(α)| =
∣∣∣∣tIn −αE
αF tIm

∣∣∣∣. Since tIn is

invertible, this equals |tIn||tIm−(αF )(tIn)−1(−αE)| = tn|tIm−(−α2t−1)FE| =
tn|(−α2)t−1Im||(− t2

α2 Im − FE)| = tn−m(−α2)mpFE(( t
iα )2) =

= ( t
iα )n−m(iα)n−m(iα)2mpFE(( t

iα )2) = (iα)n+mpB(α)(
t
iα ).

We now calculate pA(α)+B(α)(t) = |tI−A(α)−B(α)| =
∣∣∣∣(t− α)In −E

F (t+ α)Im

∣∣∣∣.
Since (t−α)In is invertible, this equals |(t−α)In||(t+α)Im−F ((t−α)In)−1E| =
(t−α)n|(t+α)Im−(t−α)−1FE| = (t−α)n|(t−α)−1Im||(t+α)(t−α)Im−FE| =
(t− α)n−mpFE(t2 − α2).

From our characteristic polynomial calculations, we can derive the eigenval-
ues of A(α)B(α) and A(α) +B(α) from the eigenvalues of A(α) and B(α).

Corollary 7. Let α ∈ C•, and let m,n ∈ N. Suppose we have A(α) =(
αIn 0

0 −αIm

)
, B(α) =

(
0 E
F 0

)
. Let {λk} denote the eigenvalues of B(α),

with multiplicity. Then the eigenvalues of A(α)B(α) are exactly {±iαλk}, and
the eigenvalues of A(α) +B(α) are exactly {±

√
α2 + λ2k}.

Proof. Let pFE(t) =
∏m
k=1(t−µk), where the µk are the eigenvalues of FE, not

assumed distinct. Then pB(α)(t) = tn−m
∏m
k=1(t2 − µk); hence the eigenvalues

of B(α) consist of (a) n − m copies of 0; and (b) ±√µk, for each eigenvalue
of FE. We can interpret the complex square root as a principal value, but it
doesn’t matter since we get both square roots.

Now pA(α)B(α)(t) = ( t
iα )n−m(iα)n+m

∏m
k=1(( t

iα )2 − µk) = tn−m
∏m
k=1(t2 −

(−α2µk)); hence its eigenvalues are (a) n −m copies of 0; and (b) ±
√
−α2µk,

for each eigenvalue µk of FE.
Finally pA(α)+B(α)(t) = (t−α)n−mpFE(t2−α2) = (t−α)n−m

∏m
k=1(t2−α2−

µk); hence its eigenvalues are (a) n−m copies of α; and (b) ±
√
α2 + µk.

Lastly, we extend these results to A(0) and B(0).

Theorem 8. Let 0 be an eigenvalue of A of algebraic multiplicity n ≥ 1. Let
A(0), B(0) be the corresponding big blocks. Then pA(0)B(0)(t) = pA(0)(t) = tn,
and pA(0)+B(0)(t) = pB(0)(t).

Proof. A(0) is strictly upper triangular, and B(0) is upper triangular. Hence
A(0)B(0) is strictly upper triangular, while A(0)+B(0) is upper triangular with
the same diagonal entries as B(0).

Corollary 9. Let 0 be an eigenvalue of A of algebraic multiplicity n ≥ 1. Let
A(0), B(0) be the corresponding big blocks. Let {λk} denote the eigenvalues of
B(α), with multiplicity. Then the eigenvalues of A(α)B(α) are all 0, and the
eigenvalues of A(α) +B(α) are exactly {λk}.

We close by observing that it appears that the diagonalizability hypothesis
on A(α) can be weakened or removed entirely, but we are unable to prove this.
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