ARITHMETIC-PROGRESSION-WEIGHTED SUBSEQUENCE SUMS

DAVID J. GRYNKIEWICZ AND ANDREAS PHILIPP AND VADIM PONOMARENKO

Abstract

Let G be an abelian group, let S be a sequence of terms $s_{1}, s_{2}, \ldots, s_{n} \in G$ not all contained in a coset of a proper subgroup of G, and let W be a sequence of n consecutive integers. Let $$
W \odot S=\left\{w_{1} s_{1}+\ldots+w_{n} s_{n}: w_{i} \text { a term of } W, w_{i} \neq w_{j} \text { for } i \neq j\right\}
$$ which is a particular kind of weighted restricted sumset. We show that $|W \odot S| \geq \min \{|G|-1, n\}$, that $W \odot S=G$ if $n \geq|G|+1$, and also characterize all sequences S of length $|G|$ with $W \odot S \neq G$. This result then allows us to characterize when a linear equation $$
a_{1} x_{1}+\ldots+a_{r} x_{r} \equiv \alpha \quad \bmod n
$$ where $\alpha, a_{1}, \ldots, a_{r} \in \mathbb{Z}$ are given, has a solution $\left(x_{1}, \ldots, x_{r}\right) \in \mathbb{Z}^{r}$ modulo n with all x_{i} distinct modulo n. As a second simple corollary, we also show that there are maximal length minimal zero-sum sequences over a rank 2 finite abelian group $G \cong C_{n_{1}} \oplus C_{n_{2}}$ (where $n_{1} \mid n_{2}$ and $n_{2} \geq 3$) having k distinct terms, for any $k \in\left[3, \min \left\{n_{1}+1, \exp (G)\right\}\right]$. Indeed, apart from a few simple restrictions, any pattern of multiplicities is realizable for such a maximal length minimal zero-sum sequence.

1. Introduction

Let G be an abelian group and let S be a sequence of terms from G. It is a classical problem in additive number theory to study which elements from G can be represented as a sum of some subsequence of S (possibly of predetermined length). To make this formal, we let $\Sigma(S)$ denote the set of all elements from G that are the sum of terms from some non-empty subsequence of S, and we let $\Sigma_{n}(S)$, where $n \geq 0$ is an integer, denote the set of all elements from G that are the sum of terms from some n-term subsequence of S. Throughout this paper, we use the multiplicative standards from [22] [21] [17] for subsequence sum notation, with all formal definitions given in the next section and notation in the introduction kept to a minimum.

The Davenport constant $\mathrm{D}(G)$, which is the minimal length of a sequence from G that guarantees a subsequence with sum zero, i.e., that $0 \in \Sigma(S)$, is perhaps the most famous and well-studied subsequence sum question [47] [22]. Other examples include the Erdős-Ginzburg-Ziv Theorem [14] [22] [39], which states that a sequence S with length $|S| \geq 2|G|-1$ guarantees $0 \in \Sigma_{|G|}(S)$, the now proven Kemnitz Conjecture [45] [22], which states that $0 \in \Sigma_{n}(S)$ for $|S| \geq 4 n-3$ when $G \cong C_{n} \oplus C_{n}$ is a rank 2 finite abelian group, and the Olson constant, which is analogous to the Davenport Constant only for sets instead of sequences [8] [18] [41]. Related to the Olson Constant is the Critical Number, which is the minimal cardinality of a subset A of G needed to guarantee that every element of G can be represented as a sum of distinct elements from A [15], i.e., that $\Sigma(A)=G$. See [27] [12] [40] for a handful of more recent results giving bounds for the number of elements representable as a subsequence sum of S.

All of the above concerns ordinary subsequence sum questions. Since the establishment of Caro's conjectured weighted Erdős-Ginzburg-Ziv Theorem [25], there has been considerable renewed interest to consider various weighted subsequence sum questions [51] [50] [49] [42] [38] [34] [33] [32] [30] [29] [23] [20] [2] [3] [4] [5] [6]. The basic idea is that given a sequence S of terms from an abelian group and a sequence W of integers (or, in the most general form, a sequence of homomorphisms between G and another abelian group $G^{\prime}[52]$), one can instead consider which elements can be represented in the form $w_{1} s_{1}+\ldots+w_{n} s_{n}$ with the w_{i} and s_{i} being the terms of some subsequence from W and S, respectively. In this way, the sequence W is viewed as providing a list of potential weights, and one wishes to know which elements can be represented as a W-weighted subsequence sum rather than an ordinary subsequence sum, which is just the case when all terms in the weight sequence W are equal to 1 . Formally, for a sequence $W=w_{1} \cdot \ldots \cdot w_{n}$ of integers $w_{i} \in \mathbb{Z}$ and an equal length sequence $S=s_{1} \cdot \ldots \cdot s_{n}$ with terms $s_{i} \in G$, we let

$$
W \odot S=\left\{w_{\tau(1)} g_{1}+\ldots+w_{\tau(n)} g_{n}: \tau \text { a permuation of }\{1,2, \ldots, n\}\right\}
$$

With this notation, the weighted Erdős-Ginzburg-Ziv Theorem says that if W is any zero-sum modulo $|G|$ sequence of integers and S is a sequence of terms from G with length $|S| \geq 2|G|-1$, then S has a
$|G|$-term subsequence S^{\prime} with $0 \in W \odot S^{\prime}$. It is still an open conjecture of Bialostocki that the weaker hypothesis $|S|=|G|$ with S zero-sum is enough to guarantee $0 \in W \odot S$ when $|G|$ is even [10] [31].

If $n=|S| \leq|W|$ and all terms of W are distinct (as will be the case in this paper), so that one may associate W with the set $A:=\operatorname{supp}(W)=\left\{w_{i}: w_{i}\right.$ a term of $\left.W\right\}$, then

$$
W \odot S=\left\{w_{1} s_{1}+\ldots+w_{n} s_{n}: w_{i} \in A, w_{i} \neq w_{j} \text { for } i \neq j\right\}
$$

When all $s_{i}=1$, then this is precisely the restricted sumset

$$
A \hat{+} \ldots \hat{+} A=\left\{a_{1}+\ldots+a_{n}: a_{i} \in A, a_{i} \neq a_{j} \text { for } i \neq j\right\}
$$

which has been extensively studied; see for instance [43] [35] [13] [7] [37] [44]. Thus, for such W, studying $W \odot S$ is the same as studying a particular weighted restricted sumset question. In the extreme case when $|A|=n$, there is only one possible element from the restricted sumset $A \hat{+} \ldots \hat{+} A$. However, once the s_{i} are allowed to take on more general values, the study of such weighted restricted sumsets $W \odot S$ quickly becomes more complicated.

Much of the initial attention regarding weighted subsequence sum problems remained on analogs of the Davenport Constant and Erdős-Ginzburg-Ziv Theorem, often providing results valid when both sequences W and S are arbitrary, the idea being that restricting such results to the case when W is the constant 1 sequence gives an extension of more classical subsequence sum questions. The weighted Erdős-GinzburgZiv Theorem mentioned above gives one such example. However, there is a very natural non-constant weight sequence that has not yet been much studied: namely, one can consider W-weighted subsequence sums of S when W is an arithmetic progression of integers. The focus of this paper is to investigate such weighted subsequence sums. In particular, since the terms of W are generally all distinct, this is also a particular type of weighted restricted sumset question as discussed above.

Indeed, the main goal is to show that $|G|+1$ is the minimal length of a sequence S from a finite abelian group G needed to guarantee that every element of G is representable as a W-weighted subsequence sum, where W is an arithmetic progression of $|S|$ consecutive integers (provided the terms of S do not all come from a coset of a proper subgroup, which is easily seen to be a necessary condition for $W \odot S=G$ to hold). Moreover, we also characterize the structure of those sequences of length one less which do not realize every element of G as a W-weighted subsequence sum and give a lower bound for $|W \odot S|$ in terms of $|S|$, which, at least in rather limited special cases, is tight (simply consider $S=0^{|S|-1} g$ with g a generator of G). In the notation of the following section, our main result is as follows. It is worth noting that Theorem 1.1 contains, as a very special case, the main result from [31], which was devoted to proving the aforementioned conjecture of Bialostocki in the case when the weight sequence is an arithmetic progression of even difference.
Theorem 1.1. Let G be a finite abelian group, let S be a sequence of terms from G not all contained in a coset of a proper subgroup, and let W be a sequence of $|S|$ consecutive integers.

- $|W \odot S| \geq \min \{|G|-1,|S|\}$.
- If $|S| \geq|\bar{G}|+1$, then $W \odot S=G$. Indeed, $W^{\prime} \odot S^{\prime}=G$ for some subsequence $S^{\prime} \mid S$ with $\left|S^{\prime}\right|=|G|$, where $W^{\prime}=(0)(1) \cdot \ldots \cdot(|G|-1) \in \mathcal{F}(\mathbb{Z})$.
- If $|S|=|G|$ and $W \odot S \neq G$, then $|G| \geq 3$ and either
(i) $G \cong C_{2} \oplus C_{2},|\operatorname{supp}(S)|=|S|=|\bar{G}|=4$ and $W \odot S=G \backslash\{0\}$, or
(ii) G is cyclic, $\left(-g^{\prime}+S\right)=0^{|G|-2}(g)(-g)$, for some $g, g^{\prime} \in G$ with $\operatorname{ord}(g)=|G|$, and $W \odot S=$ $G \backslash\left\{\frac{1}{2}(|G|-1)|G| g^{\prime}\right\}$. In particular, $W \odot S$ contains every generator $h \in G$.
In the final sections, we give simple corollaries of the above theorem first regarding whether a linear equation has a solution modulo n with all members of the solution distinct modulo n, and then concerning the pattern of multiplicities possible in a maximal length minimal zero-sum sequence over a rank 2 finite abelian group, thus providing more refined information than immediately available from the recent characterization of such sequences [16] [19] [48] [46] [9].

2. Preliminaries

Our notation and terminology are consistent with [22] [21] [17]. We briefly gather some key notions and fix the notation concerning sequences and sumsets over finite abelian groups. Let \mathbb{N} denote the set of positive integers and let $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. For $a, b \in \mathbb{Z}$, we set $[a, b]=\{x \in \mathbb{Z}: a \leq x \leq b\}$. Throughout, all abelian groups will be written additively. We let C_{n} denote a cyclic group with n elements.

Let G be a finite abelian group, $H \leq G$ a subgroup and $A \subseteq G$ a subset. We use $\phi_{H}: G \rightarrow G / H$ to denote the canonical homomorphism and let $\langle A\rangle_{*}=\langle A-A\rangle$ denote the minimal subgroup $\langle A\rangle_{*}$ for which A is contained in a $\langle A\rangle_{*}$-coset. Note that $\langle A\rangle_{*}=\langle A-a\rangle$ for any $a \in A$.

For subsets $A, B \subseteq G$, we set

$$
A+B=\{a+b: a \in A, b \in B\}
$$

for their sumset and, if $B=\{b\}$, write $A+B=A+b=\{a+b: a \in A\}$. We write

$$
\mathrm{H}(A)=\{g \in G: g+A=A\}
$$

for the stabilizer of A, which is in fact a subgroup of G for finite A. If A is a union of H-cosets, for some subgroup $H \leq G$, then we say A is H-periodic, which is equivalent to saying $H \leq \mathrm{H}(A)$, i.e, that $A+H=A$. We call A periodic if $\mathrm{H}(A)$ contains a nontrivial subgroup, and otherwise A is aperiodic. An element $x \in(A+H) \backslash A$ is referred to as an H-hole of A.

We use $\mathcal{F}(G)$ to denote all finite length (unordered) sequences with terms from G, refer to the elements of $\mathcal{F}(G)$ simply as sequences, and write all such sequences multiplicatively, so that a sequence $S \in \mathcal{F}(G)$ is written in the form

$$
S=g_{1} \cdot \ldots \cdot g_{l}=\prod_{g \in G} g^{\mathrm{v}_{g}(S)}, \quad \text { with } \vee_{g}(S) \in \mathbb{N}_{0} \quad \text { for all } g \in G
$$

We call $\mathrm{v}_{g}(S)$ the multiplicity of g in S and say that S contains g if $\mathrm{v}_{g}(S)>0$. The notation $S_{1} \mid S$ indicates that S_{1} is a subsequence of S, that is, $\mathrm{v}_{g}\left(S_{1}\right) \leq \mathrm{v}_{g}(S)$ for all $g \in G$. If a sequence $S \in \mathcal{F}(G)$ is written in the form $S=g_{1} \cdot \ldots \cdot g_{l}$, we tacitly assume that $l \in \mathbb{N}_{0}$ and $g_{1}, \ldots, g_{l} \in G$. A sequence of finite, nonempty subsets of G is called a setpartition.

For a sequence

$$
S=g_{1} \cdot \ldots \cdot g_{l}=\prod_{g \in G} g^{\mathrm{v}_{g}(S)} \in \mathcal{F}(G)
$$

and $n \in \mathbb{N}$, we call

$$
\begin{aligned}
|S|=l=\sum_{g \in G} \mathrm{v}_{g}(S) \in \mathbb{N}_{0} & \text { the length of } S, \\
\sigma(S)=\sum_{i=1}^{l} g_{i}=\sum_{g \in G} \mathrm{v}_{g}(S) g \in G & \text { the sum of } S, \\
\Sigma_{n}(S)=\left\{\sum_{i \in I} g_{i}: I \subseteq[1, l],|I|=n\right\} \subseteq G & \text { the set of } n \text {-term subsequence sums of } S, \\
\operatorname{supp}(S)=\left\{g_{1}, \ldots, g_{l}\right\}=\left\{g \in G: \mathrm{v}_{g}(S)>0\right\} & \text { the support of } S, \text { and } \\
\mathrm{h}(S)=\max \left\{\mathrm{v}_{g}(S): g \in G\right\} & \text { the maximum multiplicity of a term of } S .
\end{aligned}
$$

For $g^{\prime} \in G$, we write

$$
\left(g^{\prime}+S\right)=\left(g^{\prime}+g_{1}\right) \cdot \ldots \cdot\left(g^{\prime}+g_{l}\right)=\prod_{g \in G}\left(g^{\prime}+g\right)^{\mathrm{v}_{g}(S)}=\prod_{g \in G} g^{\mathrm{v}_{g-g^{\prime}}(S)} \in \mathcal{F}(G)
$$

The sequence S is called

- a zero-sum sequence if $\sigma(S)=0$,
- zero-sum free if there is no non-trivial zero-sum subsequence, and
- a minimal zero-sum sequence if $|S|>0, \sigma(S)=0$, and every subsequence $S^{\prime} \mid S$ with $0<\left|S^{\prime}\right|<|S|$ is zero-sum free.
The Davenport constant $\mathrm{D}(G)$ of G is then the smallest integer $l \in \mathbb{N}$ such that every sequence S over G of length $|S| \geq l$ has a non-trivial zero-sum subsequence (equivalently, S is not zero-sum free).

