

Introduction to Factorization Theory

Vadim Ponomarenko

Department of Mathematics and Statistics San Diego State University

June 12, 2023

http://vadim.sdsu.edu/intro-factorization.pdf

San Diego State University

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Semigroups

Let *S* be a set of "numbers", and \star a binary operation on *S*.

$$\begin{split} \mathbb{N} &= \{1,2,3,\ldots\}, \, \mathbb{N}_0 = \{0,1,2,\ldots\}, \, \mathbb{Q}, \, \mathbb{C}, \, \text{words, multisets} \\ \star : \times, \, +, \, \text{concatenation, multiset union} \end{split}$$

We require some properties:

 $a \star b = b \star a$ (commutativity) $a \star (b \star c) = (a \star b) \star c$ (associativity)

 $I \star a = a$, for all a

(identity, optional)

SDSU

San Diego State University

Semigroups

Let *S* be a set of "numbers", and \star a binary operation on *S*.

$$\label{eq:main_states} \begin{split} \mathbb{N} &= \{1,2,3,\ldots\}, \, \mathbb{N}_0 = \{0,1,2,\ldots\}, \, \mathbb{Q}, \, \mathbb{C}, \, \text{words, multisets} \\ \star \vdots \times, \, +, \, \text{concatenation, multiset union} \end{split}$$

We require some properties: $a \star b = b \star a$ (commutativity) $a \star (b \star c) = (a \star b) \star c$ (associativity)

 $I \star a = a$, for all a

(identity, optional)

SDSU

San Diego State University

San Diego State University

Semigroups

Let *S* be a set of "numbers", and \star a binary operation on *S*.

$$\label{eq:main_states} \begin{split} \mathbb{N} &= \{1,2,3,\ldots\}, \, \mathbb{N}_0 = \{0,1,2,\ldots\}, \, \mathbb{Q}, \, \mathbb{C}, \, \text{words, multisets} \\ \star \vdots \, \times, \, +, \, \text{concatenation, multiset union} \end{split}$$

We require some properties:

 $a \star b = b \star a$ (commutativity) $a \star (b \star c) = (a \star b) \star c$ (associativity)

 $I \star a = a$, for all a

(identity, optional)

Semigroups

Let *S* be a set of "numbers", and \star a binary operation on *S*.

$$\label{eq:main_states} \begin{split} \mathbb{N} &= \{1,2,3,\ldots\}, \, \mathbb{N}_0 = \{0,1,2,\ldots\}, \, \mathbb{Q}, \, \mathbb{C}, \, \text{words, multisets} \\ \star \vdots \, \times, \, +, \, \text{concatenation, multiset union} \end{split}$$

We require some properties:

 $a \star b = b \star a$ (commutativity) $a \star (b \star c) = (a \star b) \star c$ (associativity)

 $l \star a = a$, for all a (identity, optional)

SDSU

San Diego State University

Divisibility

Let (S, \star) be a semigroup, with $a, c \in S$. We say that *a* divides *c*, writing a|c, to mean: There exists $b \in S$ with $a \star b = c$.

Ex1: (\mathbb{N}, \times) , does 3|6? 6|3? 3|5? Ex2: $(\mathbb{N}_0, +)$, does 3|5? 6|3?

If there is an identity *I*, and x|I, we call x a unit. The good stuff happens with non-units!

If everything is a unit, this is called a group.

San Diego State University

・ロット (雪) (日) (日) (日)

Divisibility

Let (S, \star) be a semigroup, with $a, c \in S$. We say that *a* divides *c*, writing a|c, to mean: There exists $b \in S$ with $a \star b = c$.

Ex1: (\mathbb{N}, \times) , does 3|6? 6|3? 3|5? Ex2: $(\mathbb{N}_0, +)$, does 3|5? 6|3?

If there is an identity *I*, and x|I, we call x a unit. The good stuff happens with non-units!

If everything is a unit, this is called a group.

San Diego State University

Divisibility

Let (S, \star) be a semigroup, with $a, c \in S$. We say that *a* divides *c*, writing a|c, to mean: There exists $b \in S$ with $a \star b = c$.

Ex1: (\mathbb{N}, \times) , does 3|6? 6|3? 3|5? Ex2: $(\mathbb{N}_0, +)$, does 3|5? 6|3?

If there is an identity *I*, and x|I, we call x a unit. The good stuff happens with non-units!

If everything is a unit, this is called a group.

イロト イポト イヨト イヨト 三日

Divisibility

Let (S, \star) be a semigroup, with $a, c \in S$. We say that *a* divides *c*, writing a|c, to mean: There exists $b \in S$ with $a \star b = c$.

Ex1: (\mathbb{N}, \times) , does 3|6? 6|3? 3|5? Ex2: $(\mathbb{N}_0, +)$, does 3|5? 6|3?

If there is an identity *I*, and x|I, we call *x* a unit. The good stuff happens with non-units!

