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Consider an interval in the positive rationals, I ⊆ Q >0. Set S(I) = {m ∈
N : ∃ n ∈ N , mn ∈ I}. This turns out to be a numerical semigroup, and has
been the subject of considerable recent investigation (see Chapter 4 of [2]
for an introduction). Special cases include modular numerical semigroups
(see [4]) where I = [mn ,

m
n−1 ] (m,n ∈ N ), proportionally modular numerical

semigroups (see [3]) where I = [mn ,
m
n−s ] (m,n, s ∈ N), and opened modular

numerical semigroups (see [5]) where I = (mn ,
m
n−1 ) (m,n ∈ N ).

We consider instead arbitrary open intervals I = (a, b). We show that
this set of semigroups coincides with the set of semigroups generated by
closed and half-open intervals. Consequently, this class of semigroups
contains modular numerical semigroups, proportionally modular numer-
ical semigroups, as well as opened modular numerical semigroups. We
also compute two important invariants of these numerical semigroups: the
Frobenius number g(S(I)) and multiplicity m(S(I)).

1. PRELIMINARIES

We begin by defining a helpful function κ(a, b). For a, b ∈ R with a < b
we define κ(a, b) = b b

b−ac. The function κ has various nice properties, for
example κ(a, b) = κ(ac, bc) for c > 0. In the special case of a = m

n , b = m
n−s ,
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we have κ(a, b) = bns c. The following properties of κ(a, b) are needed in
the sequel.

Lemma 1.1. Let a, b ∈ R with a < b and b 6= 0. Set κ = κ(a, b). If
κ 6= 0, then κ−1

κ ≤
a
b . If κ 6= −1, then a

b <
κ
κ+1 .

Proof. We have κ ≤ b
b−a < κ + 1. Assume that κ /∈ {−1, 0}. Then

κ, b
b−a , κ + 1 are all the same sign, and we have 1

κ ≥
b−a
b > 1

κ+1 , hence
1−κ
κ ≥ −ab >

−κ
κ+1 , and the results follow. If κ = 0, then 0 ≤ b

b−a < 1,
so b > 0 and b < b − a so a < 0 hence a

b < 0 = κ
κ+1 . If κ = −1, then

−1 ≤ b
b−a < 0, so b < 0 and a− b ≤ b so a ≤ 2b and a

b ≥ 2 = κ−1
κ .

Lemma 1.2. Let a, b ∈ R with a < b and b > 0. Then N \ S((a, b)) =

N ∩
κ(a,b)⋃
n=1

[b(n− 1), an].

Proof. Because S((a, b)) = N ∩
⋃∞
n=1(an, bn), we have N \ S((a, b)) =

N∩
⋃∞
n=1[b(n−1), an]. Since b > 0, κ(a, b) 6= −1 and hence by Lemma 1.1,

bκ(a, b) > a(κ(a, b)+1). Hence for n > κ(a, b), the intervals are empty and

may be excluded.

Lemma 1.2 yields an upper bound for g. This bound will later be im-
proved in Theorem 3.1, but for the purposes of Theorem 2.1 the following
weaker bound suffices.

Corollary 1.1. Suppose 0 < a < b. Then g(S((a, b))) ≤ baκ(a, b)c.

2. INTERVALS

We now prove that restricting I to be open is harmless, as this class of
semigroups coincides with ones generated by closed or half-open intervals.
To reduce the number of cases to consider, we introduce the symbols {, } to
denote endpoints of an interval that are either open or closed. For example,
(a, b} indicates an interval that is open on the left. The meaning of these
symbols is determined when first used, and then remains consistent; that
is, if (a, b} is open then [a′, b} means [a′, b), and if (a, b} is half-open then
[a′, b} means [a′, b].

The following lemma is the cornerstone of the interval equivalence results.
Let d(x) denote the denominator of reduced rational x.
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Lemma 2.1. Let a ∈ Q>0, n ∈ N. Then all rationals in the interval(
a− a

nd(a)+1 , a+ a
nd(a)+1

)
, other than possibly a, have numerator greater

than n.