The following is one of the foundational results of set addition. Note that multiplying both sides of the inequality from Kneser's Theorem [36] [39] [22] by $|H|$ yields

$$
\left|\sum_{i=1}^{n} A_{i}\right| \geq \sum_{i=1}^{n}\left|A_{i}+H\right|-(n-1)|H|=\sum_{i=1}^{n}\left|A_{i}\right|-(n-1)|H|+\rho,
$$

where $\rho:=\sum_{i=1}^{n}\left|\left(A_{i}+H\right) \backslash A_{i}\right|$ is the number of H-holes in the sets A_{i}. Additionally, if $\sum_{i=1}^{n} A_{i}$ is aperiodic, then Kneser's Theorem implies

$$
\left|\sum_{i=1}^{n} A_{i}\right| \geq \sum_{i=1}^{n}\left|A_{i}\right|-n+1
$$

Theorem 2.1 (Kneser's Theorem). Let G be an abelian group, let $A_{1}, \ldots, A_{n} \subseteq G$ be finite, nonempty subsets, and let $H=\mathrm{H}\left(\sum_{i=1}^{n} A_{i}\right)$. Then

$$
\left|\sum_{i=1}^{n} \phi_{H}\left(A_{i}\right)\right| \geq \sum_{i=1}^{n}\left|\phi_{H}(A)\right|-n+1
$$

We will also need the following simple consequence of the Pigeonhole Principle [39].
Lemma 2.2. Let G be a finite abelian group and let $A, B \subseteq G$ be nonempty subsets. If $|A|+|B|-1 \geq|G|$, then $A+B=G$.

3. Proof of Theorem 1.1

For two sequences $W \in \mathcal{F}(\mathbb{Z})$ and $S \in \mathcal{F}(G)$, where G is an abelian group, set

$$
W \odot S=\left\{w_{1} g_{1}+\ldots+w_{r} g_{r}: w_{1} \cdot \ldots \cdot w_{r}\left|W, g_{1} \cdot \ldots \cdot g_{r}\right| S \text { and } r=\min \{|W|,|S|\}\right\}
$$

Note that

$$
W \odot S=\left(W 0^{|S|-r}\right) \odot\left(S 0^{|W|-r}\right) \quad \text { with } \quad\left|W 0^{|S|-r}\right|=\left|S 0^{|W|-r}\right|=\max \{|W|,|S|\}
$$

where $r=\min \{|W|,|S|\}$. Also, if $|W| \geq|S|$, then

$$
\begin{equation*}
(W+w) \odot S=W \odot S+w \sigma(S) \quad \text { for all } w \in \mathbb{Z} \tag{3.1}
\end{equation*}
$$

while if $|S| \geq|W|$, then

$$
\begin{equation*}
W \odot(S+g)=W \odot S+\sigma(W) g \quad \text { for all } g \in G \tag{3.2}
\end{equation*}
$$

In particular, if $|W|=|S|$, then $G=W \odot S$ if and only if $G=(W+w) \odot(S+g)$ for all $w \in \mathbb{Z}$ and $g \in G$.
We begin with a lemma dealing with the case $|S|=3$ for Theorem 1.1.
Lemma 3.1. Let G be an abelian group, let $W=(0)(1) \cdot \ldots \cdot(|W|-1) \in \mathcal{F}(\mathbb{Z})$ be a sequence of consecutive integers, let $x, y \in G \backslash\{0\}$ be nonzero elements with $\langle x, y\rangle=G$, and set $S=x y \in \mathcal{F}(G)$.
(i) If $|W| \geq 3$, then $\langle W \odot S\rangle_{*}=G$.
(ii) If $x=y$, then $|W \odot S| \geq \min \{|G|, 2|W|-3\}$.
(iii) If $x \neq y$, then $|W \odot S| \geq \min \{|G|-1,2|W|-2\}$.

Proof. If $|W| \leq 2$, then the lemma is easily verified. So we may assume $|W| \geq 3$. In this case, $x, 2 x, 2 x+$ $y \in W \odot S$, so that

$$
\langle W \odot S\rangle_{*} \supseteq\langle x, 2 x, 2 x+y\rangle_{*}=\langle x, x+y\rangle=\langle x, y\rangle=G,
$$

whence $\langle W \odot S\rangle_{*}=G$ follows, yielding (i). If $x=y$, then

$$
W \odot S=\{x+0,2 x+0, \ldots,(|W|-1) x+0,(|W|-1) x+x, \ldots,(|W|-1) x+(|W|-2) x\}
$$

from which (ii) is readily deduced. Therefore it remains to prove the lower bound for $|W \odot S|$ when $x \neq y$.

Without loss of generality, assume $\operatorname{ord}(x) \geq \operatorname{ord}(y)$. Let $r=|W| \geq 3$ and set $H=\langle x\rangle$. Since $G / H=\left\langle\phi_{H}(y)\right\rangle$, it follows that

$$
|H|=\operatorname{ord}(x) \geq \operatorname{ord}(y) \geq \operatorname{ord}\left(\phi_{H}(y)\right)=|G / H|
$$

Now we have

$$
W \odot S=\left\{\begin{array}{lllll}
\square & 0+y & 0+2 y & \cdots & 0+(r-1) y \tag{3.3}\\
x & \square & x+2 y & \cdots & x+(r-1) y \\
2 x & 2 x+y & \square & \cdots & 2 x+(r-1) y \\
3 x & 3 x+y & 3 x+2 y & \cdots & 3 x+(r-1) y \\
\vdots & \vdots & \vdots & & \vdots \\
(r-1) x & (r-1) x+y & (r-1) x+2 y & \cdots & \square
\end{array}\right\} .
$$

Note that each column consists of elements from the same H-coset. We divide the remainder of the proof into several cases based off the number of H-cosets in G.

Case 1: $|G / H| \geq 3$. If $r \leq|G / H| \leq|H|=\operatorname{ord}(x)$, then all columns in (3.3) correspond to distinct H cosets filled with distinct elements, whence $|W \odot S|=r(r-1) \geq 2 r-2$. If $|G / H|+1 \leq r \leq|H|=\operatorname{ord}(x)$, then the first $|G / H|$ columns in (3.3) are distinct and each contain at least $r-1$ elements, whence $|W \odot S| \geq(r-1)|G / H| \geq 3 r-3 \geq 2 r-2$. Finally, it remains to consider the case $r>|H|=\operatorname{ord}(x)$, for which $\operatorname{ord}(x)=|H|$ must be finite. Let $r=|H|+s$ with $s \geq 1$. In this case, we see that the first $|G / H|$ columns cover all distinct H-cosets and are each missing at most one element, while the first s of these columns are missing no elements. In consequence, $|W \odot S| \geq(|H|-1)|G / H|+\min \{|G / H|, s\}$. If $s \geq|G / H|$, then $|W \odot S| \geq|G|$ follows, as desired. Otherwise, when $1 \leq s \leq|G / H|-1 \leq|H|-1$, we can recall that $r=|H|+s$ and $|G / H| \geq 3$ and thus conclude that

$$
\begin{aligned}
|W \odot S| & \geq(|H|-1)|G / H|+s \geq 3|H|-3+s=r-2+|H|+(|H|-1) \\
& \geq r-2+|H|+s=2 r-2
\end{aligned}
$$

also as desired.

Case 2: $|G / H|=2$. In this case, since $r \geq 3>|G / H|$, we see that the first two columns of (3.3) cover both distinct H-cosets. If $r \leq \operatorname{ord}(x)=|H|$, then there are $r-1$ elements in both these columns, whence $|W \odot S| \geq 2(r-1)$, as desired. On the other hand, if $r \geq \operatorname{ord}(x)+1$, then the first column is missing no element while the second column is missing at most one, whence $|W \odot S| \geq|G|-1$, also as desired.
Case 3: $|G / H|=1$. In this case, x generates G, and thus $y=\alpha x$ for some $\alpha \in \mathbb{Z}$ with $\alpha \in\left(-\frac{n}{2},\left\lfloor\frac{n+1}{2}\right\rfloor\right\rfloor$, where $n:=\operatorname{ord}(x)=|G|$. It suffices to prove (iii) when

$$
|W|=r \leq\left\lceil\frac{n+1}{2}\right\rceil
$$

as for larger $|W|$, one can simply apply (iii) using $r=\left\lceil\frac{n+1}{2}\right\rceil$ and note that $2 r-2 \geq n-1=|G|-1$ holds in this case. Thus, in view of $r \geq 3$, it follows that $n=|G| \geq 4$. To simplify notation, we may assume $x=1$ generates the cyclic group $G \cong C_{n}$.

Now, from (3.3), we know that $\{1,2, \ldots,(r-1)\} \subseteq W \odot S$. We also have

$$
\begin{equation*}
\{0+\alpha, 2+\alpha, 3+\alpha, \ldots,(r-1)+\alpha\} \subseteq W \odot S \tag{3.4}
\end{equation*}
$$

Note that $r-1+\alpha \leq\left\lceil\frac{n+1}{2}\right\rceil-1+\left\lfloor\frac{n+1}{2}\right\rfloor=n$. Thus, if $\alpha \geq r$, then the elements from (3.4) will be disjoint from $\{1,2, \ldots,(r-1)\} \subseteq W \odot S$, whence $|W \odot S| \geq 2(r-1)$, as desired. Likewise, if $\alpha \leq-(r-1)$, then we have $n+\alpha \geq \frac{n+1}{2}>r-1$, and the elements in (3.4) will again be disjoint from $\{1,2, \ldots,(r-1)\} \subseteq W \odot S$, yielding the desired bound $|W \odot S| \geq 2(r-1)$ once more. Thus, in both cases, (iii) holds, and we may now assume

$$
\begin{equation*}
-r+2 \leq \alpha \leq r-1 \tag{3.5}
\end{equation*}
$$

Suppose $\alpha \geq 0$. Then, in view of $y \neq x, y \neq 0$ and (3.5), we have $\alpha \in[2, r-1]$. The sums $0+1,0+2, \ldots, 0+r-1 \in W \odot S$ show that $[1, r-1] \subseteq W \odot S$. The sums $j \cdot \alpha+(r-\alpha+i)$, for $j \in[1, r-1]$ and $i \in[0, \alpha-1] \backslash\{j-r+\alpha\}$, show that each interval $[r+(j-1) \alpha, r+j \alpha-1]$ is contained in $W \odot S$ apart from possibly the element $j \alpha+(r-\alpha+i)=j \alpha+j$ when $i=j-r+\alpha \in[0, \alpha-1]$, for $j \in[1, r-1]$. In particular, in order for an element to be missing from the interval $[r+(j-1) \alpha, r+j \alpha-1]$ in $W \odot S$, we must have $j-r+\alpha \geq 0$, i.e., $j \geq r-\alpha$. As a result, we conclude from all of the above that

$$
[1,(r-\alpha+1) \alpha+r-\alpha] \backslash\{(r-\alpha) \alpha+(r-\alpha)\} \subseteq W \odot S
$$

from which, in view of $\alpha \in[2, r-1]$ and $r \geq 3$, it is easily deduced that

$$
\begin{align*}
|W \odot S| & \geq \min \{|G|-1,(r-\alpha+1) \alpha+r-\alpha-1\} \tag{3.6}\\
& \geq \min \{|G|-1,3 r-5,2 r-2\} \geq \min \{|G|-1, \quad 2 r-2\} \tag{3.7}
\end{align*}
$$

as desired. So we now assume $\alpha<0$.
Since $\alpha<0$, we infer from (3.5) that $\alpha \in[-r+2,-1]$. Furthermore, (3.5) also gives

$$
\begin{equation*}
r \geq|\alpha|+2 \tag{3.8}
\end{equation*}
$$

If $\alpha=-1$, then we clearly have

$$
[-(r-1),-1] \cup[1, r-1]=([1, r-1] \odot(-1)+0 \cdot 1) \cup(0 \cdot(-1)+[1, r-1] \odot 1) \subseteq W \odot S
$$

from which (iii) easily follows. If $\alpha=-2$, then $[1, r-1]=0 \cdot(-2)+[1, r-1] \odot 1 \subseteq W \odot S$ and

$$
\begin{aligned}
& \{1 \cdot(-2)+2=0, \quad 1 \cdot(-2)+0=-2, \\
& 2 \cdot(-2)+1=-3, \quad 2 \cdot(-2)+0=-4, \quad 3 \cdot(-2)+1=-5, \quad 3 \cdot(-2)+0=-6, \quad \ldots, \\
& (r-1) \cdot(-2)+1=-2 r+3, \quad(r-1) \cdot(-2)+0=-2 r+2\} \subseteq W \odot S
\end{aligned}
$$

Consequently,

$$
[-2 r+2, r-1] \backslash\{-1\} \subseteq W \odot S
$$

from which it is easily deduced that $|W \odot S| \geq \min \{|G|-1,3 r-3\} \geq \min \{|G|-1,2 r-2\}$, as desired. Therefore we may assume $\alpha \leq-3$, in which case (3.8) gives

$$
r \geq|\alpha|+2 \geq 5
$$

We know $[1, r-1]=0 \cdot \alpha+[1, r-1] \odot 1 \subseteq W \odot S$. Since $\alpha \leq-3$ and $3 \leq|\alpha| \leq r-2$, we also have $1 \cdot \alpha+|\alpha| \cdot 1=0 \in W \odot S$, whence

$$
[0, r-1] \subseteq W \odot S
$$

Next we claim that, for each $j \in[1, r-1], W \odot S$ also contains all elements from $[j \alpha,(j-1) \alpha-1]$ except possibly $j \alpha+j$. Indeed, to see this, we have only to note that $j \cdot \alpha+\beta \cdot 1 \in W \odot S$ for $\beta \in[0,|\alpha|-1] \backslash\{j\}$. Next, since $\alpha \leq-2$, it follows that

$$
j \alpha+j=(j+1) \cdot \alpha+(|\alpha|+j) \cdot 1 \in W \odot S \quad \text { for } j \leq r-1-|\alpha|
$$

As a result, we conclude from the above work that

$$
[(r-|\alpha|+1) \alpha+(r-|\alpha|+1)+1, r-1] \backslash\{(r-|\alpha|) \alpha+(r-|\alpha|)\} \subseteq W \odot S
$$

which, combined with $|\alpha| \in[3, r-2]$ and $r \geq 5$, allows us to easily infer that

$$
\begin{aligned}
|W \odot S| & \geq \min \{|G|-1,(r-|\alpha|+2)|\alpha|-3\} \\
& \geq \min \{|G|-1,3 r-6,4 r-11\} \geq \min \{|G|-1,2 r-2\}
\end{aligned}
$$

completing the proof.
We will need the following technical refinement of the case $|W|=3$ from Lemma 3.1.
Lemma 3.2. Let G be an abelian group with $|G| \geq 5$, let $W=(0)(1)(2) \in \mathcal{F}(\mathbb{Z})$ be a sequence of 3 consecutive integers, let $x, y, z \in G$ be distinct elements with $\langle x, y, z\rangle_{*}=G$, and set $S=x y z \in \mathcal{F}(G)$. Suppose ord $(x-z)$, ord $(y-z)$, ord $(x-y) \geq 3$. Then there exists a subset $X \subseteq W \odot S$ with $|X|=4$, $\left|X \cap\left(3 z+\langle x, z\rangle_{*}\right)\right| \geq 2$ and $\langle X\rangle_{*}=G$. Furthermore, if $G \not \equiv C_{6}$, then $|\mathrm{H}(X)| \neq \overline{2}$.
Proof. In view of (3.2), we can w.l.o.g. translate S so that $z=0$. If the three terms of S are in arithmetic progression, say $S=0(x)(2 x), S=0(y)(2 y)$ or $S=(-x) 0(x)$, then $W \odot S=\{1,2,4,5\} \odot x$, $W \odot S=\{1,2,4,5\} \odot y$ or $W \odot S=\{-2,-1,1,2\} \odot x$, and the lemma is easily verified taking $X=W \odot S$. Therefore we may assume S is not in arithmetic progression, whence

$$
\begin{equation*}
y \notin\{-x, 0, x, 2 x\} \quad \text { and } \quad x \notin\{-y, 0, y, 2 y\} . \tag{3.9}
\end{equation*}
$$

Consider the set $X:=\{x, 2 x, 2 x+y, y\} \subseteq W \odot S$. In view of (3.9) and ord $(x) \geq 3$, we have $|X|=4$. We also have $\langle x, 2 x, 2 x+y\rangle_{*}=\langle x, x+y\rangle=\langle x, y\rangle=\langle x, y, z=0\rangle_{*}=G$, so that $\langle X\rangle_{*}=G$. Clearly, $|X \cap\langle x\rangle| \geq 2$.

