Introduction to Factorization Theory

Vadim Ponomarenko

Department of Mathematics and Statistics
San Diego State University
June 12, 2023
http://vadim.sdsu.edu/intro-factorization.pdf

Semigroups

Let S be a set of "numbers", and \star a binary operation on S.

$$
\begin{aligned}
& \mathbb{N}=\{1,2,3, \ldots\}, \mathbb{N}_{0}=\{0,1,2, \ldots\}, \mathbb{Q}, \mathbb{C}, \text { words, multisets } \\
& \star: \times,+, \text { concatenation, multiset union }
\end{aligned}
$$

We require some properties:
$a \star b=b \star a$
(commutativity)
$a \star(b \star c)=(a \star b) \star c \quad$ (associativity)
$l \star a=a$, for all a
(identity, optional)

SDSU
San Diego State University

Semigroups

Let S be a set of "numbers", and \star a binary operation on S.
$\mathbb{N}=\{1,2,3, \ldots\}, \mathbb{N}_{0}=\{0,1,2, \ldots\}, \mathbb{Q}, \mathbb{C}$, words, multisets
$\star: \times,+$, concatenation, multiset union

We require some properties:
$a \star b=b \star a$
(commutativity)
$a \star(b \star c)=(a \star b) \star c$
(associativity)
$l \star a=a$, for all a
(identity, optional)

Semigroups

Let S be a set of "numbers", and \star a binary operation on S.
$\mathbb{N}=\{1,2,3, \ldots\}, \mathbb{N}_{0}=\{0,1,2, \ldots\}, \mathbb{Q}, \mathbb{C}$, words, multisets
$\star: \times,+$, concatenation, multiset union

We require some properties:
$a \star b=b \star a$
(commutativity)
$a \star(b \star c)=(a \star b) \star c \quad$ (associativity)

Semigroups

Let S be a set of "numbers", and \star a binary operation on S.
$\mathbb{N}=\{1,2,3, \ldots\}, \mathbb{N}_{0}=\{0,1,2, \ldots\}, \mathbb{Q}, \mathbb{C}$, words, multisets
$\star: \times,+$, concatenation, multiset union

We require some properties:
$a \star b=b \star a$
(commutativity)
$a \star(b \star c)=(a \star b) \star c$
(associativity)
$I \star a=a$, for all a
(identity, optional)

Divisibility

Let (S, \star) be a semigroup, with $a, c \in S$.
We say that a divides c, writing $a \mid c$, to mean:
There exists $b \in S$ with $a \star b=c$.

If there is an identity I, and $x \mid I$, we call x a unit.
The good stuff happens with non-units!

If everything is a unit, this is called a group.

Divisibility

Let (S, \star) be a semigroup, with $a, c \in S$.
We say that a divides c, writing $a \mid c$, to mean:
There exists $b \in S$ with $a \star b=c$.

Ex1: (\mathbb{N}, \times), does $3 \mid 6$? $6 \mid 3$? $3 \mid 5$?
Ex2: $(\mathbb{N},++)$, does $3 \mid 5$? 6|3?
\square
If there is an identity I, and $x \mid I$, we call x a unit.
The good stuff happens with non-units!

If everything is a unit, this is called a group.

Divisibility

Let (S, \star) be a semigroup, with $a, c \in S$.
We say that a divides c, writing $a \mid c$, to mean:
There exists $b \in S$ with $a \star b=c$.

Ex1: (\mathbb{N}, \times), does $3 \mid 6$? $6 \mid 3$? $3 \mid 5$?
Ex2: $\left(\mathbb{N}_{0},+\right)$, does $3 \mid 5$? $6 \mid 3$?

If there is an identity I, and $x \mid I$, we call x a unit.
 The good stuff happens with non-units!

If everything is a unit, this is called a group.

Divisibility

Let (S, \star) be a semigroup, with $a, c \in S$.
We say that a divides c, writing $a \mid c$, to mean:
There exists $b \in S$ with $a \star b=c$.

Ex1: (\mathbb{N}, \times), does $3 \mid 6$? $6 \mid 3$? $3 \mid 5$?
Ex2: $\left(\mathbb{N}_{0},+\right)$, does $3 \mid 5$? $6 \mid 3$?

If there is an identity I, and $x \mid I$, we call x a unit.
The good stuff happens with non-units!

If everything is a unit, this is called a group.

Divisibility

Let (S, \star) be a semigroup, with $a, c \in S$.
We say that a divides c, writing $a \mid c$, to mean:
There exists $b \in S$ with $a \star b=c$.