If everything is a unit, this is called a group.

San Diego State University

Divisibility

Let (S, \star) be a semigroup, with $a, c \in S$. We say that *a* divides *c*, writing a|c, to mean: There exists $b \in S$ with $a \star b = c$.

Ex1: (\mathbb{N}, \times) , does 3|6? 6|3? 3|5? Ex2: $(\mathbb{N}_0, +)$, does 3|5? 6|3?

If there is an identity *I*, and x|I, we call *x* a unit. The good stuff happens with non-units!

If everything is a unit, this is called a group.

San Diego State University

Irreducibles/Atoms

Let (S, \star) be a semigroup, with $a \in S$ a nonunit $(a \nmid I)$. If there are nonunits b, c with $a = b \star c$, we call a reducible. Otherwise, we call a irreducible, or an atom.

Ex1: (\mathbb{N}, \times) , consider 6, 5, 1. Ex2: $(\mathbb{N}_0, +)$, consider 0, 1, 2.

If every nonunit in S can be factored into atoms in at least one way, we call (S, \star) atomic.

Our main interest is *multiple* factorizations into atoms.

3

・ロト ・ 一 ・ ・ 日 ・ ・ 日 ・

Irreducibles/Atoms

Let (S, \star) be a semigroup, with $a \in S$ a nonunit $(a \nmid I)$. If there are nonunits b, c with $a = b \star c$, we call a reducible. Otherwise, we call a irreducible, or an atom.

Ex1: (\mathbb{N}, \times) , consider 6, 5, 1. Ex2: $(\mathbb{N}_0, +)$, consider 0, 1, 2.

If every nonunit in S can be factored into atoms in at least one way, we call (S, \star) atomic.

Our main interest is *multiple* factorizations into atoms.

Irreducibles/Atoms

Let (S, \star) be a semigroup, with $a \in S$ a nonunit $(a \nmid I)$. If there are nonunits b, c with $a = b \star c$, we call a reducible. Otherwise, we call a irreducible, or an atom.

Ex1: (\mathbb{N}, \times) , consider 6, 5, 1. Ex2: $(\mathbb{N}_0, +)$, consider 0, 1, 2.

Irreducibles/Atoms

Let (S, \star) be a semigroup, with $a \in S$ a nonunit $(a \nmid I)$. If there are nonunits b, c with $a = b \star c$, we call a reducible. Otherwise, we call a irreducible, or an atom.

Ex1: (\mathbb{N}, \times) , consider 6, 5, 1. Ex2: $(\mathbb{N}_0, +)$, consider 0, 1, 2.

If every nonunit in S can be factored into atoms in at least one way, we call (S, \star) atomic.

Our main interest is multiple factorizations into atoms.

Irreducibles/Atoms

Let (S, \star) be a semigroup, with $a \in S$ a nonunit $(a \nmid I)$. If there are nonunits b, c with $a = b \star c$, we call a reducible. Otherwise, we call a irreducible, or an atom.

Ex1: (\mathbb{N}, \times) , consider 6, 5, 1. Ex2: $(\mathbb{N}_0, +)$, consider 0, 1, 2.

If every nonunit in S can be factored into atoms in at least one way, we call (S, \star) atomic.

Our main interest is *multiple* factorizations into atoms.

Ex1: (\mathbb{N}, \times) , factorization is unique. FTA

Ex2: (S, \times) , for $S = \{1\} \cup 2\mathbb{N} = \{1, 2, 4, 6, 8, \ldots\}$.

Atoms: 2(2k + 1), for $k \in \mathbb{N}_0$.

 $60 = (2 \cdot 3) \times (2 \cdot 5) = (2) \times (2 \cdot 15)$

Not unique factorization! Half-factorial (same length).

Ex1: (\mathbb{N}, \times) , factorization is unique. FTA

Ex2:
$$(S, \times)$$
, for $S = \{1\} \cup 2\mathbb{N} = \{1, 2, 4, 6, 8, \ldots\}$.

Atoms: 2(2k + 1), for $k \in \mathbb{N}_0$.

$$60 = (2 \cdot 3) \times (2 \cdot 5) = (2) \times (2 \cdot 15)$$

Not unique factorization! Half-factorial (same length).

Ex1: (\mathbb{N}, \times) , factorization is unique. FTA

Ex2:
$$(S, \times)$$
, for $S = \{1\} \cup 2\mathbb{N} = \{1, 2, 4, 6, 8, \ldots\}$.

Atoms: 2(2k + 1), for $k \in \mathbb{N}_0$.

 $60 = (2 \cdot 3) \times (2 \cdot 5) = (2) \times (2 \cdot 15)$

Not unique factorization! Half-factorial (same length).

Ex1: (\mathbb{N}, \times) , factorization is unique. FTA

Ex2:
$$(S, \times)$$
, for $S = \{1\} \cup 2\mathbb{N} = \{1, 2, 4, 6, 8, \ldots\}$.