Finally, if $|\mathrm{H}(X)|=2$, then there must be a pairing up of the 4 elements of X such that the difference of elements in each pairing is equal to the same order two element. There are three such possible pairings: $\{x, 2 x\}$ and $\{y, 2 x+y\} ;\{x, y\}$ and $\{2 x, 2 x+y\} ;\{x, 2 x+y\}$ and $\{y, 2 x\}$. Since ord $(x) \geq 3$ and ord $(y) \geq 3$, we cannot have x and $2 x$, nor $2 x$ and $2 x+y$, being in the same cardinality two coset, which rules out the first two possible pairings. On the other hand, if $\{x, 2 x+y\}$ and $\{y, 2 x\}$ are both cosets of the same order 2 subgroup, then we must have $x+y=(2 x+y)-x=2 x-y$, contradicting (3.9). As this exhausts all possible pairings, we conclude that $|\mathrm{H}(X)|=2$ does not hold, completing the proof.

Next, we show that if the terms of S generate G (up to translation), then so do the elements of $W \odot S$.
Lemma 3.3. Let G be an abelian group, let $S \in \mathcal{F}(G)$ be a sequence, and let $W \in \mathcal{F}(\mathbb{Z})$ be a sequence of consecutive integers. If $|W|=|S|$, then $\langle W \odot S\rangle_{*}=\langle\operatorname{supp}(S)\rangle_{*}$.
Proof. In view of (3.2), (3.1) and $|W|=|S|$, there is no loss in generality if we translate W and S such that $W=(0)(1) \cdot \ldots \cdot(|S|-1)$ and $0 \in \operatorname{supp}(S)$. If $|S| \leq 2$, then the lemma is easily verified. We proceed by induction on $|S|$. If $\operatorname{supp}(S)=\{0\}$, then $\langle\operatorname{supp}(S)\rangle_{*}=\{0\}=\langle W \odot S\rangle_{*}$. Therefore we may assume $|\operatorname{supp}(S)| \geq 2$. We trivially have $\langle W \odot S\rangle_{*} \subseteq\langle\operatorname{supp}(S)\rangle=\langle\operatorname{supp}(S)\rangle_{*}$, with the latter equality in view of $0 \in \operatorname{supp}(S)$. Therefore, it suffices to show the reverse inclusion $\langle\operatorname{supp}(S)\rangle_{*} \subseteq\langle W \odot S\rangle_{*}$.

Let $x \in \operatorname{supp}(S)$ be nonzero. Let $K:=\left\langle\operatorname{supp}\left(S x^{-1}\right)\right\rangle$. Since $0 \in \operatorname{supp}\left(S x^{-1}\right)$, we have

$$
K=\left\langle\operatorname{supp}\left(S x^{-1}\right)\right\rangle_{*}=\left\langle\operatorname{supp}\left(S x^{-1}\right)\right\rangle .
$$

Thus, by induction hypothesis, we conclude that

$$
\left\langle(0 \cdot x)+\left(W 0^{-1} \odot S x^{-1}\right)\right\rangle_{*}=K
$$

moreover, since $R \odot\left(S x^{-1}\right) \subseteq\left\langle\operatorname{supp}\left(S x^{-1}\right)\right\rangle=K$ for any sequence of integers $R \in \mathcal{F}(\mathbb{Z})$, we actually have

$$
(0 \cdot x)+\left(W 0^{-1} \odot S x^{-1}\right) \subseteq K
$$

Consequently, to show $\langle\operatorname{supp}(S)\rangle_{*} \subseteq\langle W \odot S\rangle_{*}$, it suffices to show that $W \odot S$ contains some element from $x+K$. However, clearly

$$
(1 \cdot x)+\left((0)(2)(3) \cdot \ldots \cdot(|S|-1) \odot S x^{-1}\right) \subseteq W \odot S
$$

is a nontrivial subset of $x+\left\langle\operatorname{supp}\left(S x^{-1}\right)\right\rangle=x+K$, so that $W \odot S$ indeed contains some element from $x+K$, completing the proof.

The following lemma can be found in [26] as observation (c.5). See [28, Proposition 5.2] for a more detailed proof.
Lemma 3.4. Let G be an abelian group, let $A \subseteq G$ be a finite, nonempty subset, and let $x \in G \backslash A$. If $A \cup\{x\}$ is H-periodic with $|H| \geq 3$, then $A \cup\{y\}$ is aperiodic for every $y \in G \backslash\{x\}$.

We now proceed with the proof of our main result.
Proof of Theorem 1.1. In view of (3.2) and (3.1), our problem is invariant when translating S or W, so we may w.l.o.g. assume $0 \in \operatorname{supp}(S)$ is a term with maximum multiplicity $\mathrm{v}_{0}(S)=\mathrm{h}(S)$. For $|G| \leq 4$, the theorem is quickly verified by an exhaustive enumeration of all possible sequences. Likewise when $|S| \leq 2$, while the case $|S|=3$ follows from Lemma 3.1(ii)-(iii). Therefore we may assume

$$
|G| \geq 5 \quad \text { and } \quad|S| \geq 4
$$

and proceed by a double induction on $(|G|,|S|)$, assuming the theorem proved for any sequence over a smaller cardinality subgroup as well as any sequence over G with smaller length than S.

In view of (3.2), we see that if $\left(-g^{\prime}+S\right)=0^{|G|-2}(g)(-g)$, for some $g, g^{\prime} \in G$ with $\operatorname{ord}(g)=|G|$, then $W \odot S=G \backslash\left\{\frac{1}{2}(|G|-1)|G| g^{\prime}\right\}$; in particular, $W \odot S$ contains every generator $h \in G$ in view of $|G| \geq 3$. Thus the latter conclusions of (ii) are simple consequences of the structural characterization of S given there.

Next let us show that the structural characterization from the third part of the theorem implies the second part of the theorem. Indeed, if $|S|=|G|+1$ and $W^{\prime} \odot S 0^{-1} \neq G$, then recalling that $|G| \geq 5$ and applying the characterization to $S 0^{-1}$ yields $S=g^{\prime|G|-2}\left(g^{\prime}+g\right)\left(g^{\prime}-g\right) 0$ for some $g, g^{\prime} \in G$ with $\operatorname{ord}(g)=|G|$. Since $\operatorname{ord}(g)=|G| \geq 5$, we have $\left(g^{\prime}+g\right) \neq\left(g^{\prime}-g\right)$. Thus, if $g^{\prime} \neq 0$, then $|G|-2 \leq \mathrm{h}(S)=\mathrm{v}_{0}(S) \leq 2$, contradicting that $|G| \geq 5$. Therefore we conclude that $S=0^{|G|-1}(g)(-g)$ with $\operatorname{ord}(g)=|G|$, and now clearly the subsequence $S^{\prime}=0^{|G|-1} g$ has $W^{\prime} \odot S^{\prime}=G$. So we see that it suffices to prove the first and third parts of the theorem. In particular, we can assume $|S| \leq|G|$ and we need to show either $|W \odot S| \geq|S|$ or else $|S|=|G|$ with S being described by (ii).

Case 1: $|\operatorname{supp}(S)|=2$.
In this case, in view of $\langle\operatorname{supp}(S)\rangle=G$, we have $S=0^{|S|-\alpha} g^{\alpha}$ with $\operatorname{ord}(g)=|G|$ and $1 \leq \alpha \leq|S|-1 \leq$ $|G|-1$. As a result, it is easily seen that $W \odot S$ is an arithmetic progression with difference g and length

$$
|W \odot S|=\min \left\{|G|,\left|\Sigma_{\alpha}([0,|S|-1])\right|\right\}=\min \left\{|G|, \alpha|S|-\alpha^{2}+1\right\} \geq|S|
$$

where the final equality follows in view of $1 \leq \alpha \leq|S|-1 \leq|G|-1$. Thus $|W \odot S| \geq|S|$, as desired. This completes Case 1.
Case 2: $\mathrm{h}(S) \geq|S|-2$.
Since $\langle\operatorname{supp}(S)\rangle=G$ with $|G| \geq 5$, we trivially have $\mathrm{h}(S) \leq|S|-1$. If $\mathrm{h}(S)=|S|-1$, then $\langle\operatorname{supp}(S)\rangle=G$ and $\mathrm{v}_{0}(S)=\mathrm{h}(S)$ ensure that $S=0^{|S|-1} g$ with $\operatorname{ord}(g)=|G|$, and now Case 1 completes the proof. So it remains to consider $\mathrm{h}(S)=|S|-2$ for Case 2. In this case, $S=0^{|S|-2} x y$ with $x, y \in G \backslash\{0\}$. In view of Case 1 , we may assume $x \neq y$. Note

$$
\begin{equation*}
\left(W(|S|-1)^{-1} \odot T\right) \cup\left(W 0^{-1} \odot T\right) \subseteq W \odot S \tag{3.10}
\end{equation*}
$$

where $T:=x y \in \mathcal{F}(G)$. Lemma 3.1 (iii) and $|S| \geq 4$ together imply that

$$
\left|\left(W(|S|-1)^{-1}\right) \odot T\right| \geq \min \{|G|-1,2|W|-4\}=\min \{|G|-1,2|S|-4\}=\min \{|G|-1,|S|\}
$$

In consequence, if $|S| \leq|G|-1$, then the proof is complete, so we assume $|S|=|G|$. In this case, we have

$$
\left|W(|S|-1)^{-1} \odot T\right| \geq|G|-1
$$

and likewise $\left|W 0^{-1} \odot T\right| \geq|G|-1$. Combined with (3.10), we once more obtain the desired conclusion $W \odot S=G$ unless $W 0^{-1} \odot T=W(|S|-1)^{-1} \odot T$ with $\left|W 0^{-1} \odot T\right|=|G|-1$. In particular, $W 0^{-1} \odot T$ is aperiodic, in which case (3.1) shows that $W 0^{-1} \odot T=W(|S|-1)^{-1} \odot T$ is only possible if $\sigma(T)=x+y=0$. Thus $y=-x$. We now know $S=0^{|G|-2} x(-x)$. Hence, since $\langle\operatorname{supp}(S)\rangle=G$, we conclude that x generates G, whence G is cyclic with $\operatorname{ord}(x)=|G|$, which gives the desired conclusion of (ii). This completes Case 2.

Case 3: There exists a subsequence $T \mid S$ with $\langle\operatorname{supp}(T)\rangle_{*}=H$, where $H<G$ is a proper, nontrivial subgroup, and either $|T| \geq|H|+1$ (if $|H| \geq 3$) or $|T| \geq|H|$ (if $|H|=2$).

Let $W_{T}=(0)(1) \cdot \ldots \cdot(|H|-1) \in \mathcal{F}(\mathbb{Z})$. By induction hypothesis, we can apply the theorem to T to conclude that $W_{T} \odot T^{\prime}$ is an H-coset for some subsequence $T^{\prime} \mid T$ with $\left|T^{\prime}\right|=|H|$. By translating appropriately, we can w.l.o.g. assume $0 \in \operatorname{supp}\left(T^{\prime}\right)$, though we may lose that $\mathrm{h}(S)=\mathrm{v}_{0}(S)$. Let

$$
\left\langle\operatorname{supp}\left(\phi_{H}\left(S T^{\prime-1}\right)\right)\right\rangle_{*}=K / H, \quad \text { where } H \leq K \leq G
$$

Then all terms of $\phi_{H}\left(S T^{\prime-1}\right)$ are contained in a single K / H-coset, say $\operatorname{supp}\left\{\phi_{K}\left(S T^{\prime-1}\right)\right\}=\left\{\phi_{K}(\alpha)\right\}$, where $\alpha \in G$. Consequently, since $\langle\operatorname{supp}(S)\rangle_{*}=\langle\operatorname{supp}(S)\rangle=G$, so that $\left\langle\operatorname{supp}\left(\phi_{K}(S)\right)\right\rangle=G / K$, and since $\operatorname{supp}\left(T^{\prime}\right) \subseteq H \subseteq K$, so that $\operatorname{supp}\left(\phi_{K}\left(T^{\prime}\right)\right)=\{0\}$, it follows that

$$
\begin{equation*}
\left\langle\phi_{K}(\alpha)\right\rangle=G / K \tag{3.11}
\end{equation*}
$$

If $T \neq T^{\prime}$, which holds whenever $|H| \geq 3$, then it follows in view of $\operatorname{supp}\left(\phi_{H}(T)\right)=\{0\}$ that $\operatorname{supp}\left(\phi_{H}\left(S T^{\prime-1}\right)\right)=\operatorname{supp}\left(\phi_{H}(S)\right)$, whence $\left\langle\operatorname{supp}\left(\phi_{H}\left(S T^{\prime-1}\right)\right)\right\rangle_{*}=\left\langle\operatorname{supp}\left(\phi_{H}(S)\right)\right\rangle_{*}=G / H$. In summary,

$$
\begin{equation*}
K=G \quad \text { when } T^{\prime} \neq T \text { or }|H| \geq 3 \tag{3.12}
\end{equation*}
$$

Next, let us show that

$$
\begin{equation*}
|W \odot S| \geq 2|H| \tag{3.13}
\end{equation*}
$$

If $\left|\operatorname{supp}\left(\phi_{H}\left(S T^{\prime-1}\right)\right)\right| \geq 2$, then $\left|W W_{T}^{-1} \odot \phi_{H}\left(S T^{\prime-1}\right)\right| \geq 2$, which combined with the fact that $W_{T} \odot$ T^{\prime} is an H-coset yields (3.13). Therefore assume instead $\operatorname{supp}\left(\phi_{H}\left(S T^{\prime-1}\right)\right)=\left\{\phi_{H}(\beta)\right\}$, where $\beta \in$ $\operatorname{supp}\left(S T^{\prime-1}\right)$. Since $\operatorname{supp}(T) \subseteq H$, if $\phi_{H}(\beta)=0$, then $\operatorname{supp}(S) \subseteq H<G$ follows, contradicting that $\langle\operatorname{supp}(S)\rangle=G$. Therefore $\phi_{H}(\beta) \neq 0$. However, if $|H| \geq 3$, then $S T^{\prime-1}$ contains a term from T, and thus a term from H, in which case $\phi_{H}(\beta)=0$, contrary to what we just noted. Therefore we can now assume $|H|=|T|=2$ for proving (3.13). Now $\left(x+W_{T}\right) \odot T^{\prime}=H$ for all $x \in[0,|S|-2]$. Thus, if (3.13) fails, then we must have

$$
\begin{equation*}
\left|\bigcup_{x \in[0,|S|-2]} W\left(x+W_{T}\right)^{-1} \odot \phi_{H}(\beta)^{|S|-2}\right|=1 \tag{3.14}
\end{equation*}
$$

As a result, since $|S| \geq 4$, comparing the values $x=0$ and $x=1$ in (3.14) shows that

$$
\left(\frac{(|S|-1)|S|}{2}-1\right) \phi_{H}(\beta)=\left(\frac{(|S|-1)|S|}{2}-3\right) \phi_{H}(\beta)
$$

whence $2 \phi_{H}(\beta)=0$. However, since $\operatorname{supp}\left(\phi_{H}(S)\right)=\left\{0, \phi_{H}(\beta)\right\}$ must generate G / H, this implies that $|G|=|G / H| \cdot|H|=2 \cdot 2=4$, contradicting the assumption $|G| \geq 5$. Thus (3.13) is established in all cases.