Ex1: (\mathbb{N}, \times), does $3 \mid 6$? $6 \mid 3$? $3 \mid 5$?
Ex2: $\left(\mathbb{N}_{0},+\right)$, does $3 \mid 5$? $6 \mid 3$?

If there is an identity I, and $x \mid I$, we call x a unit.
The good stuff happens with non-units!

If everything is a unit, this is called a group.

Irreducibles/Atoms

Let (S, \star) be a semigroup, with $a \in S$ a nonunit ($a \nmid I)$.
If there are nonunits b, c with $a=b \star c$, we call a reducible.
Otherwise, we call a irreducible, or an atom.

If every nonunit in S can be factored into atoms in at least
one way, we call (S, \star) atomic.

Irreducibles/Atoms

Let (S, \star) be a semigroup, with $a \in S$ a nonunit ($a \nmid I)$.
If there are nonunits b, c with $a=b \star c$, we call a reducible.
Otherwise, we call a irreducible, or an atom.

Ex1: (\mathbb{N}, \times), consider 6, 5, 1.
Ex2: $\left(\mathbb{N}_{0},+\right)$, consider $0,1,2$.

If every nonunit in S can be factored into atoms in at least
one way, we call (S, \star) atomic.

Our main interest is multiple factorizations into atoms.

Irreducibles/Atoms

Let (S, \star) be a semigroup, with $a \in S$ a nonunit ($a \nmid I)$.
If there are nonunits b, c with $a=b \star c$, we call a reducible.
Otherwise, we call a irreducible, or an atom.

Ex1: (\mathbb{N}, \times), consider $6,5,1$.
Ex2: $\left(\mathbb{N}_{0},+\right)$, consider $0,1,2$.

If every nonunit in S can be factored into atoms in at least
one way, we call (S, \star) atomic.

Irreducibles/Atoms

Let (S, \star) be a semigroup, with $a \in S$ a nonunit ($a \nmid I)$.
If there are nonunits b, c with $a=b \star c$, we call a reducible.
Otherwise, we call a irreducible, or an atom.

Ex1: (\mathbb{N}, \times), consider $6,5,1$.
Ex2: $\left(\mathbb{N}_{0},+\right)$, consider $0,1,2$.

If every nonunit in S can be factored into atoms in at least one way, we call (S, \star) atomic.

Our main interest is multiple factorizations into atoms.

Irreducibles/Atoms

Let (S, \star) be a semigroup, with $a \in S$ a nonunit ($a \nmid I)$.
If there are nonunits b, c with $a=b \star c$, we call a reducible.
Otherwise, we call a irreducible, or an atom.

Ex1: (\mathbb{N}, \times), consider $6,5,1$.
Ex2: $\left(\mathbb{N}_{0},+\right)$, consider $0,1,2$.

If every nonunit in S can be factored into atoms in at least one way, we call (S, \star) atomic.

Our main interest is multiple factorizations into atoms.

Two simple examples

Ex1: (\mathbb{N}, \times), factorization is unique. FTA

$$
\text { Ex2: }(S, \times) \text {, for } S=\{1\} \cup 2 \mathbb{N}=\{1,2,4,6,8, \ldots\} \text {. }
$$

Atoms: $2(2 k+1)$, for $k \in \mathbb{N}_{0}$.
$60=(2 \cdot 3) \times(2 \cdot 5)=(2) \times(2 \cdot 15)$

Not unique factorization! Half-factorial (same length).

San Diego State University

Two simple examples

Ex1: (\mathbb{N}, x), factorization is unique. FTA

$$
\text { Ex2: }(S, \times) \text {, for } S=\{1\} \cup 2 \mathbb{N}=\{1,2,4,6,8, \ldots\} .
$$

Atoms: $2(2 k+1)$, for $k \in \mathbb{N}_{0}$.
$60=(2 \cdot 3) \times(2 \cdot 5)=(2) \times(2 \cdot 15)$

Not unique factorization! Half-factorial (same length).

Two simple examples

Ex1: (\mathbb{N}, \times), factorization is unique. FTA

Ex2: (S, \times), for $S=\{1\} \cup 2 \mathbb{N}=\{1,2,4,6,8, \ldots\}$.

Atoms: $2(2 k+1)$, for $k \in \mathbb{N}_{0}$.
$60=(2 \cdot 3) \times(2 \cdot 5)=(2) \times(2 \cdot 15)$

Not unique factorization! Half-factorial (same length).

