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Introduction Examples Invariants

Semigroups

Let S be a set of “numbers”, and ? a binary operation on S.

N = {1,2,3, . . .}, N0 = {0,1,2, . . .}, Q, C, words, multisets
?: ×, +, concatenation, multiset union

We require some properties:
a ? b = b ? a (commutativity)
a ? (b ? c) = (a ? b) ? c (associativity)

I ? a = a, for all a (identity, optional)
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Introduction Examples Invariants

Divisibility

Let (S, ?) be a semigroup, with a, c ∈ S.
We say that a divides c, writing a|c, to mean:
There exists b ∈ S with a ? b = c.

Ex1: (N,×), does 3|6? 6|3? 3|5?
Ex2: (N0,+), does 3|5? 6|3?

If there is an identity I, and x |I, we call x a unit.
The good stuff happens with non-units!

If everything is a unit, this is called a group.
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Irreducibles/Atoms

Let (S, ?) be a semigroup, with a ∈ S a nonunit (a - I).
If there are nonunits b, c with a = b ? c, we call a reducible.
Otherwise, we call a irreducible, or an atom.

Ex1: (N,×), consider 6,5,1.
Ex2: (N0,+), consider 0,1,2.

If every nonunit in S can be factored into atoms in at least
one way, we call (S, ?) atomic.

Our main interest is multiple factorizations into atoms.
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Two simple examples

Ex1: (N,×), factorization is unique. FTA

Ex2: (S,×), for S = {1} ∪ 2N = {1,2,4,6,8, . . .}.

Atoms: 2(2k + 1), for k ∈ N0.

60 = (2 · 3)× (2 · 5) = (2)× (2 · 15)

Not unique factorization! Half-factorial (same length).
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Arithmetic Congruence Monoids

Let a,b ∈ N with a ≤ b and a2 ≡ a (mod b).
S = {1} ∪ {n ∈ N : n ≡ a (mod b)}. Write Ma,b.

Operation ×, identity 1, atoms?

Ex0: M2,2 = {1,2,4,6,8, . . .}
Ex1: M1,4 has 441 = 9× 49 = 21× 21. “Hilbert monoid”
Ex2: M4,6 has 154× 154× 154 = 1732× 2662
“Meyerson monoid”
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Integers in Algebraic Number Field

Squarefree d ∈ Z, take S = {a + b
√

d : a,b ∈ Z} ⊆ C.

Operation ×, identity 1 = 1 + 0
√

d , atoms?

Ex: d = −5, S = {a + b
√
−5 : a,b ∈ Z},

6 = 2× 3 = (1 +
√
−5)× (1−

√
−5)

Each d gives a class group (hard to compute) Z2

Factorization here is the same as in a Block Monoid over
that class group
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Block Monoids

Let G be an abelian group with operation +.
Ex1: G = Z5 = {0,1,2,3,4}
Ex2: G = Z2 × Z10 = {(a,b) : a ∈ Z2,b ∈ Z10}
Ex3: G = Z

Block is multiset from G which sums to zero. “sequence”
Ex1: G = Z5 25, 210, 35, 2131, 2341,
2535 = (25)1(35)1 = (2131)5

Operation multiset union (concat), identity empty set

G0 ⊆ G, block monoid (G0,∪) is B(G,G0).
Often G0 = G, block monoid is B(G).
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Numerical Semigroups

Choose some naturals a1,a2, . . . ,ak with gcd 1.
S = 〈a1,a2, . . . ,ak 〉 = {#a1 + #a2 + · · ·+ #ak : # ∈ N0}

Ex1: 〈3,5〉 = {0,3,5,6,8,9,10,→}
Ex2: 〈3,5,6〉 = 〈3,5〉
Ex3: 〈4,6,9〉 = {4,6,8,9,10,12,13,14,→}

Operation +, identity 0, atoms are among ai

In 〈3,5〉, we have 18 = 6 · 3 + 0 · 5 = 1 · 3 + 3 · 5
six atoms, and four atoms
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Puiseux Monoids

Choose some positive rationals a1,a2, . . . ,ak .
S = 〈a1,a2, . . . ,ak 〉 = {#a1 + #a2 + · · ·+ #ak : # ∈ N0}

Operation +, identity 0, atoms are among ai

If finitely many ai , isomorphic to a numerical semigroup!

Ex1: S =
〈

1
p : p prime

〉
Ex2: S =

〈
p + 1

p : p prime
〉

Ex1: S =
〈

1
p : p prime

〉
1 = 3 · 1

3 = 5 · 1
5 .



Introduction Examples Invariants

Puiseux Monoids

Choose some positive rationals a1,a2, . . . ,ak .
S = 〈a1,a2, . . . ,ak 〉 = {#a1 + #a2 + · · ·+ #ak : # ∈ N0}

Operation +, identity 0, atoms are among ai

If finitely many ai , isomorphic to a numerical semigroup!

Ex1: S =
〈

1
p : p prime

〉
Ex2: S =

〈
p + 1

p : p prime
〉

Ex1: S =
〈

1
p : p prime

〉
1 = 3 · 1

3 = 5 · 1
5 .