We can assume

$$
\begin{equation*}
2 \leq|H| \leq \frac{|S|-1}{2} \tag{3.15}
\end{equation*}
$$

else the desired conclusion $|W \odot S| \geq|S|$ follows from (3.13). We divide the remainder of the case into several subcases.

Subcase 3.1: $K=G$ and $|S| \geq|H|+|G / H|+1$.
In this case, we can apply the induction hypothesis to $\phi_{H}\left(S T^{\prime-1}\right)$ to conclude that

$$
\left(W W_{T}^{-1}\right) \odot \phi_{H}\left(S T^{\prime-1}\right)=G / H
$$

Hence, since $W_{T} \odot T^{\prime}$ is an H-coset, it follows that $G=\left(W W_{T}^{-1}\right) \odot\left(S T^{\prime-1}\right)+W_{T} \odot T^{\prime} \subseteq W \odot S$, as desired.

Subcase 3.2: $|S| \leq|H|+|K / H|-1+\epsilon$, where $\epsilon=0$ if $|K / H| \geq 3$ and $\epsilon=1$ if $|K / H| \leq 2$.
In this case, we can apply the induction hypothesis to $W W_{T}^{-1} \odot \phi_{H}\left(S T^{\prime-1}\right)$, recall that $W_{T} \odot T^{\prime}$ is an H-coset, and use the bounds given by (3.15) to conclude that

$$
\begin{equation*}
|W \odot S| \geq|H|\left(|S|-\left|T^{\prime}\right|\right)=|H|(|S|-|H|) \geq \min \left\{2|S|-4, \frac{|S|^{2}-1}{4}\right\} \tag{3.16}
\end{equation*}
$$

If the theorem fails for S, then $|W \odot S| \leq|S|-1$, which combined with (3.16) yields the contradiction $|S| \leq 3$.
Subcase 3.3: $|S|=|H|+|K / H|$.
In view of Subcase 3.2, we can assume $|K / H| \geq 3$, whence $|K| \geq 3|H| \geq 6$. Applying the induction hypothesis to $W W_{T}^{-1} \odot \phi_{H}\left(S T^{\prime-1}\right)$ and recalling that $W_{T} \odot T^{\prime}$ is an H-coset, we conclude that

$$
\begin{equation*}
|W \odot S| \geq|H|(|K / H|-1)=|K|-|H| \tag{3.17}
\end{equation*}
$$

If the theorem fails for S, then $|W \odot S| \leq|S|-1=|H|+|K / H|-1$, which combined with (3.17) yields

$$
|K| \leq 2|H|+|K / H|-1
$$

However, in view of $2 \leq|H| \leq \frac{|K|}{3}$, the above is only possible if $|K|=6$ and $|H|=2$. In this case, equality must hold in (3.17), which is only possible (in view of $|K / H|=3$ and the characterization given by (ii)) if the 3 terms of $\phi_{H}\left(S T^{\prime-1}\right)$ are the 3 distinct elements of some cardinality 3 coset $\phi_{H}(\beta)+K / H$, where $\beta \in G$. Let $K / H=\left\{0, \phi_{H}(g), 2 \phi_{H}(g)\right\}$, where $\operatorname{ord}\left(\phi_{H}(g)\right)=3$ and $g \in G$, so that

$$
\phi_{H}\left(S T^{\prime-1}\right)=\phi_{H}(\beta) \phi_{H}(\beta+g) \phi_{H}(\beta+2 g)
$$

Since $3 \equiv 1 \bmod 2$, we have $(0)(3) \odot T^{\prime}=H$, while

$$
(1)(2)(4) \odot \phi_{H}\left(S T^{\prime-1}\right)=(1)(2)(4) \odot \phi_{H}(\beta) \phi_{H}(\beta+g) \phi_{H}(\beta+2 g)=7 \phi_{H}(\beta)+\left\{0, \phi_{H}(g), 2 \phi_{H}(g)\right\}
$$

is a full K / H-coset, whence

$$
7 \beta+K=(0)(3) \odot T^{\prime}+(1)(2)(4) \odot S T^{\prime-1} \subseteq W \odot S
$$

Thus $|W \odot S| \geq|K|=6>|S|$, as desired, which completes the subcase.
Observe that Subcases 3.1-3.3 cover all possibilities when $K=G$. Thus it remains to consider the case when $K<G$ is proper, in which case (3.12) shows $|H|=2$. Note that the following subcase covers all remaining possibilities.

Subcase 3.4: $K<G$ is proper and $|S| \geq|H|+|K / H|+1=|K / H|+3$.
In view of (3.12), we conclude there must be precisely 2 terms of S from H for this subcase, else $T \neq T^{\prime}$ and $K=G$ follows, contrary to subcase hypothesis.

Suppose $|S| \geq|H|+2|K / H|+1=|K|+3$. Then $\left|S T^{\prime-1}\right| \geq 2|K / H|+1=|K|+1 \geq 3$. Recall that all terms of $S T^{\prime-1}$ are from the $K-\operatorname{coset} \alpha+K$. Thus $\left\langle\operatorname{supp}\left(S T^{\prime-1}\right)\right\rangle_{*} \leq K<G$. Hence, if $\left\langle\operatorname{supp}\left(S T^{\prime-1}\right)\right\rangle_{*}$ is nontrivial, then, in view of $\left|S T^{\prime-1}\right| \geq|K|+1 \geq 3$, we see that the hypotheses of Case 3 but not Subcase 3.4 hold using $S T^{\prime-1}$ and $\left\langle\operatorname{supp}\left(S T^{\prime-1}\right)\right\rangle_{*}$ in place of T and H, whence one of the previous subcases can be applied to complete the case. On the other hand, if $\left\langle\operatorname{supp}\left(S T^{\prime-1}\right)\right\rangle_{*}$ is trivial, say w.l.o.g. $S T^{\prime-1}=\alpha^{|S|-2}$, then we can translate S so that $S=0^{|S|-2} x y$ and apply Case 2 to complete the subcase. So we may instead assume

$$
\begin{equation*}
|S| \leq|K|+2 \tag{3.18}
\end{equation*}
$$

Since $\left|S T^{\prime-1}\right|=|S|-|H| \geq|K / H|+1$ holds by hypothesis, we can apply the induction hypothesis to $W W_{T}^{-1} \odot \phi_{H}\left(S T^{\prime-1}\right)$ and recall that $W_{T} \odot T^{\prime}$ is an H-coset to thereby conclude that

$$
\begin{equation*}
|W \odot S| \geq|K| \tag{3.19}
\end{equation*}
$$

If the theorem fails for S, then we must have $|W \odot S| \leq|S|-1$, which, in view of (3.18) and (3.19), is only possible if

$$
\begin{equation*}
2|K / H|+1=|K|+1 \leq|S| \leq|K|+2 . \tag{3.20}
\end{equation*}
$$

From (3.15), we have $|S| \geq 2|H|+1$, which combined with (3.20) implies that $|K / H| \geq 2$.
Recall that $\operatorname{supp}\left(S T^{\prime-1}\right) \subseteq \alpha+K$. Since $|K / H| \geq 2$, we infer from (3.20) that $\left|\phi_{H}\left(S T^{\prime-1}\right)\right| \geq|K / H|+1$, whence applying the induction hypothesis to $\phi_{H}\left(S T^{\prime-1}\right)$ shows that there exists a subsequence $R \mid S T^{\prime-1}$ with $|R|=|K / H|$ such that $W^{\prime} \odot \phi_{H}(R)$ is a K / H-coset for any sequence W^{\prime} consisting of $|K / H|$ consecutive integers.

Recall that $|K| \geq|H| \geq 2$. Thus, if $|W \odot S| \geq 2|K|$, then combining this with (3.18) shows that $|W \odot S| \geq|S|$, as desired. Therefore we conclude that

$$
\begin{equation*}
|W \odot S|<2|K| . \tag{3.21}
\end{equation*}
$$

In view of the subcase hypothesis, $S T^{\prime-1} R^{-1}$ is a nonempty sequence, so we may find some $g \in$ $\operatorname{supp}\left(S T^{\prime-1} R^{-1}\right)$. Since $(0)(1) \odot T^{\prime}=H$ and $(2)(3) \cdot \ldots(|K / H|+1) \odot \phi_{H}(R)$ is a K / H-coset, we conclude that

$$
(0)(1) \cdot \ldots \cdot(|K / H|+2) \odot T^{\prime} R g
$$

contains the full K-coset

$$
\begin{equation*}
\left(\frac{(|K / H|+1)(|K / H|+2)}{2}-1\right) \alpha+(|K / H|+2) g+K \tag{3.22}
\end{equation*}
$$

Likewise, since $(1)(2) \odot T^{\prime}=H$ and $(3)(4) \cdot \ldots(|K / H|+2) \odot \phi_{H}(R)$ is a K / H-coset, we conclude that

$$
(0)(1) \cdot \ldots \cdot(|K / H|+2) \odot T^{\prime} R g
$$

also contains the full K-coset

$$
\begin{equation*}
\left(\frac{(|K / H|+2)(|K / H|+3)}{2}-3\right) \alpha+K \tag{3.23}
\end{equation*}
$$

As all terms of $S T^{\prime-1}$ are from $\alpha+K$, we have $\phi_{K}(\alpha)=\phi_{K}(g)$, while in view of $|W \odot S|<2|K|$, both K-cosets given in (3.22) and (3.23) must be equal; which implies $2 \phi_{K}(\alpha)=0$. As a result, we derive from (3.11) and $K<G$ that $|G / K|=2$.

If $|K / H| \leq 2$, then $|G|=|G / K||K / H| \leq 2 \cdot 2=4$, contrary to assumption. Therefore we now conclude that $|K / H| \geq 3$. Next observe that

$$
(0)(2) \odot T^{\prime}+(1)(3)(4) \cdot \ldots \cdot(|K / H|+2) \odot R g \subseteq\left(\frac{(|K / H|+2)(|K / H|+3)}{2}-2\right) \alpha+K
$$

which is a K-coset disjoint from that of (3.23). Consequently,

$$
\begin{equation*}
|W \odot S| \geq|K|+\left|(0)(2) \odot T^{\prime}+(1)(3)(4) \cdot \ldots \cdot(|K / H|+2) \odot R g\right| . \tag{3.24}
\end{equation*}
$$

However, $(3)(4) \cdot \ldots \cdot(|K / H|+2) \odot \phi_{H}(R)$ is a full K / H-coset (as previously derived by use of the induction hypothesis to define R), which readily implies that

$$
\left|(0)(2) \odot T^{\prime}+(1)(3)(4) \cdot \ldots \cdot(|K / H|+2) \odot R g\right| \geq|K / H| \geq 3 .
$$

Combined with (3.24) and (3.20), we conclude that $|W \odot S| \geq|K|+3 \geq|S|+1$, as desired. This completes the final subcase of Case 3. For the remainder of the arguments, we return to considering S translated so that $\mathrm{v}_{0}(S)=\mathrm{h}(S)$.
Case 4: $\frac{1}{3}(|S|+2) \leq \mathrm{h}(S) \leq|S|-3$.
Note that the case hypothesis implies $|S| \geq 6$. If $g \in \operatorname{supp}(S)$ is nonzero with $d:=\operatorname{ord}(g) \leq\left\lceil\frac{1}{3}(|S|+2)\right\rceil$, then $0^{d} g \in \mathcal{F}(G)$ is a subsequence of S with length $\left|0^{d} g\right|=d+1=|\langle g\rangle|+1 \leq|S| \leq|G|$; moreover, $\left\langle\operatorname{supp}\left(0^{d} g\right)\right\rangle_{*}$ is equal to the proper (since the previous inequality implies $\left.d<|G|\right)$, nontrivial subgroup $\langle g\rangle$. Consequently, Case 3 can be invoked to complete the proof. Therefore we instead conclude that

$$
\begin{equation*}
\operatorname{ord}(g) \geq\left\lceil\frac{1}{3}(|S|+2)\right\rceil+1 \quad \text { for all nonzero } g \in \operatorname{supp}(S) \tag{3.25}
\end{equation*}
$$

Since $\mathrm{v}_{0}(S) \leq|S|-3$, choose some nonzero $x \in \operatorname{supp}(S)$. In view of Case 1 , we have $|\operatorname{supp}(S)| \geq 3$, whence there must be some other nonzero $y \in \operatorname{supp}(S)$ with $x \neq y$. If, for every such nonzero $y \in \operatorname{supp}(S)$ with $x \neq y$, we have $y \in\langle x\rangle$, then $\langle x\rangle=\langle\operatorname{supp}(S)\rangle=G$. Otherwise, we can find some nonzero $y \in \operatorname{supp}(S)$ with $x \neq y$ and $\langle x, y\rangle>\langle x\rangle$. As a result, choosing the nonzero $y \in \operatorname{supp}(S) \backslash\{0, x\}$ appropriately and setting $K_{1}=\langle x, y\rangle$, we obtain

$$
\begin{equation*}
\left|K_{1}\right|=|\langle x, y\rangle| \geq \min \{|G|, 2 \operatorname{ord}(x)\} \geq \min \left\{|G|, 2\left\lceil\frac{1}{3}(|S|+2)\right\rceil+2\right\} \tag{3.26}
\end{equation*}
$$

where the latter bound follows from (3.25).
Let $R_{1}=0^{\left\lceil\frac{1}{3}(|S|+2)\right\rceil-1} x y$. In view of the case hypothesis, we see that $R_{1} \mid S$ with $0 \in \operatorname{supp}\left(S R_{1}^{-1}\right)$. Let $R_{2}=S R_{1}^{-1}$, so that, in view of $|S| \geq 6$ and the previous observation, we have

$$
\begin{equation*}
0 \in \operatorname{supp}\left(R_{1}\right) \cap \operatorname{supp}\left(R_{2}\right) . \tag{3.27}
\end{equation*}
$$