San Diego State University

Two simple examples

Ex1: (\mathbb{N}, \times), factorization is unique. FTA

Ex2: (S, \times), for $S=\{1\} \cup 2 \mathbb{N}=\{1,2,4,6,8, \ldots\}$.

Atoms: $2(2 k+1)$, for $k \in \mathbb{N}_{0}$.
$60=(2 \cdot 3) \times(2 \cdot 5)=(2) \times(2 \cdot 15)$

Not unique factorization! Half-factorial (same length).

Two simple examples

Ex1: (\mathbb{N}, \times), factorization is unique. FTA

Ex2: (S, \times), for $S=\{1\} \cup 2 \mathbb{N}=\{1,2,4,6,8, \ldots\}$.

Atoms: $2(2 k+1)$, for $k \in \mathbb{N}_{0}$.
$60=(2 \cdot 3) \times(2 \cdot 5)=(2) \times(2 \cdot 15)$

Not unique factorization! Half-factorial (same length).

Arithmetic Congruence Monoids

Let $a, b \in \mathbb{N}$ with $a \leq b$ and $a^{2} \equiv a(\bmod b)$.
$S=\{1\} \cup\{n \in \mathbb{N}: n \equiv a(\bmod b)\}$. Write $M_{a, b}$.
Operation \times, identity 1 , atoms?

Ex0: $M_{2,2}=\{1,2,4,6,8, \ldots\}$
Ex1: $M_{1,4}$ has $441=9 \times 49=21 \times 21$. "Hilbert monoid"
Ex2: $M_{4,6}$ has $154 \times 154 \times 154=1732 \times 2662$
"Meyerson monoid"

Arithmetic Congruence Monoids

Let $a, b \in \mathbb{N}$ with $a \leq b$ and $a^{2} \equiv a(\bmod b)$.
$S=\{1\} \cup\{n \in \mathbb{N}: n \equiv a(\bmod b)\}$. Write $M_{a, b}$.
Operation \times, identity 1 , atoms?

Ex0: $M_{2,2}=\{1,2,4,6,8, \ldots\}$
Ex1: $M_{1,4}$ has $441=9 \times 49=21 \times 21$. "Hilbert monoid"
Ex2: $M_{4,6}$ has $154 \times 154 \times 154=1732 \times 2662$
"Meyerson monoid"
SDSU

Arithmetic Congruence Monoids

Let $a, b \in \mathbb{N}$ with $a \leq b$ and $a^{2} \equiv a(\bmod b)$.
$S=\{1\} \cup\{n \in \mathbb{N}: n \equiv a(\bmod b)\}$. Write $M_{a, b}$.

Operation \times, identity 1 , atoms?

Ex0: $M_{2,2}=\{1,2,4,6,8, \ldots\}$
Ex1: $M_{1,4}$ has $441=9 \times 49=21 \times 21$. "Hilbert monoid"
Ex2: $M_{4,6}$ has $154 \times 154 \times 154=1732 \times 2662$
"Meyerson monoid"

SDSU
San Diego State University

Arithmetic Congruence Monoids

Let $a, b \in \mathbb{N}$ with $a \leq b$ and $a^{2} \equiv a(\bmod b)$.
$S=\{1\} \cup\{n \in \mathbb{N}: n \equiv a(\bmod b)\}$. Write $M_{a, b}$.

Operation \times, identity 1 , atoms?

Ex0: $M_{2,2}=\{1,2,4,6,8, \ldots\}$
Ex1: $M_{1,4}$ has $441=9 \times 49=21 \times 21$. "Hilbert monoid"
Ex2: $M_{4,6}$ has $154 \times 154 \times 154=1732 \times 2662$
"Meyerson monoid"

Integers in Algebraic Number Field

Squarefree $d \in \mathbb{Z}$, take $S=\{a+b \sqrt{d}: a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$.

Operation \times, identity $1=1+0 \sqrt{d}$, atoms?

Each d gives a class group (hard to compute)

Integers in Algebraic Number Field

Squarefree $d \in \mathbb{Z}$, take $S=\{a+b \sqrt{d}: a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$.

Operation \times, identity $1=1+0 \sqrt{d}$, atoms?

Ex: $d=-5, S=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\}$,
$6=2 \times 3=(1+\sqrt{-5}) \times(1-\sqrt{-5})$

Each d gives a class group (hard to compute)

Integers in Algebraic Number Field

Squarefree $d \in \mathbb{Z}$, take $S=\{a+b \sqrt{d}: a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$.