Atoms: 2(2k + 1), for $k \in \mathbb{N}_0$.

$$60 = (2 \cdot 3) \times (2 \cdot 5) = (2) \times (2 \cdot 15)$$

Not unique factorization! Half-factorial (same length).

Ex1: (\mathbb{N}, \times) , factorization is unique. FTA

Ex2:
$$(S, \times)$$
, for $S = \{1\} \cup 2\mathbb{N} = \{1, 2, 4, 6, 8, \ldots\}$.

Atoms: 2(2k + 1), for $k \in \mathbb{N}_0$.

$$60 = (2 \cdot 3) \times (2 \cdot 5) = (2) \times (2 \cdot 15)$$

Not unique factorization! Half-factorial (same length).

Let
$$a, b \in \mathbb{N}$$
 with $a \leq b$ and $a^2 \equiv a \pmod{b}$.
 $S = \{1\} \cup \{n \in \mathbb{N} : n \equiv a \pmod{b}\}$. Write $M_{a,b}$.

Operation ×, identity 1, atoms?

Ex0: $M_{2,2} = \{1, 2, 4, 6, 8, ...\}$ Ex1: $M_{1,4}$ has $441 = 9 \times 49 = 21 \times 21$. "Hilbert monoid" Ex2: $M_{4,6}$ has $154 \times 154 \times 154 = 1732 \times 2662$ "Meyerson monoid"

> San Diego State University

SD9

Let
$$a, b \in \mathbb{N}$$
 with $a \leq b$ and $a^2 \equiv a \pmod{b}$.
 $\mathcal{S} = \{1\} \cup \{n \in \mathbb{N} : n \equiv a \pmod{b}\}$. Write $M_{a,b}$.

Operation ×, identity 1, atoms?

Ex0: $M_{2,2} = \{1, 2, 4, 6, 8, \ldots\}$

Ex1: $M_{1,4}$ has $441 = 9 \times 49 = 21 \times 21$. "Hilbert monoid" Ex2: $M_{4,6}$ has $154 \times 154 \times 154 = 1732 \times 2662$ "Meyerson monoid"

> San Diego State University

SD9

Let
$$a, b \in \mathbb{N}$$
 with $a \leq b$ and $a^2 \equiv a \pmod{b}$.
 $\mathcal{S} = \{1\} \cup \{n \in \mathbb{N} : n \equiv a \pmod{b}\}$. Write $M_{a,b}$.

Operation \times , identity 1, atoms?

Ex0: $M_{2,2} = \{1, 2, 4, 6, 8, ...\}$ Ex1: $M_{1,4}$ has $441 = 9 \times 49 = 21 \times 21$. "Hilbert monoid" Ex2: $M_{4,6}$ has $154 \times 154 \times 154 = 1732 \times 2662$ "Meyerson monoid"

Let
$$a, b \in \mathbb{N}$$
 with $a \leq b$ and $a^2 \equiv a \pmod{b}$.
 $\mathcal{S} = \{1\} \cup \{n \in \mathbb{N} : n \equiv a \pmod{b}\}$. Write $M_{a,b}$.

Operation \times , identity 1, atoms?

Ex0: $M_{2,2} = \{1, 2, 4, 6, 8, ...\}$ Ex1: $M_{1,4}$ has $441 = 9 \times 49 = 21 \times 21$. "Hilbert monoid" Ex2: $M_{4,6}$ has $154 \times 154 \times 154 = 1732 \times 2662$ "Meyerson monoid"

Squarefree $d \in \mathbb{Z}$, take $S = \{a + b\sqrt{d} : a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$.

Operation ×, identity $1 = 1 + 0\sqrt{d}$, atoms?

Ex: d = -5, $S = \{a + b\sqrt{-5} : a, b \in \mathbb{Z}\},\ 6 = 2 \times 3 = (1 + \sqrt{-5}) \times (1 - \sqrt{-5})$

Each d gives a class group (hard to compute) \mathbb{Z}_2

Factorization here is the same as in a Block Monoid over that class group

San Diego State University

Squarefree $d \in \mathbb{Z}$, take $S = \{a + b\sqrt{d} : a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$.

Operation ×, identity $1 = 1 + 0\sqrt{d}$, atoms?

Ex:
$$d = -5$$
, $S = \{a + b\sqrt{-5} : a, b \in \mathbb{Z}\}, 6 = 2 \times 3 = (1 + \sqrt{-5}) \times (1 - \sqrt{-5})$

Each d gives a class group (hard to compute) \mathbb{Z}_2

Factorization here is the same as in a Block Monoid over that class group SDSU

> San Diego State University

3

・ ロ ト ・ 何 ト ・ ヨ ト ・ ヨ ト

Squarefree $d \in \mathbb{Z}$, take $S = \{a + b\sqrt{d} : a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$.