Let $K_{2}=\left\langle\operatorname{supp}\left(R_{2}\right)\right\rangle_{*}=\left\langle\operatorname{supp}\left(R_{2}\right)\right\rangle$. In view of (3.27), we also have $K_{1}=\left\langle\operatorname{supp}\left(R_{1}\right)\right\rangle_{*}=\left\langle\operatorname{supp}\left(R_{1}\right)\right\rangle$. Observe that

$$
\begin{equation*}
K_{1}+K_{2}=\langle\operatorname{supp}(S)\rangle=G . \tag{3.28}
\end{equation*}
$$

From the case hypothesis $\mathrm{v}_{0}(S) \leq|S|-3$ and (3.27), we see that $\left|\operatorname{supp}\left(R_{2}\right)\right| \geq 2$, whence K_{2} is nontrivial. If $\left|K_{2}\right| \leq\left|R_{2}\right|-1 \leq|S|-1 \leq|G|-1$, then K_{2} will be proper and R_{2} will be a sequence of length at least $\left|K_{2}\right|+1$ all of whose terms come from the coset $0+K_{2}$, whence Case 3 completes the proof. Therefore we can assume

$$
\begin{equation*}
\left|K_{2}\right| \geq\left|R_{2}\right|=|S|-\left|R_{1}\right|=|S|-\left\lceil\frac{1}{3}(|S|+2)\right\rceil-1=\left\lfloor\frac{2|S|-5}{3}\right\rfloor . \tag{3.29}
\end{equation*}
$$

From (3.25), we also have

$$
\begin{equation*}
\left|K_{2}\right| \geq\left\lceil\frac{1}{3}(|S|+2)\right\rceil+1 \tag{3.30}
\end{equation*}
$$

Let $A_{1}=(0)(1) \cdot \ldots \cdot\left(\left|R_{1}\right|-1\right) \odot R_{1}$ and let $A_{2}=\left(\left|R_{1}\right|\right)\left(\left|R_{1}\right|+1\right) \cdot \ldots \cdot(|S|-1) \odot R_{2}$. In view of Lemma 3.3, we have $\left\langle A_{1}\right\rangle_{*}=\left\langle\operatorname{supp}\left(R_{1}\right)\right\rangle_{*}=K_{1}$ and $\left\langle A_{2}\right\rangle_{*}=\left\langle\operatorname{supp}\left(R_{2}\right)\right\rangle_{*}=K_{2}$. Also, from their definition, we have

$$
\begin{equation*}
A_{1}+A_{2} \subseteq W \odot S \tag{3.31}
\end{equation*}
$$

Since $\left|\operatorname{supp}\left(R_{2}\right)\right| \geq 2$, it is readily deduced that $\left|A_{2}\right| \geq 2$. In consequence, if $\left|A_{1}\right| \geq|G|-1$, then applying Lemma 2.2 to $A_{1}+A_{2}$ shows that $A_{1}+A_{2}=\bar{G}$, which in view of (3.31) completes the proof. Therefore we can assume $\left|A_{1}\right| \leq|G|-2$. Consequently, in view of $\left\langle\operatorname{supp}\left(R_{1}\right)\right\rangle_{*}=K_{1}$ and (3.26), applying Lemma 3.1(iii) to R_{1} results in

$$
\begin{equation*}
\left|A_{1}\right| \geq 2\left|R_{1}\right|-2=2\left\lceil\frac{1}{3}(|S|+2)\right\rceil \tag{3.32}
\end{equation*}
$$

Since $\left|R_{2}\right|<|S|$, we can apply the induction hypothesis to R_{2} to yield

$$
\begin{equation*}
\left|A_{2}\right| \geq \min \left\{\left|K_{2}\right|-1,\left|R_{2}\right|\right\}=\min \left\{\left|K_{2}\right|-1,\left\lfloor\frac{2|S|-5}{3}\right\rfloor\right\} \geq\left\lfloor\frac{2|S|-5}{3}\right\rfloor-1, \tag{3.33}
\end{equation*}
$$

where the final inequality follows from (3.29).

If $\left|A_{1}+A_{2}\right| \geq\left|A_{1}\right|+\left|A_{2}\right|-1$, then (3.32), (3.33) and (3.31) together yield

$$
|W \odot S| \geq 2\left|R_{1}\right|-2+\left|R_{2}\right|-2=|S|+\left|R_{1}\right|-4=|S|+\left\lceil\frac{1}{3}(|S|+2)\right\rceil-3
$$

which is at least $|S|$ for $|S| \geq 6$, as desired. So we can instead assume

$$
\begin{equation*}
\left|A_{1}+A_{2}\right|<\left|A_{1}\right|+\left|A_{2}\right|-1 \tag{3.34}
\end{equation*}
$$

Let $H=\mathrm{H}\left(A_{1}+A_{2}\right)$ be the maximal period of $A_{1}+A_{2}$. In view of (3.34) and Kneser's Theorem, it follows that H is a proper (else $W \odot S=G$, as desired), nontrivial subgroup with

$$
\begin{equation*}
\left|\phi_{H}\left(A_{1}+A_{2}\right)\right| \geq\left|\phi_{H}\left(A_{1}\right)\right|+\left|\phi_{H}\left(A_{2}\right)\right|-1 . \tag{3.35}
\end{equation*}
$$

We divide the remainder of the case into several subcases.
Subcase 4.1: $\left|\phi_{H}\left(A_{1}\right)\right|=\left|\phi_{H}\left(A_{2}\right)\right|=1$.
In this case, $K_{1}=\left\langle A_{1}\right\rangle_{*} \leq H$ and $K_{2}=\left\langle A_{2}\right\rangle_{*} \leq H$, whence $G=K_{1}+K_{2} \leq H$ follows from (3.28), contradicting that $H<G$ is proper.

Subcase 4.2: $\left|\phi_{H}\left(A_{1}\right)\right| \geq 2$ and $\left|\phi_{H}\left(A_{2}\right)\right|=1$.
In this case, $K_{2}=\left\langle A_{2}\right\rangle_{*} \leq H$ and $\left|A_{1}+A_{2}\right| \geq 2|H| \geq 2\left|K_{2}\right|$, which is at least $\frac{4}{3}|S|-\frac{14}{3}$ in view of (3.29). For $|S| \geq 12$, combing this with (3.31) implies $|W \odot S| \geq\left|A_{1}+A_{2}\right|>|S|-1$, as desired. For $|S| \leq 11$, we can use (3.30) and (3.31) to estimate $|W \odot S| \geq\left|A_{1}+A_{2}\right| \geq 2\left|K_{2}\right| \geq \frac{2}{3}|S|+\frac{10}{3}>|S|-1$, also as desired.

Subcase 4.3: $\left|\phi_{H}\left(A_{2}\right)\right| \geq 2$.
In this case, (3.35) and (3.31) imply

$$
|W \odot S| \geq\left|A_{1}+A_{2}\right| \geq\left|A_{1}+H\right|+\left|A_{2}+H\right|-|H| \geq\left|A_{1}+H\right|+\frac{1}{2}\left|A_{2}+H\right| \geq\left|A_{1}\right|+\frac{1}{2}\left|A_{2}\right| .
$$

Combined with (3.32) and (3.33), we obtain

$$
|W \odot S| \geq 2\left\lceil\frac{1}{3}(|S|+2)\right\rceil+\frac{1}{2}\left(\left\lfloor\frac{2|S|-5}{3}\right\rfloor-1\right)>|S|-1,
$$

as desired, which completes the last subcase of Case 4.
Case 5: $\mathrm{h}(S) \leq \frac{1}{3}(|S|+1)$.
Let

$$
\epsilon= \begin{cases}1, & \text { if }|S| \equiv 2 \quad \bmod 3 \\ 0, & \text { else }\end{cases}
$$

and let $r=\left\lfloor\frac{1}{3}(|S|+1)\right\rfloor$. Note $r \geq 1$ in view of $|S| \geq 4$. We assume by contradiction that S fails to satisfy the theorem (solely for the statements of the properties below, which might not hold if S satisfied the conditions of the theorem).

The assumption $\mathrm{h}(S) \leq \frac{1}{3}(|S|+1)$ allows us to factorize the sequence S into square-free subsequences in the following way (this is the basic construction for the existence of an r-setpartition; see [11]):

- If $|S| \equiv 0 \bmod 3$, then $r=\frac{1}{3}|S|, \epsilon=0$, and we can factorize $S=S_{1} \cdot \ldots \cdot S_{r}$ such that $\left|\operatorname{supp}\left(S_{i}\right)\right|=\left|S_{i}\right|=3$ for all $i \in[1, r]$.
- If $|S| \equiv 1 \bmod 3$, then $r=\frac{1}{3}(|S|-1), \epsilon=0$, and we can factorize $S=S_{1} \cdot \ldots \cdot S_{r} S_{r+1}$ such that $\left|\operatorname{supp}\left(S_{i}\right)\right|=\left|S_{i}\right|=3$ for all $i \in[1, r]$ and $\left|\operatorname{supp}\left(S_{r+1}\right)\right|=\left|S_{r+1}\right|=1$.
- If $|S| \equiv 2 \bmod 3$, then $r=\frac{1}{3}(|S|+1), \epsilon=1$, and we can factorize $S=S_{1} \cdot \ldots \cdot S_{r}$ such that $\left|\operatorname{supp}\left(S_{i}\right)\right|=\left|S_{i}\right|=3$ for all $i \in[1, r-1]$ and $\left|\operatorname{supp}\left(S_{r}\right)\right|=\left|S_{r}\right|=2$.
Note ϵ counts the number of S_{i} with length 2 in the factorization. For the purposes of the proof, we will refer to a factorization $S_{1} \cdot \ldots \cdot S_{r}$ (of S or $S S_{r+1}^{-1}$) as well-balanced if it satisfies the above criteria and also has $\left|\left\langle\operatorname{supp}\left(S_{j}\right)\right\rangle_{*}\right| \geq 5$ for any S_{j} with $\left|S_{j}\right| \geq 3$. Let us show that such a factorization exists.

Let $S_{1} \ldots S_{r} \mid S$ be a factorization satisfying the appropriate bulleted criteria above. We trivially have $\left|\left\langle\operatorname{supp}\left(S_{j}\right)\right\rangle_{*}\right| \geq 3$ for each S_{j} with $\left|S_{j}\right|=\left|\operatorname{supp}\left(S_{j}\right)\right|=3$. If $\left|\left\langle\operatorname{supp}\left(S_{j}\right)\right\rangle_{*}\right|=4$, then the pigeonhole principle guarantees that there are distinct $x, y \in \operatorname{supp}\left(S_{j}\right)$ with $\operatorname{ord}(x-y)=2$, whence invoking Case 3 with $H=\langle x-y\rangle$ shows that the theorem holds for S, contrary to assumption. Therefore, we see that $\left|\left\langle\operatorname{supp}\left(S_{j}\right)\right\rangle_{*}\right| \geq 5$ or $\left|\left\langle\operatorname{supp}\left(S_{j}\right)\right\rangle_{*}\right|=3$ for each S_{j} with $\left|S_{j}\right|=3$. Consider a factorization $S_{1} \cdot \ldots \cdot S_{r} \mid S$ satisfying the appropriate bulleted criteria so that the number of S_{j} with $\left|S_{j}\right|=\left|\left\langle\operatorname{supp}\left(S_{j}\right)\right\rangle_{*}\right|=3$ is minimal. If by contradiction no well-balanced factorization exists, then there will be some S_{j} with $\left|S_{j}\right|=\left|\left\langle\operatorname{supp}\left(S_{j}\right)\right\rangle_{*}\right|=3$. Thus $\operatorname{supp}\left(S_{j}\right)$ is a coset of the cardinality 3 subgroup $H:=\left\langle\operatorname{supp}\left(S_{j}\right)\right\rangle_{*}$. In view of $|S| \geq 4$, there is some S_{k} with $k \in[1, r+1], k \neq j$, and $k=r+1$ only if $|S|=4 \equiv 1$ $\bmod 3$. If $\operatorname{supp}\left(S_{k}\right)$ and $\operatorname{supp}\left(S_{j}\right)$ share a common element, then there will be 4 terms of S from the same cardinality three H-coset, whence invoking Case 3 shows that the theorem holds for S, contrary to
assumption. Therefore we may instead assume that $\operatorname{supp}\left(S_{k}\right)$ and $\operatorname{supp}\left(S_{j}\right)$ are disjoint. Thus if we swap any term x from S_{j} for a term y from S_{k} and let $S_{j}^{\prime}=S_{j} x^{-1} y$ and $S_{k}^{\prime}=S_{k} y^{-1} x$ denote the resulting sequences, then Lemma 3.4 guarantees that $\operatorname{supp}\left(S_{j}^{\prime}\right)$ cannot be periodic. In particular, $\operatorname{supp}\left(S_{j}^{\prime}\right)$ is not a coset of a cardinality 3 subgroup. If $\operatorname{supp}\left(S_{k}^{\prime}\right)$ is also not a coset of a cardinality three subgroup, then set $S_{j}^{\prime \prime}=S_{j}^{\prime}$ and $S_{k}^{\prime \prime}=S_{k}^{\prime}$. On the other hand, if $\operatorname{supp}\left(S_{k}^{\prime}\right)$ is a coset of a cardinality 3 subgroup, then Lemma 3.4 again shows that $S_{k}^{\prime \prime}:=S_{k}^{\prime} y^{\prime-1} y$ is not periodic, and thus not coset of cardinality 3 subgroup, where y^{\prime} is any element from $\operatorname{supp}\left(S_{k}\right)$ distinct from y. Moreover, we also have $S_{j}^{\prime \prime}:=S_{j}^{\prime} y^{-1} y^{\prime}=S_{j} x^{-1} y^{\prime}$ not being a coset of a cardinality three subgroup (by repeating the arguments used to show this for S_{j}^{\prime} only using y^{\prime} instead of y). However, now the factorization $S_{1} \cdot \ldots \cdot S_{r} S_{j}^{-1} S_{k}^{-1} S_{j}^{\prime \prime} S_{k}^{\prime \prime}$ satisfies the appropriate bulleted condition and also has at least one less S_{j} with $\left|S_{j}\right|=\left|\left\langle\operatorname{supp}\left(S_{j}\right)\right\rangle_{*}\right|=3$, contradicting the assumed minimality assumption. This shows that a well-balanced factorization $S_{1} \cdot \ldots \cdot S_{r}$ exists.