Operation \times, identity $1=1+0 \sqrt{d}$, atoms?

Ex: $d=-5, S=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\}$,
$6=2 \times 3=(1+\sqrt{-5}) \times(1-\sqrt{-5})$

Each d gives a class group (hard to compute) $\quad \mathbb{Z}_{2}$

Integers in Algebraic Number Field

Squarefree $d \in \mathbb{Z}$, take $S=\{a+b \sqrt{d}: a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$.

Operation \times, identity $1=1+0 \sqrt{d}$, atoms?

Ex: $d=-5, S=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\}$,
$6=2 \times 3=(1+\sqrt{-5}) \times(1-\sqrt{-5})$

Each d gives a class group (hard to compute) $\quad \mathbb{Z}_{2}$

Factorization here is the same as in a Block Monoid over that class group

Block Monoids

Let G be an abelian group with operation +.
Ex1: $G=\mathbb{Z}_{5}=\{0,1,2,3,4\}$
Ex2: $G=\mathbb{Z}_{2} \times \mathbb{Z}_{10}=\left\{(a, b): a \in \mathbb{Z}_{2}, b \in \mathbb{Z}_{10}\right\}$
Ex3: $G=\mathbb{Z}$

Block is multiset from G which sums to zero. "sequence"
Ex1: $G=\mathbb{Z}_{5} 2^{5}, 2^{10}, 3^{5}, 2^{1} 3^{1}, 2^{3} 4^{1}$,
$2^{5} 3^{5}=\left(2^{5}\right)^{1}\left(3^{5}\right)^{1}=\left(2^{1} 3^{1}\right)^{5}$

Operation multiset union (concat), identity empty set
$G_{0} \subseteq G$, block monoid $\left(G_{0}, \cup\right)$ is $\mathcal{B}\left(G, G_{0}\right)$.
Often $G_{0}=G$, block monoid is $\mathcal{B}(G)$.

SDSU

Block Monoids

Let G be an abelian group with operation + .
Ex1: $G=\mathbb{Z}_{5}=\{0,1,2,3,4\}$
Ex2: $G=\mathbb{Z}_{2} \times \mathbb{Z}_{10}=\left\{(a, b): a \in \mathbb{Z}_{2}, b \in \mathbb{Z}_{10}\right\}$
$E x 3: G=\mathbb{Z}$

Block is multiset from G which sums to zero. "sequence"

Operation multiset union (concat), identity empty set
$G_{0} \subseteq G$, block monoid $\left(G_{0}, \cup\right)$ is $\mathcal{B}\left(G, G_{0}\right)$.
Often $G_{0}=G$, block monoid is $\mathcal{B}(G)$.

Block Monoids

Let G be an abelian group with operation + .
Ex1: $G=\mathbb{Z}_{5}=\{0,1,2,3,4\}$
Ex2: $G=\mathbb{Z}_{2} \times \mathbb{Z}_{10}=\left\{(a, b): a \in \mathbb{Z}_{2}, b \in \mathbb{Z}_{10}\right\}$
Ex3: $G=\mathbb{Z}$

Block is multiset from G which sums to zero. "sequence"

Operation multiset union (concat), identity empty set
$G_{0} \subseteq G$, block monoid $\left(G_{0}, \cup\right)$ is $\mathcal{B}\left(G, G_{0}\right)$.
Often $G_{0}=G$, block monoid is $\mathcal{B}(G)$.

Block Monoids

Let G be an abelian group with operation +.
Ex1: $G=\mathbb{Z}_{5}=\{0,1,2,3,4\}$
Ex2: $G=\mathbb{Z}_{2} \times \mathbb{Z}_{10}=\left\{(a, b): a \in \mathbb{Z}_{2}, b \in \mathbb{Z}_{10}\right\}$
Ex3: $G=\mathbb{Z}$

Block is multiset from G which sums to zero. "sequence"
Ex1: $G=\mathbb{Z}_{5} \quad 2^{5}, 2^{10}, 3^{5}, 2^{1} 3^{1}, 2^{3} 4^{1}$, $2^{5} 3^{5}=\left(2^{5}\right)^{1}\left(3^{5}\right)^{1}=\left(2^{1} 3^{1}\right)^{5}$

Operation multiset union (concat), identity empty set
$G_{0} \subseteq G$, block monoid $\left(G_{0}, \cup\right)$ is $\mathcal{B}\left(G, G_{0}\right)$. Often $G_{0}=G$, block monoid is $\mathcal{B}(G)$.