Operation ×, identity $1 = 1 + 0\sqrt{d}$, atoms?

Ex:
$$d = -5$$
, $S = \{a + b\sqrt{-5} : a, b \in \mathbb{Z}\}, 6 = 2 \times 3 = (1 + \sqrt{-5}) \times (1 - \sqrt{-5})$

Each *d* gives a class group (hard to compute) \mathbb{Z}_2

Factorization here is the same as in a Block Monoid over that class group

> San Diego State University

3

A B > A B > A B >

Squarefree $d \in \mathbb{Z}$, take $S = \{a + b\sqrt{d} : a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$.

Operation ×, identity $1 = 1 + 0\sqrt{d}$, atoms?

Ex:
$$d = -5$$
, $S = \{a + b\sqrt{-5} : a, b \in \mathbb{Z}\}, 6 = 2 \times 3 = (1 + \sqrt{-5}) \times (1 - \sqrt{-5})$

Each *d* gives a class group (hard to compute) \mathbb{Z}_2

Factorization here is the same as in a Block Monoid over that class group

San Diego State University

Block Monoids

Let G be an abelian group with operation +.

Ex1: $G = \mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$

Ex2: $G = \mathbb{Z}_2 \times \mathbb{Z}_{10} = \{(a, b) : a \in \mathbb{Z}_2, b \in \mathbb{Z}_{10}\}$ Ex3: $G = \mathbb{Z}$

Block is multiset from *G* which sums to zero. "sequence" Ex1: $G = \mathbb{Z}_5$ 2⁵, 2¹⁰, 3⁵, 2¹3¹, 2³4¹, 2⁵3⁵ = (2⁵)¹(3⁵)¹ = (2¹3¹)⁵

Operation multiset union (concat), identity empty set

 $G_0 \subseteq G$, block monoid (G_0, \cup) is $\mathcal{B}(G, G_0)$. Often $G_0 = G$, block monoid is $\mathcal{B}(G)$.

San Diego State University

Block Monoids

Let *G* be an abelian group with operation +. Ex1: $G = \mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$ Ex2: $G = \mathbb{Z}_2 \times \mathbb{Z}_{10} = \{(a, b) : a \in \mathbb{Z}_2, b \in \mathbb{Z}_{10}\}$ Ex3: $G = \mathbb{Z}$

Block is multiset from *G* which sums to zero. "sequence" Ex1: $G = \mathbb{Z}_5$ 2⁵, 2¹⁰, 3⁵, 2¹3¹, 2³4¹, 2⁵3⁵ = (2⁵)¹(3⁵)¹ = (2¹3¹)⁵

Operation multiset union (concat), identity empty set

 $G_0 \subseteq G$, block monoid (G_0, \cup) is $\mathcal{B}(G, G_0)$. Often $G_0 = G$, block monoid is $\mathcal{B}(G)$.

San Diego State University

Block Monoids

Let *G* be an abelian group with operation +. Ex1: $G = \mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$ Ex2: $G = \mathbb{Z}_2 \times \mathbb{Z}_{10} = \{(a, b) : a \in \mathbb{Z}_2, b \in \mathbb{Z}_{10}\}$ Ex3: $G = \mathbb{Z}$

Block is multiset from *G* which sums to zero. "sequence" Ex1: $G = \mathbb{Z}_5$ 2⁵, 2¹⁰, 3⁵, 2¹3¹, 2³4¹, 2⁵3⁵ = (2⁵)¹(3⁵)¹ = (2¹3¹)⁵

Operation multiset union (concat), identity empty set

 $G_0 \subseteq G$, block monoid (G_0, \cup) is $\mathcal{B}(G, G_0)$. Often $G_0 = G$, block monoid is $\mathcal{B}(G)$.

San Diego State University

Block Monoids

Let *G* be an abelian group with operation +. Ex1: $G = \mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$ Ex2: $G = \mathbb{Z}_2 \times \mathbb{Z}_{10} = \{(a, b) : a \in \mathbb{Z}_2, b \in \mathbb{Z}_{10}\}$ Ex3: $G = \mathbb{Z}$

Block is multiset from *G* which sums to zero. "sequence" Ex1: $G = \mathbb{Z}_5$ 2⁵, 2¹⁰, 3⁵, 2¹3¹, 2³4¹, 2⁵3⁵ = (2⁵)¹(3⁵)¹ = (2¹3¹)⁵

Operation multiset union (concat), identity empty set

 $G_0 \subseteq G$, block monoid (G_0, \cup) is $\mathcal{B}(G, G_0)$. Often $G_0 = G$, block monoid is $\mathcal{B}(G)$.