For the moment, let $S_{1} \cdot \ldots \cdot S_{r} \mid S$ be an arbitrary well-balanced factorization. Let $W=W_{1} \cdot \ldots \cdot W_{r}$ be a factorization of W with $\left|W_{i}\right|=\left|S_{i}\right|$ for all $i \in[1, r]$ such that each W_{i} is a sequence of consecutive integers. Note we can apply Lemma 3.2 to each S_{j} with $\left|S_{j}\right|=3$ since the definition of a well-balanced factorization ensures that $\left|\left\langle\operatorname{supp}\left(S_{j}\right)\right\rangle_{*}\right| \geq 5$ while we have ord $(x-y) \geq 3$ for all distinct $x, y \in \operatorname{supp}\left(S_{j}\right)$, else Case 3 applied with $H=\langle x-y\rangle$ shows that the theorem holds for S, contrary to assumption. For each S_{j} with $\left|S_{j}\right|=3$, let $A_{j} \subseteq W_{j} \odot S_{j}$ be the resulting subset with

$$
\begin{equation*}
\left|A_{j}\right|=4, \quad\left\langle A_{j}\right\rangle_{*}=\left\langle\operatorname{supp}\left(S_{j}\right)\right\rangle_{*}, \quad \text { and either } \quad\left\langle A_{j}\right\rangle_{*} \cong C_{6} \quad \text { or } \quad\left|\mathrm{H}\left(A_{j}\right)\right| \neq 2 . \tag{3.36}
\end{equation*}
$$

For any S_{j} with $\left|S_{j}\right| \neq 3$, let $A_{j}=W_{j} \odot S_{j}$. If $|S| \not \equiv 1 \bmod 3$, set $A_{r+1}=\{0\}$. Note that $\left|A_{r+1}\right|=1$ (regardless of the value of $|S|$ modulo 3) and that $\left|A_{r}\right|=2$ when $\left|S_{r}\right|=2$. We also have

$$
\begin{equation*}
\sum_{i=1}^{r+1} A_{i} \subseteq W \odot S \tag{3.37}
\end{equation*}
$$

For the purposes of the proof, we will refer to a setpartition $\mathcal{A}=A_{1} \cdot \ldots \cdot A_{r} A_{r+1}$ obtained as above from a well-balanced factorization $S_{1} \cdot \ldots \cdot S_{r} \mid S$ as a well-balanced setpartition.

Our plan is to show that a well-balanced setpartition with maximal cardinality sumset has $\left|\sum_{i=1}^{r+1} A_{i}\right| \geq$ $|S|$, which in view of (3.37) will yield the concluding contradiction $|W \odot S| \geq|S|$. To do this, we must first establish some properties that any well balanced setpartition has. We begin with the following.

Property 1: If $A_{1} \cdot \ldots \cdot A_{r} A_{r+1}$ is a well-balanced setpartition and

$$
\begin{equation*}
\left|\sum_{i \in I} A_{i}\right|<\sum_{i \in I}\left|A_{i}\right|-|I|+1, \tag{3.38}
\end{equation*}
$$

where $I \subseteq[1, r]$ is a nonempty subset, then $\left|\mathrm{H}\left(\sum_{i \in I} A_{i}\right)\right| \geq 5$.
Let $H=\mathrm{H}\left(\sum_{i \in I} A_{i}\right)$ and suppose by contradiction that $|H| \leq 4$. In view of (3.38) and Kneser's Theorem, we know $|H| \geq 2$ with

$$
\left|\sum_{i \in I} A_{i}\right| \geq \sum_{i \in I}\left|A_{i}\right|-|I|+1-(|I|-1)(|H|-1)+\rho
$$

where $\rho=\sum_{i \in I}\left(\left|A_{i}+H\right|-\left|A_{i}\right|\right)$ denotes the number of H-holes in the A_{i} with $i \in I$. In particular,

$$
\begin{equation*}
\rho<(|I|-1)(|H|-1) \tag{3.39}
\end{equation*}
$$

Suppose $|H| \in\{3,4\}$. Now all but at most one A_{i} with $i \in I \subseteq[1, r]$ has $\left|A_{i}\right|=4$. Since $\left|\left\langle A_{i}\right\rangle_{*}\right|=$ $\left|\left\langle\operatorname{supp}\left(S_{i}\right)\right\rangle_{*}\right| \geq 5>|H|$ for such A_{i}, we know that each such A_{i} intersects at least two H-cosets, whence

$$
\left|A_{i}+H\right|-\left|A_{i}\right| \geq 2|H|-4 \geq|H|-1 .
$$

Thus $\rho=\sum_{i \in I}\left(\left|A_{i}+H\right|-\left|A_{i}\right|\right) \geq(|I|-1)(|H|-1)$, contradicting (3.39). So we may instead assume $|H|=2$.

If A_{i} is H-periodic with $\left|A_{i}\right|=2$, then Lemma 3.3 implies that S_{i} consists of 2 distinct elements from the same cardinality $2 H$-coset, whence applying Case 3 shows that the theorem holds for S, contrary to assumption. Therefore only A_{i} with $\left|A_{i}\right|=4$ can be H-periodic.

If at most one A_{i} with $i \in I$ is H-periodic, then $\left|A_{i}+H\right|-\left|A_{i}\right| \geq 1=|H|-1$ will hold for all but at most one $i \in I$, and we will again contradict (3.39). Therefore there must be at least two A_{i} with $i \in I$ that are H-periodic, and in view of the previous paragraph, we must have $\left|A_{i}\right|=4$ for each such A_{i}. However (3.36) shows this is only possible for A_{i} if $\left\langle\operatorname{supp}\left(S_{i}\right)\right\rangle_{*}=\left\langle A_{i}\right\rangle_{*} \cong C_{6}$, in which case A_{i} is a cardinality 4 subset of a coset of the cardinality 6 subgroup $\left\langle A_{i}\right\rangle_{*}$.

Let $J \subseteq I$ be the subset of all those indices $i \in I$ such that A_{i} is H-periodic. Since there are at least two A_{i} with $i \in I$ and A_{i} being H-periodic, as shown above, we have $|J| \geq 2$. By the argument of the previous paragraph, each A_{i} with $i \in J$ has $\left\langle\phi_{H}\left(A_{i}\right)\right\rangle_{*} \cong C_{3}$. Thus, if $\left\langle\phi_{H}\left(A_{i}\right)\right\rangle_{*}=\left\langle\phi_{H}\left(A_{j}\right)\right\rangle_{*}$ for distinct $i, j \in J$, then Lemma 2.2 implies that $A_{i}+A_{j}$ is $\left\langle A_{j}\right\rangle_{*}$-periodic, contradicting that $H<\left\langle A_{j}\right\rangle_{*}$ is the maximal period of $\sum_{i \in I} A_{i}$. Therefore we may assume each $\left\langle\phi_{H}\left(A_{i}\right)\right\rangle_{*}$, for $i \in J$, is a distinct cardinality 3 subgroup. In consequence, we have

$$
\begin{equation*}
\left|\phi_{H}\left(A_{i}\right)+\phi_{H}\left(A_{j}\right)\right|=4 \quad \text { for } i, j \in J \text { distinct. } \tag{3.40}
\end{equation*}
$$

Since H is the maximal period of $\sum_{i \in I} A_{i}$ and $J \subseteq I$, it follows that $\sum_{i \in J} \phi_{H}\left(A_{i}\right)$ is aperiodic. Thus, pairing up the $\phi_{H}\left(A_{j}\right)$ with $j \in J$ into $\left\lfloor\frac{1}{2}|J|\right\rfloor$ pairs, applying the equality (3.40) to each pair, and then applying Kneser's Theorem to the aperiodic $\left\lceil\frac{1}{2}|J|\right\rceil$-term sumset whose summands consist of the sumsets of each of the $\left\lfloor\frac{1}{2}|J|\right\rfloor$ pairs along with the one unpaired set $\phi_{H}\left(A_{i}\right)$ with $i \in J$ (if $|J|$ is odd) yields the estimates

$$
\begin{array}{ll}
\left|\sum_{i \in J} \phi_{H}\left(A_{i}\right)\right| \geq 4\left(\frac{|J|-1}{2}\right)+2-\frac{|J|+1}{2}+1=\frac{3}{2}|J|+\frac{1}{2} & \text { if }|J| \text { is odd, } \tag{3.41}\\
\left|\sum_{i \in J} \phi_{H}\left(A_{i}\right)\right| \geq 4\left(\frac{|J|}{2}\right)-\frac{1}{2}|J|+1=\frac{3}{2}|J|+1 & \text { if }|J| \text { is even. }
\end{array}
$$

For each $i \in I \backslash J \subseteq[1, r]$, we know A_{i} is not H-periodic. As a result, if $i \in I \backslash J$ with $\left|A_{i}\right|=4$, then $\left|\phi_{H}\left(A_{i}\right)\right| \geq 3$, while if $i \in I \backslash J$ with $\left|A_{i}\right|=2$, then $\left|\phi_{H}\left(A_{i}\right)\right|=2$. Consequently, since $\sum_{i \in I} \phi_{H}\left(A_{i}\right)$ is aperiodic (as H is the maximal period of $\sum_{i \in I} A_{i}$), Kneser's Theorem and (3.41) together imply

$$
\begin{equation*}
\left|\sum_{i \in I} \phi_{H}\left(A_{i}\right)\right| \geq\left|\sum_{i \in J} \phi_{H}\left(A_{i}\right)\right|+\sum_{i \in I \backslash J}\left|\phi_{H}\left(A_{i}\right)\right|-(|I \backslash J|+1)+1 \geq \frac{3}{2}|J|+\frac{1}{2}+2|I \backslash J|-\epsilon \geq \frac{3}{2}|I|+\frac{1}{2}-\epsilon \tag{3.42}
\end{equation*}
$$

Since $\sum_{i \in I} A_{i}$ is H-periodic with $|H|=2$, (3.42) implies $\left|\sum_{i \in I} A_{i}\right| \geq 3|I|+1-2 \epsilon=\sum_{i \in I}\left|A_{i}\right|-|I|+1$, contradicting (3.38) and completing the proof of Property 1.

Next, recalling the definition of r, we observe that

$$
\sum_{i=1}^{r}\left|A_{i}\right|-r+1=4 r-2 \epsilon-r+1=3 r-2 \epsilon+1 \geq|S|
$$

Consequently, in view of (3.37) and $W \odot S \neq G$, it follows that

$$
\begin{equation*}
\left|\sum_{i=1}^{r} A_{i}\right|<\min \left\{|G|, \sum_{i=1}^{r}\left|A_{i}\right|-r+1\right\} \tag{3.43}
\end{equation*}
$$

Thus Property 1 ensures that $H_{1}:=\mathrm{H}\left(\sum_{i=1}^{r} A_{i}\right)$ has $\left|H_{1}\right| \geq 5$. Since H_{1} must be a proper subgroup, it follows that $|G|$ is composite with

$$
|G| \geq 2\left|H_{1}\right| \geq 10
$$

Let $I_{1} \subseteq[1, r]$ denote all those indices $i \in[1, r]$ such that $\left|\phi_{H_{1}}\left(A_{i}\right)\right|=1$. Our next goal is the following.
Property 2: If $A_{1} \ldots \ldots A_{r} A_{r+1}$ is a well-balanced setpartition with $H_{1}=\mathrm{H}\left(\sum_{i=1}^{r} A_{i}\right)$ and $I_{1} \subseteq[1, r]$ being the subset of all $i \in[1, r]$ with $\left|\phi_{H_{1}}\left(A_{i}\right)\right|=1$, then $\left|I_{1}\right| \geq\left\lceil\frac{1}{3}\left(\left|H_{1}\right|-2\right)\right\rceil+2$.

First let us handle the case when $\left|I_{1}\right|=r=\left\lfloor\frac{|S|+1}{3}\right\rfloor$. In this case, we need to show $|S| \geq\left|H_{1}\right|+5$, for which, in view of $|W \odot S|<|S|$, it suffices to show that $|W \odot S| \geq\left|H_{1}\right|+4$. Since $\left|\sum_{i=1}^{r} A_{i}\right| \leq|W \odot S|<|S|$, we have the initial estimate $|S| \geq\left|H_{1}\right|+1$. However, if $|W \odot S|=\left|H_{1}\right|$, then $\langle\operatorname{supp}(S)\rangle_{*}=\langle W \odot S\rangle_{*}=$ $H_{1}<G$ follows from Lemma 3.3, contradicting the hypothesis $\langle\operatorname{supp}(S)\rangle_{*}=G$. Therefore we instead conclude that $|W \odot S| \geq\left|H_{1}\right|+1$, in turn implying

$$
\begin{equation*}
|S| \geq|W \odot S|+1 \geq\left|H_{1}\right|+2 \geq 7 \tag{3.44}
\end{equation*}
$$

Since $\left|I_{1}\right|=r$, we know that every A_{i} with $i \in[1, r]$ is contained in an H_{1}-coset. Consequently, in view of (3.36), we see that each S_{i} with $i \in[1, r]$ has all its terms from a single H_{1}-coset, say $\operatorname{supp}\left(S_{i}\right) \subseteq \alpha_{i}+H_{1}$. If it is the same H_{1}-coset for all S_{i} with $i \in[1, r]$, then we will have at least $|S|-1 \geq\left|H_{1}\right|+1$ terms from the same H_{1}-coset (in view of (3.44)), whence Case 3 shows that the theorem holds for S, contrary to assumption. Therefore we can instead assume $\alpha_{j}+H_{1} \neq \alpha_{r}+H_{1}$ for some $j \in[1, r-1]$. Let $g_{r} \in \operatorname{supp}\left(S_{r}\right)$
and $g_{j} \in \operatorname{supp}\left(S_{j}\right)$ and define $A_{r}^{\prime}=W_{r} \odot S_{r} g_{r}^{-1} g_{j}$ and $A_{j}^{\prime}=W_{j} \odot S_{j} g_{j}^{-1} g_{r}$. For $i \in[1, r+1] \backslash\{r, j\}$, set $A_{i}^{\prime}=A_{i}$. Then, since neither $S_{r} g_{r}^{-1} g_{j}$ nor $S_{j} g_{j}^{-1} g_{r}$ is contained in a single H_{1}-coset, it follows from Lemma 3.3 that $\left|\phi_{H_{1}}\left(A_{j}^{\prime}\right)\right| \geq 2$ and $\left|\phi_{H_{1}}\left(A_{r}^{\prime}\right)\right| \geq 2$. In consequence, the subset $\sum_{i=1}^{r+1} A_{i}^{\prime} \subseteq W \odot S$ intersects at least two H_{1}-cosets, one of which must be disjoint from the H_{1}-coset that contained $\sum_{i=1}^{r+1} A_{i}$.