Proof. Suppose a = p
q , so d(a) = q. Consider any rational x

y with

0 < |xy − a| < a
nq+1 = p

q(nq+1) . Also we have |xy −
p
q | = |xq−ypyq | ≥

1
yq , because xq − yp 6= 0 since x

y 6= a. Combining, we get p
q(nq+1) >

1
yq , hence px

nq+1 >
x
y > a− a

nq+1 = pnq
q(nq+1) = pn

nq+1 , and thus x > n.

Lemma 2.2. Suppose that I, J, I ∪ J are all intervals. Then S(I ∪ J) =
S(I) ∪ S(J). Also, if I ⊆ J , then S(I) ⊆ S(J) and g(S(I)) ≥ g(S(J)).

Proof. An integer m ∈ S(I ∪ J) if and only if m
n ∈ I ∪ J for some n.

This is true if and only if mn ∈ I or m
n ∈ J . Hence m ∈ S(I ∪J) if and only

if m ∈ S(I)∪S(J). If I ⊆ J , then S(J) = S(I∪J) = S(I)∪S(J) ⊇ S(I).

The following theorem allows us to replace a closed endpoint with an
open one nearby, leaving the semigroup unchanged. Given a modular or
proportionally modular numerical semigroup S, it explicitly gives an open
interval I with S(I) = S.

Theorem 2.1. Let 0 < a < b. Then S([a, b}) = S((a′, b}), and
S({a, b]) = S({a, b′)), for:

a′ =

{
a− a

baκ(a,b)cd(a)+1 a ∈ Q
a a /∈ Q

b′ =

{
b+ b

baκ(a,b)cd(b)+1 b ∈ Q
b b /∈ Q

.

Proof. We consider only [a, b}; {a, b] is symmetric. Suppose first that
a /∈ Q . By Lemma 2.2, S([a′, b}) = S((a′, b}) ∪ S([a′, a′]) = S((a′, b})
since S([a′, a′]) = ∅. We now assume a ∈ Q . Since a < 2a − a′, Lemma
2.2 implies that S((a′, b}) = S((a′, 2a − a′)) ∪ S([a, b}). We will show
S((a′, 2a−a′)) ⊆ S([a, b}), implying S((a′, b}) ⊆ S([a, b}) (and S((a′, b}) ⊇
S([a, b}) by Lemma 2.2).

Let c ∈ S((a′, 2a− a′)). Hence there is some d ∈ N so that c
d ∈ (a′, 2a−

a′). By Lemma 2.1, either c
d = a (in which case c ∈ S([a, b})), or c >

baκ(a, b)c. In the latter case, we apply Corollary 1.1 and c > baκ(a, b)c ≥
g(S((a, b))) ≥ g(S([a, b})), so c ∈ S([a, b}).

Theorem 2.2 is a counterpoint to Theorem 2.1, allowing us to replace an
open endpoint with a closed one nearby. Proposition 5 in [5] tells us more:
that every S(I) is proportionally modular; that is, there are m,n, s ∈ N
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where S(I) = S([mn ,
m
n−s ]). Unfortunately neither of these results give an

explicit formula such as in Theorem 2.1.

Theorem 2.2. Let 0 < a < b. Then there are a′, b′ with S((a, b}) =
S([a′, b}) and S({a, b)) = S({a′, b]). Further, a

a′ ,
b
b′ ∈ Q .

Proof. We consider only (a, b}; {a, b) is symmetric. Suppose first that
a /∈ Q . By Lemma 2.2, S([a′, b}) = S((a′, b})∪S([a′, a′]) = S((a′, b}) since
S([a′, a′]) = ∅. We now assume a ∈ Q . Let a0 be any rational in (a, b),
and consider the sequence given by ai = a+ai−1

2 , (i ≥ 1). By Lemma 2.2,
S([a1, b}) ⊆ S([a2, b}) ⊆ · · · ⊆ S((a, b}). Set X = S((a, b}) \ S([a1, b}), a
finite set. Set Z = {xy : x ∈ X, xy ∈ (a, b}}. Since ai → a and minZ > a,

there is some j > 0 with Z ⊆ [aj , b}, and hence X ⊆ S([aj , b}). We take

a′ = aj ; note that a′ ∈ Q by construction.