San Diego State University

Block Monoids

Let *G* be an abelian group with operation +. Ex1: $G = \mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$ Ex2: $G = \mathbb{Z}_2 \times \mathbb{Z}_{10} = \{(a, b) : a \in \mathbb{Z}_2, b \in \mathbb{Z}_{10}\}$ Ex3: $G = \mathbb{Z}$

Block is multiset from *G* which sums to zero. "sequence" Ex1: $G = \mathbb{Z}_5$ 2⁵, 2¹⁰, 3⁵, 2¹3¹, 2³4¹, 2⁵3⁵ = (2⁵)¹(3⁵)¹ = (2¹3¹)⁵

Operation multiset union (concat), identity empty set

 $G_0 \subseteq G$, block monoid (G_0, \cup) is $\mathcal{B}(G, G_0)$. Often $G_0 = G$, block monoid is $\mathcal{B}(G)$.

San Diego State University

Block Monoids

Let *G* be an abelian group with operation +. Ex1: $G = \mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$ Ex2: $G = \mathbb{Z}_2 \times \mathbb{Z}_{10} = \{(a, b) : a \in \mathbb{Z}_2, b \in \mathbb{Z}_{10}\}$ Ex3: $G = \mathbb{Z}$

Block is multiset from *G* which sums to zero. "sequence" Ex1: $G = \mathbb{Z}_5$ 2⁵, 2¹⁰, 3⁵, 2¹3¹, 2³4¹, 2⁵3⁵ = (2⁵)¹(3⁵)¹ = (2¹3¹)⁵

Operation multiset union (concat), identity empty set

 $G_0 \subseteq G$, block monoid (G_0, \cup) is $\mathcal{B}(G, G_0)$. Often $G_0 = G$, block monoid is $\mathcal{B}(G)$.

San Diego State University

Numerical Semigroups

Choose some naturals $a_1, a_2, ..., a_k$ with gcd 1. $S = \langle a_1, a_2, ..., a_k \rangle = \{ \# a_1 + \# a_2 + \dots + \# a_k : \# \in \mathbb{N}_0 \}$

$$\begin{array}{l} \mathsf{Ex1:} \ \langle 3,5\rangle = \{0,3,5,6,8,9,10,\rightarrow\}\\ \mathsf{Ex2:} \ \langle 3,5,6\rangle = \langle 3,5\rangle\\ \mathsf{Ex3:} \ \langle 4,6,9\rangle = \{4,6,8,9,10,12,13,14,\rightarrow\} \end{array}$$

Operation +, identity 0, atoms are among a_i

In (3,5), we have $18 = 6 \cdot 3 + 0 \cdot 5 = 1 \cdot 3 + 3 \cdot 5$ six atoms, and four atoms

San Diego State University

Numerical Semigroups

Choose some naturals $a_1, a_2, ..., a_k$ with gcd 1. $S = \langle a_1, a_2, ..., a_k \rangle = \{ \# a_1 + \# a_2 + \dots + \# a_k : \# \in \mathbb{N}_0 \}$

Ex1:
$$\langle 3, 5 \rangle = \{0, 3, 5, 6, 8, 9, 10, \rightarrow\}$$

Ex2: $\langle 3, 5, 6 \rangle = \langle 3, 5 \rangle$
Ex3: $\langle 4, 6, 9 \rangle = \{4, 6, 8, 9, 10, 12, 13, 14, \rightarrow\}$

Operation +, identity 0, atoms are among a_i

In (3,5), we have $18 = 6 \cdot 3 + 0 \cdot 5 = 1 \cdot 3 + 3 \cdot 5$ six atoms, and four atoms

San Diego State University

Numerical Semigroups

Choose some naturals $a_1, a_2, ..., a_k$ with gcd 1. $S = \langle a_1, a_2, ..., a_k \rangle = \{ \# a_1 + \# a_2 + \dots + \# a_k : \# \in \mathbb{N}_0 \}$

Ex1:
$$\langle 3, 5 \rangle = \{0, 3, 5, 6, 8, 9, 10, \rightarrow\}$$

Ex2: $\langle 3, 5, 6 \rangle = \langle 3, 5 \rangle$
Ex3: $\langle 4, 6, 9 \rangle = \{4, 6, 8, 9, 10, 12, 13, 14, \rightarrow\}$

Operation +, identity 0, atoms are among a_i

In (3,5), we have $18 = 6 \cdot 3 + 0 \cdot 5 = 1 \cdot 3 + 3 \cdot 5$ six atoms, and four atoms

SDSU San Diego State University

San Diego State University

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つくべ

Numerical Semigroups

Choose some naturals a_1, a_2, \ldots, a_k with gcd 1.

 $S = \langle a_1, a_2, \dots, a_k \rangle = \{ \#a_1 + \#a_2 + \dots + \#a_k : \# \in \mathbb{N}_0 \}$

Ex1:
$$\langle 3, 5 \rangle = \{0, 3, 5, 6, 8, 9, 10, \rightarrow\}$$

Ex2: $\langle 3, 5, 6 \rangle = \langle 3, 5 \rangle$
Ex3: $\langle 4, 6, 9 \rangle = \{4, 6, 8, 9, 10, 12, 13, 14, \rightarrow\}$

Operation +, identity 0, atoms are among a_i

In (3,5), we have $18 = 6 \cdot 3 + 0 \cdot 5 = 1 \cdot 3 + 3 \cdot 5$ six atoms, and four atoms

SDSU San Diego State University

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Numerical Semigroups

Choose some naturals a_1, a_2, \ldots, a_k with gcd 1.