If $r \geq 3$, then there will be some $A_{i}=A_{i}^{\prime}$ with $i \in[1, r-1] \backslash\{j\}$, which will be a cardinality 4 subset of a single H_{1}-coset, thus ensuring that every H_{1}-coset that intersects $\sum_{i=1}^{r+1} A_{i}^{\prime}$ must contain at least 4 elements. As a result, if $r \geq 3$, then $|W \odot S| \geq\left|H_{1}\right|+4$, as desired. Therefore it remains to consider the case when $r \leq 2$ in order to finish the case when $\left|I_{1}\right|=r$. However, (3.44) shows that $r \leq 2$ is only possible if $\left|H_{1}\right|=5,|S|=7, r=2$ and $j=1$. In this case, $|S| \equiv 1 \bmod 3$, so that S_{r+1} contains a term from S. Since $\alpha_{1}+H_{1}=\alpha_{j}+H_{1} \neq \alpha_{r}+H_{1}=\alpha_{2}+H_{1}$, we can w.l.o.g. assume $\alpha_{2}+H_{1} \neq \alpha_{3}+H_{1}$, where α_{3} is the single term from S_{3}. But now, defining $A_{1}^{\prime \prime}=A_{1} \subseteq(0)(1)(2) \odot S_{1}, A_{2}^{\prime \prime}=(3)(4) \odot S_{2} g_{2}^{-1}$ and $A_{3}^{\prime \prime}=(5)(6) \odot S_{r} g_{2}$, we can repeat the arguments from the $r \geq 3$ case using the $A_{i}^{\prime \prime}$ instead of the A_{i}^{\prime} in order to conclude $|W \odot S| \geq\left|H_{1}\right|+4$ in this final remaining case as well. So, for the remainder of the proof of Property 2 , we can now assume $\left|I_{1}\right| \leq r-1$.

From Kneser's Theorem, (3.37), the definitions of I_{1} and r, and the assumption $|W \odot S|<|S|$, we have

$$
\begin{equation*}
|S|-1 \geq\left|\sum_{i=1}^{r} A_{i}\right| \geq\left(r-\left|I_{1}\right|+1\right)\left|H_{1}\right|=\left(\left\lfloor\frac{|S|+1}{3}\right\rfloor-\left|I_{1}\right|+1\right)\left|H_{1}\right|, \tag{3.45}
\end{equation*}
$$

from which we derive both

$$
\left|I_{1}\right| \geq\left\lfloor\frac{|S|+1}{3}\right\rfloor+1-\frac{|S|-1}{\left|H_{1}\right|} \geq(|S|-1) \frac{\left|H_{1}\right|-3}{3\left|H_{1}\right|}+1
$$

and $|S| \geq(e+1)\left|H_{1}\right|+1$, where $e:=r-\left|I_{1}\right| \geq 1$. Combining these inequalities yields

$$
\left|I_{1}\right| \geq(e+1) \frac{\left|H_{1}\right|}{3}-e
$$

Since $\left|H_{1}\right| \geq 5$, the above bound is minimized for small e. Thus, since $e \geq 1$, we obtain

$$
\begin{equation*}
\left|I_{1}\right| \geq\left\lceil\frac{2}{3}\left|H_{1}\right|\right\rceil-1 \tag{3.46}
\end{equation*}
$$

which is at least the desired bound $\left\lceil\frac{1}{3}\left(\left|H_{1}\right|-2\right)\right\rceil+2$ except when $\left|H_{1}\right|=6$. In this case, we must have $|S|=2\left|H_{1}\right|+1=13$ with $e=1$, else the estimate (3.46) will become strict, yielding the desired bound on $\left|I_{1}\right|$. Thus $r=4$.

Since $|S|=13 \equiv 1 \bmod 3$, the set S_{r+1} contains a term from S, say α_{r+1}. In view of (3.36) and the definition of I_{1}, we know each $\operatorname{supp}\left(S_{i}\right)$, for $i \in I_{1}$, is contained in a single H_{1}-coset. If this single H_{1}-coset is equal to $\alpha_{r+1}+H$ for each $i \in I_{1}$, then we will have $3\left|I_{1}\right|+1=10 \geq\left|H_{1}\right|+1$ terms of S from the same H_{1}-coset, whence invoking Case 3 shows that the theorem holds for S, contrary to assumption. Therefore there must be some $j \in I_{1}$ such that $\operatorname{supp}\left(S_{j}\right) \subseteq \alpha_{j}+H_{1} \neq \alpha_{r+1}+H_{1}$, say w.l.o.g. $j=r$. Set $A_{i}^{\prime}=A_{i}$ for $i \in[1, r-1]$, set $A_{r}^{\prime}=(9)(10) \odot S_{r} g^{-1}$ and set $A_{r+1}^{\prime}=(11)(12) \odot S_{r+1} g$, where $g \in \operatorname{supp}\left(S_{r}\right)$. Observe that $\phi_{H_{1}}\left(A_{i}\right)=\phi_{H_{1}}\left(A_{i}^{\prime}\right)$ for $i \in[1, r-1]$ while $\left|\phi_{H_{1}}\left(A_{r}\right)\right|=\left|\phi_{H_{1}}\left(A_{r}^{\prime}\right)\right|=1$. Consequently, $\sum_{i=1}^{r} \phi_{H}\left(A_{i}^{\prime}\right)$ is a translate of $\sum_{i=1}^{r} \phi_{H}\left(A_{i}\right)$; in particular, $\sum_{i=1}^{r} \phi_{H_{1}}\left(A_{i}^{\prime}\right)$ is aperiodic in view of H_{1} being the maximal period of $\sum_{i=1}^{r} A_{i}$. However, $\operatorname{since} \operatorname{supp}\left(S_{r+1} g\right)$ is not contained in a single H_{1}-coset, it follows from Lemma 3.3 that $\left|\phi_{H_{1}}\left(A_{r+1}^{\prime}\right)\right| \geq 2$, whence, since $\sum_{i=1}^{r} \phi_{H_{1}}\left(A_{i}^{\prime}\right)$ is aperiodic, Kneser's Theorem implies that

$$
\left|\sum_{i=1}^{r+1} \phi_{H_{1}}\left(A_{i}^{\prime}\right)\right|>\left|\sum_{i=1}^{r} \phi_{H_{1}}\left(A_{i}^{\prime}\right)\right|=\left|\sum_{i=1}^{r} \phi_{H_{1}}\left(A_{i}\right)\right|=\left|\sum_{i=1}^{r+1} \phi_{H_{1}}\left(A_{i}\right)\right|
$$

Thus $\sum_{i=1}^{r+1} A_{i}^{\prime} \subseteq W \odot S$ intersects some H_{1}-coset that is disjoint from $\sum_{i=1}^{r+1} A_{i} \subseteq W \odot S$, which combined with (3.45) and the definition of e implies that

$$
|S|>|W \odot S|>\left|\sum_{i=1}^{r+1} A_{i}\right|=\left|\sum_{i=1}^{r} A_{i}\right| \geq(e+1)\left|H_{1}\right|=12
$$

yielding the contradiction $|S| \geq 14$. Thus Property 2 is established in the final remaining case.
Property 3: Let $A_{1} \cdot \ldots \cdot A_{r} A_{r+1}$ be a well-balanced setpartition, let $K \leq G$ be a subgroup, let $J \subseteq[1, r]$ be a subset of indices with $\left|\phi_{K}\left(A_{i}\right)\right|=1$ and $\left|A_{i}\right|=4$ for all $i \in J$, let $L=\mathrm{H}\left(\sum_{i \in J} A_{i}\right)$, and let $I \subseteq J$ denote all those indices $i \in J$ with $\left|\phi_{L}\left(A_{i}\right)\right|=1$. If $|J| \geq\left\lceil\frac{1}{3}(|K|-2)\right\rceil$ and $5 \leq|L|<|K|$, then $|I| \geq\left\lceil\frac{1}{3}(|L|-2)\right\rceil+2$.

Since $\left|\phi_{K}\left(A_{i}\right)\right|=1$ for all $i \in J$, each A_{i} with $i \in J$ is contained in a single K-coset, whence $\sum_{i \in J} A_{i}$ is also contained in a single K-coset. Thus $L \leq K$, so that our hypothesis $|L|<|K|$ implies $|L| \leq \frac{1}{2}|K|$. In particular,

$$
|K| \geq 2|L| \geq 10
$$

Suppose by contradiction that $|I| \leq\left\lceil\frac{1}{3}(|L|-2)\right\rceil+1 \leq \frac{1}{3}|L|+1$. For each $i \in J \backslash I$, we have $\left|\phi_{L}\left(A_{i}\right)\right| \geq 2$. Thus, in view of $L \neq K$, Kneser's Theorem implies that $|J \backslash I|=|J|-|I| \leq|K / L|-2$. Combined with our assumption on the size of $|I|$ and the hypothesis for the size of $|J|$, we find that

$$
\begin{equation*}
\left\lceil\frac{|K|-2}{3}\right\rceil-|K / L|+2 \leq|I| \leq\left\lceil\frac{|L|-2}{3}\right\rceil+1 \tag{3.47}
\end{equation*}
$$

which implies $\frac{1}{3}|K| \leq \frac{1}{3}|L|+|K / L|-\frac{1}{3}$, in turn yielding

$$
\begin{equation*}
|K| \leq|L|+\frac{3|K|}{|L|}-1 \tag{3.48}
\end{equation*}
$$

Considering the right hand side of (3.48) as a function of $|L|$, we find that its maximum will be obtained for a boundary value of $|L|$, i.e., for $|L|=5$ or $|L|=\frac{1}{2}|K|$. If $|L|=\frac{1}{2}|K|$, we obtain $|K| \leq \frac{1}{2}|K|+5$, and if $|L|=5$, we obtain $|K| \leq \frac{3}{5}|K|+4$. In view of $|K| \geq 10$, both of these inequalities can only hold for $|K|=10$ with $|L|=5$ (in view of $|L| \geq 5$). However, for these values, we see that (3.47) instead implies $3-2+2 \leq 2$, a contradiction. Thus Property 3 is established.

With the above three properties established for an arbitrary well-balanced setpartition $\mathcal{A}=A_{1} \cdot \ldots$. $A_{r} A_{r+1}$, we now proceed to complete the proof by considering a well-balanced setpartition satisfying an iterated list of extremal conditions. The argument that follows is a simple variation of the basic strategy used to proof the Partition Theorem [24]. During the course of the construction of \mathcal{A}, we will at times declare certain quantities fixed, by which we mean that any additional assumption on \mathcal{A} is always subject to all previously fixed quantities being maintained in their current state.

We begin by setting $J_{1}=[1, r]$, fixing S_{r+1}, and assuming our well-balanced setpartition $A_{1} \cdot \ldots \cdot A_{r} A_{r+1}$ has maximal cardinality sumset $\left|\sum_{i \in J_{1}} A_{i}\right|<|S| \leq|G|$ (in view of $|W \odot S|<|S|$). Fix $\sum_{i \in J_{1}} A_{i}$ up to translation. Let $H_{1}=\mathrm{H}\left(\sum_{i \in J_{1}} A_{i}\right)$ and I_{1} be as defined above Property 2.

Next assume that $\left|I_{1}\right|$ is minimal (subject to all prior fixed quantities and extremal assumptions). We showed above that $H_{1}=\mathrm{H}\left(\sum_{i=1}^{r} A_{i}\right)$ has $\left|H_{1}\right| \geq 5$, while Property 2 ensures that $\left|I_{1}\right| \geq\left\lceil\frac{1}{3}\left(\left|H_{1}\right|-2\right)\right\rceil+2$. We have $\left\langle A_{i}\right\rangle_{*} \subseteq H_{1}$ for all $i \in I_{1}$, whence (3.36) ensures that $\left\langle\operatorname{supp}\left(S_{i}\right)\right\rangle_{*} \subseteq H_{1}$ for all $i \in I_{1}$. Thus each $\operatorname{supp}\left(S_{i}\right)$, for $i \in I_{1}$, is contained in some H_{1}-coset. If it is the same H_{1}-coset for every $i \in I_{1}$, then we will have at least $3\left|I_{1}\right|-\epsilon \geq 3\left(\frac{1}{3}\left(\left|H_{1}\right|-2\right)+2\right)-\epsilon \geq\left|H_{1}\right|+1$ terms of S all from the same H_{1}-coset, whence Case 3 applied using the group $\left\langle\operatorname{supp}\left(\prod_{i \in I_{1}} S_{i}\right)\right\rangle_{*} \leq H_{1}<G$ shows that the theorem holds for S, contrary to assumption. Therefore we may instead assume that there are distinct $k_{1}, k_{1}^{\prime} \in I_{1}$ with $\operatorname{supp}\left(S_{k_{1}}\right)$ and $\operatorname{supp}\left(S_{k_{1}^{\prime}}\right)$ contained in distinct H_{1}-cosets; moreover, if $\left|A_{j}\right|=2$ for some $j \in I_{1}$, then we can additionally assume $j \in\left\{k_{1}, k_{1}^{\prime}\right\}$. Let $J_{2}=I_{1} \backslash\left\{k_{1}, k_{1}^{\prime}\right\}$. Note $\left|A_{i}\right|=4$ for all $i \in J_{2}$.

Fix S_{i} for all $i \in[1, r] \backslash J_{2}$, next assume that $\left|\sum_{i \in J_{2}} A_{i}\right|$ is maximal subject to all prior extremal assumptions still holding, and then fix $\sum_{i \in J_{2}} A_{i}$ up to translation. In view of $\left|J_{2}\right|=\left|I_{1}\right|-2 \geq\left\lceil\frac{1}{3}\left(\left|H_{1}\right|-2\right)\right\rceil$ and $\left|H_{1}\right| \geq 5$, we see that $\left|J_{2}\right|$ is nonempty. Moreover, we have

$$
\begin{equation*}
\sum_{i \in J_{2}}\left|A_{i}\right|-\left|J_{2}\right|+1=3\left|J_{2}\right|+1 \geq\left|H_{1}\right|-1 \tag{3.49}
\end{equation*}
$$

Let us next show that $\left|\sum_{i \in J_{2}} A_{i}\right|<\left|H_{1}\right|-1$. Suppose this is not the case: $\left|\sum_{i \in J_{2}} A_{i}\right| \geq\left|H_{1}\right|-1$. Now $\operatorname{supp}\left(S_{k_{1}}\right)$ and $\operatorname{supp}\left(S_{k_{1}^{\prime}}\right)$ are contained in disjoint H_{1}-cosets. Consequently, if we can swap a term between $S_{k_{1}}$ and $S_{k_{1}^{\prime}}$ with the result giving a well-balanced setpartition satisfying all extremal assumptions coming
before the assumption on $\left|\sum_{i \in J_{2}} A_{i}\right|$, then we will have contradicted the minimality of $\left|I_{1}\right|$. We proceed to do so.