3. CALCULATING g(S((a, b))) AND m(S((a, b)))

We now improve on Corollary 1.1 by calculating g(S((a, b))) exactly.
Various other results are known in related contexts. For example, if S([a, b])

is not a half-line, in [5] it was shown that g(S([a,b]))
g(S([a,b]))−1 < a < b < g(S([a, b])).

Also, if 2 ≤ a < b with a, b ∈ N, in [6] it was shown that g(S((a, b))) = b.

Theorem 3.1. Suppose 0 < a < b. Set κ = κ(a, b), κ′ = max(κ(a −
1, b − 1), 0). Then g(S((a, b))) = baαc, where α ∈ Z satisfies κ′ ≤ α ≤ κ.
Specifically,

α = κ−
κ∑

i=κ′+1

κ∏
j=i

(1 + bajc+ bb(1− j)c) .

Proof. By Lemma 1.2, g(S((a, b))) = baαc, for the greatest integer α
where N∩ [b(α−1), aα] is nonempty; in particular α ≤ κ. The lower bound
α ≥ κ′ is trivial when κ′ = 0; if b ≤ 1 then κ(a − 1, b − 1) = b b−1b−ac ≤ 0

and hence κ′ = 0. Otherwise, b > 1 and so by Lemma 1.1, κ′−1
κ′ ≤

a−1
b−1 ;

rearranging we get b(κ′ − 1) ≤ aκ′ − 1. Hence the interval [b(κ′ − 1), aκ′]
has length at least 1. It must therefore contain an integer, so α ≥ κ′.

To prove the α formula, for i ≤ κ we define function f(i) =

{
1 α ≤ i
0 α > i

;

this gives us α = κ −
∑κ
i=0 f(i) = κ −

∑κ
i=κ′+1 f(i). We define f via
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f(i) =
∏κ
j=i χ(j), for χ(j) =

{
1 [b(j − 1), aj] ∩ N 6= ∅
0 [b(j − 1), aj] ∩ N = ∅

. We now have

α = κ−
∑κ
i=κ′+1

∏κ
j=i χ(j).

We now calculate χ(j) explicitly by showing that for j ≥ κ′ + 1, the
interval [b(j − 1), aj] contains at most one integer. For b ≤ 1, we have
bj > aj ≥ aj + (b − 1) so b(j − 1) > aj − 1. For b > 1, by Lemma 1.1

we have a−1
b−1 < κ′

κ′+1 ≤
j−1

(j−1)+1 for any j − 1 ≥ κ′. Rearranging, we get

b(j − 1) > aj − 1. Hence |[b(j − 1), aj]∩N| ≤ 1 and in fact χ(j) equals the

number of integers in [b(j − 1), aj], i.e. χ(j) = 1 + bajc+ bb(1− j)c.

We have α ∈ [κ′, κ]; in general, neither bound can be improved. The
size of this interval, κ − κ′, can be arbitrarily large, when b

a is small. On

the other hand, the following shows that κ − κ′ is small if b
a > 2. This is

desirable, as it shortens the calculation for g(S(I)).

Proposition 3.1. Let 0 < 2a < b. Let κ, κ′ be as in Theorem 3.1. Then

κ− κ′ =

{
1 a < 1

0 a ≥ 1
.

Proof. For convenience, set I = ( b−1b−a ,
b

b−a ); κ−κ′ counts the number of
integers in I. Suppose first that b ≤ 1. Then κ(a− 1, b− 1) ≤ 0, so κ′ = 0.
Note that b > 2a implies b − a > a, and hence 1

b−a < 1
a , so 1 + a

b−a <
1 + a

a = 2, and hence κ = b1 + a
b−ac = 1. Suppose now that a < 1 < b. If

a ≤ 1
2 , then b > 1 = 1

2 + a. Alternatively, if a > 1
2 , then b > 2a > 1

2 + a.
Hence b > 1

2 + a; rearranging we get 1
b−a < 2. Hence I is of length less

than 2, and can contain at most one integer. Therefore κ− κ′ ≤ 1. But I
contains the integer 1 = b−a

b−a , so κ − κ′ = 1. Lastly, we consider the case

a ≥ 1. We have b − 1 ≥ b − a, hence b−1
b−a ≥ 1 and I does not contain 0

or 1. Suppose I contains integer n ≥ 2. Then 2 ≤ b
b−a ; rearranging we

get b ≤ 2a, a contradiction. Hence I contains no integers, and κ−κ′ = 0.