 $S = \langle a_1, a_2, \dots, a_k \rangle = \{ \# a_1 + \# a_2 + \dots + \# a_k : \# \in \mathbb{N}_0 \}$

$$\begin{array}{l} \mathsf{Ex1:}\; \langle {\bf 3},{\bf 5}\rangle = \{0,{\bf 3},{\bf 5},{\bf 6},{\bf 8},{\bf 9},{\bf 10},\rightarrow\}\\ \mathsf{Ex2:}\; \langle {\bf 3},{\bf 5},{\bf 6}\rangle = \langle {\bf 3},{\bf 5}\rangle\\ \mathsf{Ex3:}\; \langle {\bf 4},{\bf 6},{\bf 9}\rangle = \{{\bf 4},{\bf 6},{\bf 8},{\bf 9},{\bf 10},{\bf 12},{\bf 13},{\bf 14},\rightarrow\} \end{array}$$

Operation +, identity 0, atoms are among a_i

In (3,5), we have $18 = 6 \cdot 3 + 0 \cdot 5 = 1 \cdot 3 + 3 \cdot 5$ six atoms, and four atoms

SDSU San Diego State University

Numerical Semigroups

Choose some naturals a_1, a_2, \ldots, a_k with gcd 1.

 $S = \langle a_1, a_2, \dots, a_k \rangle = \{ \#a_1 + \#a_2 + \dots + \#a_k : \# \in \mathbb{N}_0 \}$

$$\begin{array}{l} \mathsf{Ex1:}\; \langle {\bf 3},{\bf 5}\rangle = \{0,{\bf 3},{\bf 5},{\bf 6},{\bf 8},{\bf 9},{\bf 10},\rightarrow\} \\ \mathsf{Ex2:}\; \langle {\bf 3},{\bf 5},{\bf 6}\rangle = \langle {\bf 3},{\bf 5}\rangle \\ \mathsf{Ex3:}\; \langle {\bf 4},{\bf 6},{\bf 9}\rangle = \{{\bf 4},{\bf 6},{\bf 8},{\bf 9},{\bf 10},{\bf 12},{\bf 13},{\bf 14},\rightarrow\} \end{array}$$

Operation +, identity 0, atoms are among a_i

In (3,5), we have $18 = 6 \cdot 3 + 0 \cdot 5 = 1 \cdot 3 + 3 \cdot 5$ six atoms, and four atoms

San Diego State University

Puiseux Monoids

Choose some positive rationals a_1, a_2, \ldots, a_k . $S = \langle a_1, a_2, \ldots, a_k \rangle = \{ \#a_1 + \#a_2 + \cdots + \#a_k : \# \in \mathbb{N}_0 \}$

Operation +, identity 0, atoms are among a_i If finitely many a_i , isomorphic to a numerical semigroup!

Ex1:
$$S = \left\langle \frac{1}{p} : p \text{ prime} \right\rangle$$

Ex2: $S = \left\langle p + \frac{1}{p} : p \text{ prime} \right\rangle$
Ex1: $S = \left\langle \frac{1}{p} : p \text{ prime} \right\rangle$ $1 = 3 \cdot \frac{1}{3} = 5 \cdot \frac{1}{5}.$

Puiseux Monoids

Choose some positive rationals a_1, a_2, \ldots, a_k . $S = \langle a_1, a_2, \ldots, a_k \rangle = \{ \#a_1 + \#a_2 + \cdots + \#a_k : \# \in \mathbb{N}_0 \}$

Operation +, identity 0, atoms are among a_i If finitely many a_i , isomorphic to a numerical semigroup!

Ex1:
$$S = \left\langle \frac{1}{p} : p \text{ prime} \right\rangle$$

Ex2: $S = \left\langle p + \frac{1}{p} : p \text{ prime} \right\rangle$
Ex1: $S = \left\langle \frac{1}{p} : p \text{ prime} \right\rangle$ $1 = 3 \cdot \frac{1}{3} = 5 \cdot \frac{1}{5}.$

University

San Diego State University

Puiseux Monoids

Choose some positive rationals a_1, a_2, \ldots, a_k . $S = \langle a_1, a_2, \ldots, a_k \rangle = \{ \#a_1 + \#a_2 + \cdots + \#a_k : \# \in \mathbb{N}_0 \}$

Operation +, identity 0, atoms are among a_i If finitely many a_i , isomorphic to a numerical semigroup!