Block Monoids

Let G be an abelian group with operation + .
Ex1: $G=\mathbb{Z}_{5}=\{0,1,2,3,4\}$
Ex2: $G=\mathbb{Z}_{2} \times \mathbb{Z}_{10}=\left\{(a, b): a \in \mathbb{Z}_{2}, b \in \mathbb{Z}_{10}\right\}$
Ex3: $G=\mathbb{Z}$

Block is multiset from G which sums to zero. "sequence"
Ex1: $G=\mathbb{Z}_{5} 2^{5}, 2^{10}, 3^{5}, 2^{1} 3^{1}, 2^{3} 4^{1}$,
$2^{5} 3^{5}=\left(2^{5}\right)^{1}\left(3^{5}\right)^{1}=\left(2^{1} 3^{1}\right)^{5}$

Operation multiset union (concat), identity empty set
$G_{0} \subseteq G$, block monoid $\left(G_{0}, \cup\right)$ is $\mathcal{B}\left(G, G_{0}\right)$.
Often $G_{0}=G$, block monoid is $\mathcal{B}(G)$.

Block Monoids

Let G be an abelian group with operation + .
Ex1: $G=\mathbb{Z}_{5}=\{0,1,2,3,4\}$
Ex2: $G=\mathbb{Z}_{2} \times \mathbb{Z}_{10}=\left\{(a, b): a \in \mathbb{Z}_{2}, b \in \mathbb{Z}_{10}\right\}$
Ex3: $G=\mathbb{Z}$

Block is multiset from G which sums to zero. "sequence"
Ex1: $G=\mathbb{Z}_{5} 2^{5}, 2^{10}, 3^{5}, 2^{1} 3^{1}, 2^{3} 4^{1}$,
$2^{5} 3^{5}=\left(2^{5}\right)^{1}\left(3^{5}\right)^{1}=\left(2^{1} 3^{1}\right)^{5}$

Operation multiset union (concat), identity empty set
$G_{0} \subseteq G$, block monoid $\left(G_{0}, \cup\right)$ is $\mathcal{B}\left(G, G_{0}\right)$.
Often $G_{0}=G$, block monoid is $\mathcal{B}(G)$.

Numerical Semigroups

Choose some naturals $a_{1}, a_{2}, \ldots, a_{k}$ with gcd 1 .
$S=\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle=\left\{\# a_{1}+\# a_{2}+\cdots+\# a_{k}: \# \in \mathbb{N}_{0}\right\}$

Operation + , identity 0 , atoms are among a_{i}

In $\langle 3,5\rangle$, we have $18=6 \cdot 3+0 \cdot 5=1 \cdot 3+3 \cdot 5$
six atoms, and four atoms

Numerical Semigroups

Choose some naturals $a_{1}, a_{2}, \ldots, a_{k}$ with gcd 1 .
$S=\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle=\left\{\# a_{1}+\# a_{2}+\cdots+\# a_{k}: \# \in \mathbb{N}_{0}\right\}$

Ex1: $\langle 3,5\rangle=\{0,3,5,6,8,9,10, \rightarrow\}$
Ex2: $\langle 3,5,6\rangle=\langle 3,5\rangle$
Ex3: $\langle 4,6,9\rangle=\{4,6,8,9,10,12,13,14, \rightarrow\}$

Operation + , identity 0 , atoms are among a_{i}
$\ln \langle 3,5\rangle$, we have $18=6 \cdot 3+0 \cdot 5=1 \cdot 3+3 \cdot 5$

Numerical Semigroups

Choose some naturals $a_{1}, a_{2}, \ldots, a_{k}$ with gcd 1 .
$S=\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle=\left\{\# a_{1}+\# a_{2}+\cdots+\# a_{k}: \# \in \mathbb{N}_{0}\right\}$

Ex1: $\langle 3,5\rangle=\{0,3,5,6,8,9,10, \rightarrow\}$
Ex2: $\langle 3,5,6\rangle=\langle 3,5\rangle$
Ex3: $\langle 4,6,9\rangle=\{4,6,8,9,10,12,13,14, \rightarrow\}$

Operation + , identity 0 , atoms are among a_{i}

In $\langle 3,5\rangle$, we have $18=6 \cdot 3+0 \cdot 5=1 \cdot 3+3 \cdot 5$

Numerical Semigroups

Choose some naturals $a_{1}, a_{2}, \ldots, a_{k}$ with gcd 1 .
$S=\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle=\left\{\# a_{1}+\# a_{2}+\cdots+\# a_{k}: \# \in \mathbb{N}_{0}\right\}$