Computing m(S((a, b))) is similar to computing g(S((a, b))), in that we
must count integers in an interval, only this time the intervals are open.
We first prove a technical lemma, for which we recall Farey sequences (for
an introduction see [1]). The nth Farey sequence Fn consists of all reduced
fractions in [0, 1] whose denominator is at most n, arranged in increasing
order. The key property we require is that if a

b ,
c
d are consecutive terms in

a Farey sequence, then bc− ad = 1.

Lemma 3.1. Let 0 < a < b. Let n ∈ N be minimal such that (an, bn)
contains an integer. Suppose n > 1. Then (an, bn) contains exactly one
integer.
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Proof. Suppose by way of contradiction that (an, bn) contains at least
two integers. Then there is some m ∈ N such that m,m + 1 ∈ (an, bn).
Set d = gcd(m,n). If d > 1 then m/d ∈ (an/d, bn/d) violates the min-
imality of n. Similarly, gcd(m + 1, n) = 1. Let m′ ∈ (0, n − 1) with
m = m′ + kn for some integer k. We now consider the nth Farey se-
quence Fn. Both m′

n and m′+1
n are elements of Fn; however (m′ + 1)n −

m′n = n > 1, so they are not consecutive terms and there must be
some p

q in Fn with m′

n < p
q < m′+1

n , with q < n. But then m′+kn
n <

p+qk
q < m′+1+kn

n , so p+ qk ∈ (aq, bq), violating the minimality of n.

We now compute the multiplicity m(S((a, b))). The reverse problem of
finding an open interval whose semigroup possesses a given multiplicity, is
solved in [6]. A non-discrete version is proved as Proposition 5 in [3].

Theorem 3.2. Suppose 0 < a < b. Set κ′′ = κ(1, b − a + 1). Then
m(S((a, b))) = daαe, where α ∈ N satisfies 1 ≤ α ≤ κ′′. Specifically,

α =

κ′′∑
i=0

i∏
j=1

(2 + bajc+ b−bjc) .

Proof. Set m = m(S((a, b))), and let α ∈ N be minimal such that
m
α ∈ (a, b); then m(S((a, b))) = daαe. By Lemma 1.1, 1

b−a+1 < κ′′

κ′′+1 .
Rearranging, we find κ′′b − κ′′a > 1, so there is an integer t ∈ (κ′′a, κ′′b).
Suppose that α > κ′′. We then have m

α < m
κ′′ ≤

t
κ′′ ; since m

α and t
κ′′ are in

(a, b), we conclude that m
κ′′ ∈ (a, b), which contradicts the minimality of α.

Hence α ≤ κ′′.
We now prove the α formula. We proceed in a manner similar to The-

orem 3.1, by defining f(i) =

{
1 i ≤ α
0 i > α

, via f(i) =
∏i
j=1(1 − χ(j)),

where χ(j) is the number of integers in (aj, bj). For i < α, χ(i) =
0. By Lemma 3.1, χ(α) = 1, so f(i) = 0 for i ≥ α. Hence α =∑κ′′

i=0 f(i) =
∑κ′′

i=0

∏i
j=1(1− χ(j)), but 1− χ(j) = 2 + bajc+ b−bjc.

We have α ∈ [1, κ′′]; in general, neither bound can be improved. The
upper bound κ′′ can be arbitrarily large, when b− a is small. On the other
hand, the following shows that κ′′ is small if b−a is large, thus simplifying
computation of m.

Proposition 3.2. Let 0 < a < b. Let n ∈ N be minimal with b− a > 1
n .

Then κ′′ = n, in the notation of Theorem 3.2.
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Proof. We have 1
n < b − a ≤ 1

n−1 , hence n > 1
b−a ≥ n − 1, so

b 1
b−ac = n− 1, and κ′′ = b b−a+1

b−a c = b1 + 1
b−ac = 1 + (n− 1) = n.
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