Ex1:
$$S = \left\langle \frac{1}{p} : p \text{ prime} \right\rangle$$

Ex2: $S = \left\langle p + \frac{1}{p} : p \text{ prime} \right\rangle$
Ex1: $S = \left\langle \frac{1}{p} : p \text{ prime} \right\rangle$ $1 = 3 \cdot \frac{1}{3} = 5 \cdot \frac{1}{5}$.

San Diego State University

Puiseux Monoids

Choose some positive rationals a_1, a_2, \ldots, a_k . $S = \langle a_1, a_2, \dots, a_k \rangle = \{ \#a_1 + \#a_2 + \dots + \#a_k : \# \in \mathbb{N}_0 \}$

Operation +, identity 0, atoms are among a_i If finitely many a_i , isomorphic to a numerical semigroup!

Ex1:
$$S = \left\langle \frac{1}{p} : p \text{ prime} \right\rangle$$

Ex2: $S = \left\langle p + \frac{1}{p} : p \text{ prime} \right\rangle$
Ex1: $S = \left\langle \frac{1}{p} : p \text{ prime} \right\rangle$ $1 = 3 \cdot \frac{1}{3} = 5 \cdot \frac{1}{5}$.
SDSU
San Diego State
University

Invariants •0000

Invariants

Elasticity (Local)

Atomic semigroup (S, \star), $x \in S$

x has some factorizations into atoms. Each factorization has a length (# of atoms). $\mathcal{L}(x)$ is set of lengths.

$$L(x) = \max \mathcal{L}(x)$$
. $I(x) = \min \mathcal{L}(x)$. elasticity $\rho(x) = \frac{L(x)}{I(x)}$.

Ex1: $S = \langle 3, 5 \rangle$ numerical semigroup. $\mathcal{L}(18) = \{4, 6\}, \rho(18) = \frac{6}{4} = 1.5.$

Ex2: $\mathcal{B}(\mathbb{Z}_5)$ block monoid. $\mathcal{L}(2^53^5) = \{2, 5\}, \rho(2^53^5) = 2.5.$

Ex3: (S, \star) half-factorial. $x \in S$ must have $\rho(x) = 1$. San Diego State University

Elasticity (Local)

Atomic semigroup $(S, \star), x \in S$

x has some factorizations into atoms. Each factorization has a length (# of atoms). $\mathcal{L}(x)$ is set of lengths.

$$L(x) = \max \mathcal{L}(x)$$
. $I(x) = \min \mathcal{L}(x)$. elasticity $\rho(x) = \frac{L(x)}{I(x)}$.

Ex1: $S = \langle 3, 5 \rangle$ numerical semigroup. $\mathcal{L}(18) = \{4, 6\}, \rho(18) = \frac{6}{4} = 1.5.$

Ex2: $\mathcal{B}(\mathbb{Z}_5)$ block monoid. $\mathcal{L}(2^53^5) = \{2, 5\}, \rho(2^53^5) = 2.5.$

Ex3: (S, \star) half-factorial. $x \in S$ must have $\rho(x) = 1$.

San Diego State University

Elasticity (Local)

Atomic semigroup (S, \star), $x \in S$

x has some factorizations into atoms. Each factorization has a length (# of atoms). $\mathcal{L}(x)$ is set of lengths.

$$L(x) = \max \mathcal{L}(x)$$
. $I(x) = \min \mathcal{L}(x)$. elasticity $\rho(x) = \frac{L(x)}{I(x)}$.

Ex1: $S = \langle 3, 5 \rangle$ numerical semigroup. $\mathcal{L}(18) = \{4, 6\}, \rho(18) = \frac{6}{4} = 1.5.$

Ex2: $\mathcal{B}(\mathbb{Z}_5)$ block monoid. $\mathcal{L}(2^53^5) = \{2,5\}, \rho(2^53^5) = 2.5.$

Ex3: (S, *) half-factorial. $x \in S$ must have $\rho(x) = 1$.

Elasticity (Local)

Atomic semigroup (S, \star), $x \in S$

x has some factorizations into atoms. Each factorization has a length (# of atoms). $\mathcal{L}(x)$ is set of lengths.

$$L(x) = \max \mathcal{L}(x)$$
. $I(x) = \min \mathcal{L}(x)$. elasticity $\rho(x) = \frac{L(x)}{I(x)}$.

Ex1: $S = \langle 3, 5 \rangle$ numerical semigroup. $\mathcal{L}(18) = \{4, 6\}, \rho(18) = \frac{6}{4} = 1.5.$

Ex2: $\mathcal{B}(\mathbb{Z}_5)$ block monoid. $\mathcal{L}(2^53^5) = \{2, 5\}, \rho(2^53^5) = 2.5.$

Ex3: (S, \star) half-factorial. $x \in S$ must have $\rho(x) = 1$. San Diego State University

Elasticity (Local)

Atomic semigroup (S, \star), $x \in S$

x has some factorizations into atoms. Each factorization has a length (# of atoms). $\mathcal{L}(x)$ is set of lengths.

$$L(x) = \max \mathcal{L}(x)$$
. $I(x) = \min \mathcal{L}(x)$. elasticity $\rho(x) = \frac{L(x)}{I(x)}$.