Ex1: $\langle 3,5\rangle=\{0,3,5,6,8,9,10, \rightarrow\}$
Ex2: $\langle 3,5,6\rangle=\langle 3,5\rangle$
Ех3: $\langle 4,6,9\rangle=\{4,6,8,9,10,12,13,14, \rightarrow\}$

Operation + , identity 0 , atoms are among a_{i}
$\ln \langle 3,5\rangle$, we have $18=6 \cdot 3+0 \cdot 5=1 \cdot 3+3 \cdot 5$

Numerical Semigroups

Choose some naturals $a_{1}, a_{2}, \ldots, a_{k}$ with gcd 1 .
$S=\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle=\left\{\# a_{1}+\# a_{2}+\cdots+\# a_{k}: \# \in \mathbb{N}_{0}\right\}$

Ex1: $\langle 3,5\rangle=\{0,3,5,6,8,9,10, \rightarrow\}$
Ex2: $\langle 3,5,6\rangle=\langle 3,5\rangle$
Ех3: $\langle 4,6,9\rangle=\{4,6,8,9,10,12,13,14, \rightarrow\}$

Operation + , identity 0 , atoms are among a_{i}
$\ln \langle 3,5\rangle$, we have $18=6 \cdot 3+0 \cdot 5=1 \cdot 3+3 \cdot 5$

Numerical Semigroups

Choose some naturals $a_{1}, a_{2}, \ldots, a_{k}$ with gcd 1 .
$S=\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle=\left\{\# a_{1}+\# a_{2}+\cdots+\# a_{k}: \# \in \mathbb{N}_{0}\right\}$

Ex1: $\langle 3,5\rangle=\{0,3,5,6,8,9,10, \rightarrow\}$
Ex2: $\langle 3,5,6\rangle=\langle 3,5\rangle$
Ex3: $\langle 4,6,9\rangle=\{4,6,8,9,10,12,13,14, \rightarrow\}$

Operation + , identity 0 , atoms are among a_{i}
$\ln \langle 3,5\rangle$, we have $18=6 \cdot 3+0 \cdot 5=1 \cdot 3+3 \cdot 5$
six atoms, and four atoms

Puiseux Monoids

Choose some positive rationals $a_{1}, a_{2}, \ldots, a_{k}$. $S=\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle=\left\{\# a_{1}+\# a_{2}+\cdots+\# a_{k}: \# \in \mathbb{N}_{0}\right\}$

Operation + , identity 0 , atoms are among a_{i}
If finitely many a_{i}, isomorphic to a numerical semigroup!
Ex1: $S=\left\langle\frac{1}{p}: p\right.$ prime \rangle
Ex2: $S=\left\langle p+\frac{1}{p}: p\right.$ prime \rangle
Ex1: $S=\left\langle\frac{1}{p}: p\right.$ prime $\rangle \quad 1=3 \cdot \frac{1}{3}=5 \cdot \frac{1}{5}$.

Puiseux Monoids

Choose some positive rationals $a_{1}, a_{2}, \ldots, a_{k}$.
$S=\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle=\left\{\# a_{1}+\# a_{2}+\cdots+\# a_{k}: \# \in \mathbb{N}_{0}\right\}$

Operation + , identity 0 , atoms are among a_{i}
If finitely many a_{i}, isomorphic to a numerical semigroup!

Ex1: $S=\left\langle\frac{1}{p}: p\right.$ prime $\rangle \quad 1=3 \cdot \frac{1}{3}=5 \cdot \frac{1}{5}$.

Puiseux Monoids

Choose some positive rationals $a_{1}, a_{2}, \ldots, a_{k}$.
$S=\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle=\left\{\# a_{1}+\# a_{2}+\cdots+\# a_{k}: \# \in \mathbb{N}_{0}\right\}$

Operation + , identity 0 , atoms are among a_{i}
If finitely many a_{i}, isomorphic to a numerical semigroup!
Ex1: $S=\left\langle\frac{1}{p}: p\right.$ prime \rangle
Ex2: $S=\left\langle p+\frac{1}{p}: p\right.$ prime \rangle
Ex1: $S=\left\langle\frac{1}{p}:\right.$ p prime $\rangle \quad 1=3 \cdot \frac{1}{3}=5 \cdot \frac{1}{5}$.