Introduction Examples Invariants

Puiseux Monoids

Choose some positive rationals a1,a2, . . . ,ak .
S = 〈a1,a2, . . . ,ak 〉 = {#a1 + #a2 + · · ·+ #ak : # ∈ N0}

Operation +, identity 0, atoms are among ai

If finitely many ai , isomorphic to a numerical semigroup!

Ex1: S =
〈

1
p : p prime

〉
Ex2: S =

〈
p + 1

p : p prime
〉

Ex1: S =
〈

1
p : p prime

〉
1 = 3 · 1

3 = 5 · 1
5 .



Introduction Examples Invariants

Puiseux Monoids

Choose some positive rationals a1,a2, . . . ,ak .
S = 〈a1,a2, . . . ,ak 〉 = {#a1 + #a2 + · · ·+ #ak : # ∈ N0}

Operation +, identity 0, atoms are among ai

If finitely many ai , isomorphic to a numerical semigroup!

Ex1: S =
〈

1
p : p prime

〉
Ex2: S =

〈
p + 1

p : p prime
〉

Ex1: S =
〈

1
p : p prime

〉
1 = 3 · 1

3 = 5 · 1
5 .



Introduction Examples Invariants

Invariants



Introduction Examples Invariants

Elasticity (Local)

Atomic semigroup (S, ?), x ∈ S
x has some factorizations into atoms. Each factorization
has a length (# of atoms). L(x) is set of lengths.

L(x) = maxL(x). l(x) = minL(x). elasticity ρ(x) = L(x)
l(x) .

Ex1: S = 〈3,5〉 numerical semigroup. L(18) = {4,6},
ρ(18) = 6

4 = 1.5.

Ex2: B(Z5) block monoid. L(2535) = {2,5}, ρ(2535) = 2.5.

Ex3: (S, ?) half-factorial. x ∈ S must have ρ(x) = 1.
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has a length (# of atoms). L(x) is set of lengths.

L(x) = maxL(x). l(x) = minL(x). elasticity ρ(x) = L(x)
l(x) .

Ex1: S = 〈3,5〉 numerical semigroup. L(18) = {4,6},
ρ(18) = 6

4 = 1.5.

Ex2: B(Z5) block monoid. L(2535) = {2,5}, ρ(2535) = 2.5.

Ex3: (S, ?) half-factorial. x ∈ S must have ρ(x) = 1.
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Elasticity (Global)

Atomic semigroup (S, ?)

We define the elasticity ρ(S) = supx∈S ρ(x)

We say the elasticity is accepted if there is some x ∈ S
with ρ(x) = ρ(S).

We say the elasticity is full if every rational t ∈ [1, ρ(S)) has
some x ∈ S with ρ(x) = t .



Introduction Examples Invariants

Elasticity (Global)

Atomic semigroup (S, ?)

We define the elasticity ρ(S) = supx∈S ρ(x)

We say the elasticity is accepted if there is some x ∈ S
with ρ(x) = ρ(S).

We say the elasticity is full if every rational t ∈ [1, ρ(S)) has
some x ∈ S with ρ(x) = t .
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Elasticity (Global)

Atomic semigroup (S, ?)

We define the elasticity ρ(S) = supx∈S ρ(x)

We say the elasticity is accepted if there is some x ∈ S
with ρ(x) = ρ(S).

We say the elasticity is full if every rational t ∈ [1, ρ(S)) has
some x ∈ S with ρ(x) = t .
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Delta Sets

Atomic semigroup (S, ?), x ∈ S.

The Delta set ∆(x) is the set of gaps in L(x).

Ex1: S = 〈3,5〉 numerical semigroup. L(18) = {4,6},
∆(18) = {2}.

Ex2: B(Z5) block monoid. L(210310) = {4,7,10},
∆(210310) = {3}.

The Delta set ∆(S) = ∪x∈S∆(x).



Introduction Examples Invariants

Delta Sets

Atomic semigroup (S, ?), x ∈ S.

The Delta set ∆(x) is the set of gaps in L(x).

Ex1: S = 〈3,5〉 numerical semigroup. L(18) = {4,6},
∆(18) = {2}.

Ex2: B(Z5) block monoid. L(210310) = {4,7,10},
∆(210310) = {3}.

The Delta set ∆(S) = ∪x∈S∆(x).



Introduction Examples Invariants

Delta Sets

Atomic semigroup (S, ?), x ∈ S.

The Delta set ∆(x) is the set of gaps in L(x).

Ex1: S = 〈3,5〉 numerical semigroup. L(18) = {4,6},
∆(18) = {2}.

Ex2: B(Z5) block monoid. L(210310) = {4,7,10},
∆(210310) = {3}.

The Delta set ∆(S) = ∪x∈S∆(x).



Introduction Examples Invariants

Delta Sets

Atomic semigroup (S, ?), x ∈ S.

The Delta set ∆(x) is the set of gaps in L(x).

Ex1: S = 〈3,5〉 numerical semigroup. L(18) = {4,6},
∆(18) = {2}.

Ex2: B(Z5) block monoid. L(210310) = {4,7,10},
∆(210310) = {3}.

The Delta set ∆(S) = ∪x∈S∆(x).



Introduction Examples Invariants

End


	Introduction
	First Subsection

	Examples
	First Subsection

	Invariants
	First Subsection