Ex1: $S = \langle 3, 5 \rangle$ numerical semigroup. $\mathcal{L}(18) = \{4, 6\}, \rho(18) = \frac{6}{4} = 1.5.$

Ex2: $\mathcal{B}(\mathbb{Z}_5)$ block monoid. $\mathcal{L}(2^53^5) = \{2, 5\}, \rho(2^53^5) = 2.5.$

Ex3: (S, \star) half-factorial. $x \in S$ must have $\rho(x) = 1$. SDSU San Diego State University

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Invariants

Elasticity (Global)

Atomic semigroup (S, \star)

We define the elasticity $\rho(S) = \sup_{x \in S} \rho(x)$

We say the elasticity is accepted if there is some $x \in S$ with $\rho(x) = \rho(S)$.

We say the elasticity is full if every rational $t \in [1, \rho(S))$ has some $x \in S$ with $\rho(x) = t$.

Invariants

Elasticity (Global)

Atomic semigroup (S, \star)

We define the elasticity $\rho(S) = \sup_{x \in S} \rho(x)$

We say the elasticity is accepted if there is some $x \in S$ with $\rho(x) = \rho(S)$.

We say the elasticity is full if every rational $t \in [1, \rho(S))$ has some $x \in S$ with $\rho(x) = t$.

> San Diego State University 《 다 › 《 문 › 《 문 › 《 문 · 온 · 》 옷 (~

SDS

Invariants

Elasticity (Global)

Atomic semigroup (S, \star)

We define the elasticity $\rho(S) = \sup_{x \in S} \rho(x)$

We say the elasticity is accepted if there is some $x \in S$ with $\rho(x) = \rho(S)$.

We say the elasticity is full if every rational $t \in [1, \rho(S))$ has some $x \in S$ with $\rho(x) = t$.

San Diego State University

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Invariants

Delta Sets

Atomic semigroup (S, \star), $x \in S$.

The Delta set $\Delta(x)$ is the set of gaps in $\mathcal{L}(x)$.

Ex1: $S = \langle 3, 5 \rangle$ numerical semigroup. $\mathcal{L}(18) = \{4, 6\}, \Delta(18) = \{2\}.$

Ex2: $\mathcal{B}(\mathbb{Z}_5)$ block monoid. $\mathcal{L}(2^{10}3^{10}) = \{4, 7, 10\}, \Delta(2^{10}3^{10}) = \{3\}.$

The Delta set $\Delta(S) = \bigcup_{x \in S} \Delta(x)$.

San Diego State

University

Invariants

Delta Sets

Atomic semigroup (S, \star), $x \in S$.

The Delta set $\Delta(x)$ is the set of gaps in $\mathcal{L}(x)$.

Ex1: $S = \langle 3, 5 \rangle$ numerical semigroup. $\mathcal{L}(18) = \{4, 6\}, \Delta(18) = \{2\}.$

Ex2: $\mathcal{B}(\mathbb{Z}_5)$ block monoid. $\mathcal{L}(2^{10}3^{10}) = \{4, 7, 10\}, \Delta(2^{10}3^{10}) = \{3\}.$

The Delta set $\Delta(S) = \bigcup_{x \in S} \Delta(x)$.

SDSU

San Diego State University

Invariants

Delta Sets

Atomic semigroup (S, \star), $x \in S$.

The Delta set $\Delta(x)$ is the set of gaps in $\mathcal{L}(x)$.

Ex1: $S = \langle 3, 5 \rangle$ numerical semigroup. $\mathcal{L}(18) = \{4, 6\}, \Delta(18) = \{2\}.$

Ex2: $\mathcal{B}(\mathbb{Z}_5)$ block monoid. $\mathcal{L}(2^{10}3^{10}) = \{4, 7, 10\}, \Delta(2^{10}3^{10}) = \{3\}.$

The Delta set $\Delta(S) = \bigcup_{x \in S} \Delta(x)$.

San Diego State University

Invariants

Delta Sets

Atomic semigroup (S, \star), $x \in S$.

The Delta set $\Delta(x)$ is the set of gaps in $\mathcal{L}(x)$.

Ex1: $S = \langle 3, 5 \rangle$ numerical semigroup. $\mathcal{L}(18) = \{4, 6\}, \Delta(18) = \{2\}.$

Ex2: $\mathcal{B}(\mathbb{Z}_5)$ block monoid. $\mathcal{L}(2^{10}3^{10}) = \{4, 7, 10\}, \Delta(2^{10}3^{10}) = \{3\}.$

The Delta set $\Delta(S) = \bigcup_{x \in S} \Delta(x)$.

San Diego State University

Invariants

SDSU

San Diego State University

æ