Puiseux Monoids

Choose some positive rationals $a_{1}, a_{2}, \ldots, a_{k}$.
$S=\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle=\left\{\# a_{1}+\# a_{2}+\cdots+\# a_{k}: \# \in \mathbb{N}_{0}\right\}$

Operation + , identity 0 , atoms are among a_{i}
If finitely many a_{i}, isomorphic to a numerical semigroup!
Ex1: $S=\left\langle\frac{1}{p}: p\right.$ prime \rangle
Ex2: $S=\left\langle p+\frac{1}{p}: p\right.$ prime \rangle
Ex1: $S=\left\langle\frac{1}{p}: p\right.$ prime $\rangle \quad 1=3 \cdot \frac{1}{3}=5 \cdot \frac{1}{5}$.

Invariants

Elasticity (Local)

Atomic semigroup (S, \star), $x \in S$
x has some factorizations into atoms. Each factorization has a length (\# of atoms). $\mathcal{L}(x)$ is set of lengths.
$L(x)=\max \mathcal{L}(x) . I(x)=\min \mathcal{L}(x)$. elasticity $\rho(x)=\frac{L(x)}{I(x)}$.
Ex1: $S=\langle 3,5\rangle$ numerical semigroup. $\mathcal{L}(18)=\{4,6\}$, $\rho(18)=\frac{6}{4}=1.5$.

Ex2: $\mathcal{B}\left(\mathbb{Z}_{5}\right)$ block monoid. $\mathcal{L}\left(2^{5} 3^{5}\right)=\{2,5\}, \rho\left(2^{5} 3^{5}\right)=2.5$.
Ex3: $(S, *)$ half-factorial. $x \in S$ must have $\rho(x)=1$.

Elasticity (Local)

Atomic semigroup $(S, \star), x \in S$
x has some factorizations into atoms. Each factorization has a length (\# of atoms). $\mathcal{L}(x)$ is set of lengths.
$L(x)=\max \mathcal{L}(x) . I(x)=\min \mathcal{L}(x)$. elasticity $\rho(x)=\frac{L(x)}{I(x)}$.

Ex1: $S=\langle 3,5\rangle$ numerical semigroup. $\mathcal{L}(18)=\{4,6\}$, $\rho(18)=\frac{6}{4}=1.5$.

Ex2: $\mathcal{B}\left(\mathbb{Z}_{5}\right)$ block monoid. $\mathcal{L}\left(2^{5} 3^{5}\right)=\{2,5\}, \rho\left(2^{5} 3^{5}\right)=2.5$.

Ex3: (S, \star) half-factorial. $x \in S$ must have $\rho(x)=1$.

Elasticity (Local)

Atomic semigroup (S, \star), $x \in S$
x has some factorizations into atoms. Each factorization has a length (\# of atoms). $\mathcal{L}(x)$ is set of lengths.
$L(x)=\max \mathcal{L}(x) . I(x)=\min \mathcal{L}(x)$. elasticity $\rho(x)=\frac{L(x)}{I(x)}$.
Ex1: $S=\langle 3,5\rangle$ numerical semigroup. $\mathcal{L}(18)=\{4,6\}$, $\rho(18)=\frac{6}{4}=1.5$.

Ex2: $\mathcal{B}\left(\mathbb{Z}_{5}\right)$ block monoid. $\mathcal{L}\left(2^{5} 3^{5}\right)=\{2,5\}, \rho\left(2^{5} 3^{5}\right)=2.5$.

Elasticity (Local)

Atomic semigroup $(S, \star), x \in S$
x has some factorizations into atoms. Each factorization has a length (\# of atoms). $\mathcal{L}(x)$ is set of lengths.
$L(x)=\max \mathcal{L}(x) . I(x)=\min \mathcal{L}(x)$. elasticity $\rho(x)=\frac{L(x)}{I(x)}$.

Ex1: $S=\langle 3,5\rangle$ numerical semigroup. $\mathcal{L}(18)=\{4,6\}$, $\rho(18)=\frac{6}{4}=1.5$.

Ex2: $\mathcal{B}\left(\mathbb{Z}_{5}\right)$ block monoid. $\mathcal{L}\left(2^{5} 3^{5}\right)=\{2,5\}, \rho\left(2^{5} 3^{5}\right)=2.5$.

Elasticity (Local)

Atomic semigroup $(S, \star), x \in S$
x has some factorizations into atoms. Each factorization has a length (\# of atoms). $\mathcal{L}(x)$ is set of lengths.
$L(x)=\max \mathcal{L}(x) . I(x)=\min \mathcal{L}(x)$. elasticity $\rho(x)=\frac{L(x)}{I(x)}$.

Ex1: $S=\langle 3,5\rangle$ numerical semigroup. $\mathcal{L}(18)=\{4,6\}$, $\rho(18)=\frac{6}{4}=1.5$.

Ex2: $\mathcal{B}\left(\mathbb{Z}_{5}\right)$ block monoid. $\mathcal{L}\left(2^{5} 3^{5}\right)=\{2,5\}, \rho\left(2^{5} 3^{5}\right)=2.5$.

Ex3: (S, \star) half-factorial. $x \in S$ must have $\rho(x)=1$.

Elasticity (Global)

Atomic semigroup (S, \star)

We define the elasticity $\rho(S)=\sup _{x \in S} \rho(x)$

We say the elasticity is accepted if there is some $x \in S$ with $\rho(x)=\rho(S)$.

We say the elasticity is full if every rational $t \in[1, \rho(S))$ has
some $x \in S$ with $\rho(x)=t$.

Elasticity (Global)

Atomic semigroup (S, \star)
We define the elasticity $\rho(S)=\sup _{x \in S} \rho(x)$
We say the elasticity is accepted if there is some $x \in S$ with $\rho(x)=\rho(S)$.

We say the elasticity is full if every rational $t \in[1, \rho(S))$ has
some $x \in S$ with $\rho(x)=t$.

Elasticity (Global)

Atomic semigroup (S, \star)
We define the elasticity $\rho(S)=\sup _{x \in S} \rho(x)$
We say the elasticity is accepted if there is some $x \in S$ with $\rho(x)=\rho(S)$.

We say the elasticity is full if every rational $t \in[1, \rho(S))$ has some $x \in S$ with $\rho(x)=t$.

Delta Sets

Atomic semigroup (S, \star), $x \in S$.

The Delta set $\Delta(x)$ is the set of gaps in $\mathcal{L}(x)$.

Ex2: $\mathcal{B}\left(\mathbb{Z}_{5}\right)$ block monoid. $\mathcal{L}\left(2^{10} 3^{10}\right)=\{4,7,10\}$, $\Delta\left(2^{10} 3^{10}\right)=\{3\}$.

The Delta set $\Delta(S)=\cup_{x \in S} \Delta(x)$.

Delta Sets

Atomic semigroup (S, \star), $x \in S$.

The Delta set $\Delta(x)$ is the set of gaps in $\mathcal{L}(x)$.

Ex1: $S=\langle 3,5\rangle$ numerical semigroup. $\mathcal{L}(18)=\{4,6\}$, $\Delta(18)=\{2\}$.

Ex2: $\mathcal{B}\left(\mathbb{Z}_{5}\right)$ block monoid. $\mathcal{L}\left(2^{10} 3^{10}\right)=\{4,7,10\}$, $\Delta\left(2^{10} 3^{10}\right)=\{3\}$.

Delta Sets

Atomic semigroup (S, \star), $x \in S$.

The Delta set $\Delta(x)$ is the set of gaps in $\mathcal{L}(x)$.

Ex1: $S=\langle 3,5\rangle$ numerical semigroup. $\mathcal{L}(18)=\{4,6\}$, $\Delta(18)=\{2\}$.

Ex2: $\mathcal{B}\left(\mathbb{Z}_{5}\right)$ block monoid. $\mathcal{L}\left(2^{10} 3^{10}\right)=\{4,7,10\}$, $\Delta\left(2^{10} 3^{10}\right)=\{3\}$.

The Delta set $\Delta(S)=\cup_{x \in S} \Delta(x)$.

Delta Sets

Atomic semigroup (S, \star), $x \in S$.

The Delta set $\Delta(x)$ is the set of gaps in $\mathcal{L}(x)$.

Ex1: $S=\langle 3,5\rangle$ numerical semigroup. $\mathcal{L}(18)=\{4,6\}$, $\Delta(18)=\{2\}$.

Ex2: $\mathcal{B}\left(\mathbb{Z}_{5}\right)$ block monoid. $\mathcal{L}\left(2^{10} 3^{10}\right)=\{4,7,10\}$, $\Delta\left(2^{10} 3^{10}\right)=\{3\}$.

The Delta set $\Delta(S)=\cup_{x \in S} \Delta(x)$.

San Diego State University

End