Let $x \in \operatorname{supp}\left(S_{k_{1}}\right)$ and let $y \in \operatorname{supp}\left(S_{k_{1}^{\prime}}\right)$. If swapping the terms x and y does not result in a wellbalanced factorization, then w.l.o.g. we must have $\left|S_{k_{1}}\right|=3$ with $\operatorname{supp}\left(S_{k_{1}} x^{-1} y\right)$ a coset of a cardinality 3 subgroup (as argued in the existence of a well-balanced setpartition). However, in view of Lemma 3.4, this means that $\operatorname{supp}\left(S_{k_{1}} x^{-1} y^{\prime}\right)$ is not periodic, and thus not a coset of cardinality 3 subgroup, for all other $y^{\prime} \in \operatorname{supp}\left(S_{k_{1}^{\prime}} y^{-1}\right)$. Moreover, if $\left|\operatorname{supp}\left(S_{k_{1}^{\prime}}\right)\right|=3$, then Lemma 3.4 also ensures that $S_{k_{1}^{\prime}} x y^{\prime-1}$ cannot be a coset of a cardinality 3 subgroup for both remaining terms $y^{\prime} \in \operatorname{supp}\left(S_{k_{1}^{\prime}} y^{-1}\right)$. Thus, for any $x \in \operatorname{supp}\left(S_{k_{1}}\right)$, we can find a $y \in \operatorname{supp}\left(S_{k_{1}^{\prime}}\right)$ such that swapping x for y results in a wellbalanced factorization, thus inducing a well-balanced setpartition where $A_{k_{1}}^{\prime} \subseteq W_{k_{1}} \odot\left(A_{k_{1}} x^{-1} y\right)$ and $A_{k_{1}^{\prime}}^{\prime} \subseteq W_{k_{1}^{\prime}} \odot\left(A_{k_{1}^{\prime}} y^{-1} x\right)$ are obtained via Lemma 3.2 and have replaced $A_{k_{1}}$ and $A_{k_{1}^{\prime}}$. Furthermore, either $\left|A_{k_{1}}^{\prime}\right|=4$ or $\left|A_{k_{1}^{\prime}}^{\prime}\right|=4$, say $\left|A_{k_{1}}^{\prime}\right|=4$, and then the construction of $A_{k_{1}}^{\prime}$ given by Lemma 3.2 allows us to assume there is a 2 element subset of $A_{k_{1}}^{\prime}$ contained in an H_{1}-coset.

Since $\left|\sum_{i \in J_{2}} A_{i}\right| \geq\left|H_{1}\right|-1$, Lemma 2.2 implies that $\sum_{i \in I_{1}} A_{i}$ was a full H_{1}-coset (it cannot be larger as all sets A_{i} with $i \in J_{2} \subseteq I_{1}$ are each themselves contained in an H_{1}-coset). However, since $A_{k_{1}}^{\prime}$ still contains two elements from an H_{1}-coset, Lemma 2.2 also ensures that $\sum_{i \in J_{2}} A_{i}+A_{k_{1}^{\prime}}+A_{k_{2}^{\prime}}$ contains a translate of this H_{1}-coset. Thus an appropriate translate of the sumset of the new setpartition contains all elements of $\sum_{i=1}^{r} A_{i}$, whence the maximality of $\left|\sum_{i=1}^{r} A_{i}\right|$ ensures that the sumset has not changed up to translation. Hence, since there are two less sets contained in a single H_{1}-coset in the new setpartition, we see that we have contradicted the minimality of $\left|I_{1}\right|$. So we instead conclude that $\left|\sum_{i \in J_{2}} A_{i}\right|<\left|H_{1}\right|-1$, as claimed, which, in view of (3.49), implies that

$$
\begin{equation*}
\left|\sum_{i \in J_{2}} A_{i}\right|<\min \left\{\left|H_{1}\right|, \sum_{i \in J_{2}}\left|A_{i}\right|-\left|J_{2}\right|+1\right\} \tag{3.50}
\end{equation*}
$$

In view of (3.50) and Property 1, we see that $H_{2}:=\left(\sum_{i \in J_{2}} A_{i}\right)$ has $5 \leq\left|H_{2}\right|<\left|H_{1}\right|$. Let $I_{2} \subseteq J_{2}$ be all those indices $i \in J_{2}$ with $\left|\phi_{H_{2}}\left(A_{i}\right)\right|=1$. Assume $\left|I_{2}\right|$ is minimal (subject to all prior fixed quantities and extremal assumptions). Since $\left|J_{2}\right|=\left|I_{1}\right|-2 \geq\left\lceil\frac{1}{3}\left(\left|H_{1}\right|-2\right)\right\rceil$, we can apply Property 3 (with $L=H_{2}$ and $K=H_{1}$) to conclude $\left|I_{2}\right| \geq\left\lceil\frac{1}{3}\left(\left|H_{2}\right|-2\right)\right\rceil+2$. As before, all terms A_{i} with $i \in I_{2}$ are contained in a single H_{2}-coset but not all in the same H_{2}-coset, else applying Case 3 shows that the theorem holds for S, contrary to assumption. This allows us to find $k_{2}, k_{2}^{\prime} \in I_{2}$ such that $A_{k_{2}}$ and $A_{k_{2}^{\prime}}$ are contained in disjoint H_{2}-cosets. Set $J_{3}=I_{2} \backslash\left\{k_{2}, k_{2}^{\prime}\right\}$. Now fix all S_{i} for all $i \in[1, r] \backslash J_{3}$, next assume that $\left|\sum_{i \in J_{3}} A_{i}\right|$ is maximal subject to all prior extremal assumptions still holding, and then fix $\sum_{i \in J_{3}} A_{i}$ up to translation. Repeating the above arguments, we again find that

$$
\left|\sum_{i \in J_{3}} A_{i}\right|<\min \left\{\left|H_{2}\right|, \sum_{i \in J_{3}}\left|A_{i}\right|-\left|J_{3}\right|+1\right\} .
$$

Thus Property 1 implies that $H_{3}:=\left(\sum_{i \in J_{2}} A_{i}\right)$ has $5 \leq\left|H_{3}\right|<\left|H_{2}\right|$. Iterating the arguments of this paragraph, we obtain an infinite chain of subgroups $\infty>|G|>\left|H_{1}\right|>\left|H_{2}\right|>\left|H_{3}\right|>\ldots$, which is clearly impossible. This contradiction completes the proof. (Essentially, the only way the above process terminates after a finite number of steps is when we find enough elements from the same proper coset, whence Case 3 shows that the theorem holds for S.)

4. Distinct Solutions to a Linear Congruence

Let $r \in[2, n]$ and let $\alpha, a_{1}, \ldots, a_{r} \in \mathbb{Z}$. For each $x \in \mathbb{Z}$, we let $\bar{x} \in C_{n}$ denote x reduced modulo n. Consider the linear congruence

$$
a_{1} x_{1}+\ldots+a_{r} x_{r} \equiv \alpha \quad \bmod n
$$

Since the a_{i} are allowed to be zero, there is no loss of generality to assume $r=n$ when studying the above congruence, in which case we have

$$
\begin{equation*}
a_{1} x_{1}+\ldots+a_{n} x_{n} \equiv \alpha \quad \bmod n \tag{4.1}
\end{equation*}
$$

It is a simple and well-known result that there is a solution $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$ to (4.1) precisely when $\alpha \in \operatorname{gcd}\left(a_{1}, \ldots, a_{n}, n\right) \mathbb{Z}$. It is less immediate when a solution $\left(x_{1}, \ldots, x_{n}\right)$ with all x_{i} distinct modulo n exists. However, noting that the elements $a_{1} x_{1}+\ldots+a_{n} x_{n}$ having the x_{i} distinct modulo n, when
considered modulo n, are precisely the elements of $W \odot S$, where $W=0(1) \cdot \ldots(n-1) \in \mathcal{F}(\mathbb{Z})$ and $S=\overline{a_{1}} \cdot \overline{a_{2}} \cdot \ldots \cdot \overline{a_{n}} \in \mathcal{F}\left(C_{n}\right)$, we then see that there existing a solution to (4.1) is equivalent to asking whether $\bar{\alpha} \in W \odot S$. If $n \geq 3$, then our main result Theorem 1.1 shows that $\bar{\alpha} \in W \odot S$ typically holds precisely when

$$
\begin{equation*}
\alpha \in \frac{(n-1) n}{2} a_{1}+\operatorname{gcd}\left(a_{2}-a_{1}, a_{3}-a_{1}, \ldots, a_{n}-a_{1}, n\right) \mathbb{Z} \tag{4.2}
\end{equation*}
$$

the only exception being when, for some distinct $j, k, l \in[1, n]$, we have $a_{j}-a_{l} \equiv-a_{k}+a_{l} \bmod n$, $\operatorname{gcd}\left(a_{j}-a_{l}, n\right)=1$, and $a_{i} \equiv a_{l} \bmod n$ for all $i \in[1, n] \backslash\{j, k\}$, in which case $\bar{\alpha} \in W \odot S$ instead holds precisely when

$$
\begin{equation*}
\alpha \in \frac{(n-1) n}{2} a_{l}+(\mathbb{Z} \backslash n \mathbb{Z}) \tag{4.3}
\end{equation*}
$$

Thus Theorem 1.1 characterizes when a solution $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$ to (4.1) exists having all x_{i} distinct modulo n.

When $\alpha=1$, the congruence (4.1) becomes

$$
\begin{equation*}
a_{1} x_{1}+\ldots+a_{n} x_{n} \equiv 1 \quad \bmod n \tag{4.4}
\end{equation*}
$$

Fairly recently, in [1], solutions to (4.4) with all x_{i} distinct modulo n were constructed under the assumption that $\operatorname{gcd}\left(a_{1}, n\right)=\ldots=\operatorname{gcd}\left(a_{k}, n\right)=1$ and $a_{k+1}=\ldots=a_{n}=0$ for some $k<\varphi(n)$, where $\varphi(\cdot)$ denotes the Euler totient function. Additionally, [1, Theorem 2] proves the special case of Theorem 4.2 when n is prime, and Theorem 4.2 generalizes [1, Conjecture 3].

When $n=2$, there are essentially only three possible choices for (a_{1}, a_{2}), namely $(0,0),(0,1)$, and $(1,1)$. For $(0,0)$, there is no solution $\left(x_{1}, x_{2}\right)$ to (4.4) with the x_{i} distinct modulo 2 ; for $(0,1)$, there is a solution $\left(x_{1}, x_{2}\right)$ to (4.1) with the x_{i} distinct modulo 2 for all α; and for $(1,1)$, there is a solution $\left(x_{1}, x_{2}\right)$ to (4.4) with the x_{i} distinct modulo 2 but no such solution to (4.1) for $\alpha=0$. The following result gives some special instances of the characterization given by (4.2) and (4.3) for $n \geq 3$.

The first corollary addresses the question of when every $\alpha \in \mathbb{Z}$ has a solution $\left(x_{1}, \ldots, x_{n}\right)$ to (4.1) with the x_{i} distinct modulo n.

Corollary 4.1. Let $n \geq 3$ and let $a_{1}, \ldots, a_{n} \in \mathbb{Z}$.

1. If, for some distinct $j, k, l \in[1, n]$, we have $a_{j}-a_{l} \equiv-a_{k}+a_{l} \bmod n, \operatorname{gcd}\left(a_{j}-a_{l}, n\right)=1$, and $a_{i} \equiv a_{l} \bmod n$ for all $i \in[1, n] \backslash\{j, k\}$, then there is a solution $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$ to (4.4) with the x_{i} distinct modulo n but there is some $\alpha \neq 1$ for which there is no solution $\left(x_{1}, \ldots, x_{n}\right)$ to (4.1) with all the x_{i} distinct modulo n.
2. Otherwise, the following are equivalent.
(a) For every $\alpha \in \mathbb{Z}$, there is a solution $\left(x_{1}, \ldots, x_{n}\right)$ to (4.1) with the x_{i} distinct modulo n.
(b) For some $i \in[1, n], \operatorname{gcd}\left(a_{1}-a_{i}, \ldots, a_{n}-a_{i}, n\right)=1$.

Proof. Noting that $\operatorname{gcd}\left(a_{1}-a_{i}, \ldots, a_{n}-a_{i}, n\right)=\operatorname{gcd}\left(a_{1}-a_{j}, \ldots, a_{n}-a_{j}, n\right)$ for all $i, j \in[1, n]$, it follows that these are both simple consequences of (4.3) and (4.2).

The next result addresses the question of when (4.4) has a solution $\left(x_{1}, \ldots, x_{n}\right)$ with the x_{i} distinct modulo n. We remark that the arguments used below for $\alpha=1$ would actually work for any $\alpha \in \mathbb{Z}$ with $\operatorname{gcd}(\alpha, n)=1$.

Theorem 4.2. Let $n \geq 2$ and let $a_{1}, \ldots, a_{n} \in \mathbb{Z}$.

1. If n is odd or some a_{i} is even, then (4.4) has a solution $\left(x_{1}, \ldots, x_{n}\right)$ with the x_{i} distinct modulo n if and only if $\operatorname{gcd}\left(a_{2}-a_{1}, a_{3}-a_{1}, \ldots, a_{n}-a_{1}, n\right)=1$.
2. If $n \equiv 0 \bmod 4$ and all a_{i} are odd, then (4.4) has no solution $\left(x_{1}, \ldots, x_{n}\right)$ with the x_{i} distinct modulo n.
3. If $n \equiv 2 \bmod 4$ and all a_{i} are odd, then (4.4) has a solution $\left(x_{1}, \ldots, x_{n}\right)$ with the x_{i} distinct modulo n if and only if $\operatorname{gcd}\left(a_{2}-a_{1}, a_{3}-a_{1}, \ldots, a_{n}-a_{1}, n\right)=2$.

Proof. That the theorem holds for $n=2$ can be easily checked, so we assume $n \geq 3$.

1. If the a_{i} satisfy the hypothesis of Corollary 4.1.1, then $\operatorname{gcd}\left(a_{2}-a_{1}, a_{3}-a_{1}, \ldots, a_{n}-a_{1}, n\right)=1$ and Corollary 4.1 .1 shows that (4.4) has a solution. Therefore assume the a_{i} do not satisfy the hypothesis of Corollary 4.1.1. If n is odd, then $\frac{(n-1) n}{2} a_{1} \equiv 0 \bmod n$, whence (4.2) shows that (4.4) has a solution $\left(x_{1}, \ldots, x_{n}\right)$ with the x_{i} distinct modulo n if and only if $\operatorname{gcd}\left(a_{2}-a_{1}, a_{3}-a_{1}, \ldots, a_{n}-a_{1}, n\right)=1$. If some a_{i} is even, then we may w.l.o.g. re-index so that a_{1} is even, whence $\frac{(n-1) n}{2} a_{1} \equiv 0 \bmod n$ again holds, completing the proof as before.
2. Since the a_{i} are odd and n is even, we have $2 \mid \operatorname{gcd}\left(a_{2}-a_{1}, a_{3}-a_{1}, \ldots, a_{n}-a_{1}, n\right)$, in which case the hypotheses of Corollary 4.1.1 cannot hold for the a_{i}. Additionally, since $4 \mid n$, we have $2 \left\lvert\, \frac{(n-1) n}{2} a_{1}\right.$ as well, whence

$$
\frac{(n-1) n}{2} a_{1}+\operatorname{gcd}\left(a_{2}-a_{1}, a_{3}-a_{1}, \ldots, a_{n}-a_{1}, n\right) \mathbb{Z} \subseteq 2 \mathbb{Z}
$$

and thus cannot contain 1 . Hence (4.2) shows that (4.4) has no solution $\left(x_{1}, \ldots, x_{n}\right)$ with the x_{i} distinct modulo n.
3. As was the case in part 2 , we have $2 \mid \operatorname{gcd}\left(a_{2}-a_{1}, a_{3}-a_{1}, \ldots, a_{n}-a_{1}, n\right)$, so that the hypotheses of Corollary 4.1.1 cannot hold for the a_{i}. Since $n \equiv 2 \bmod 4$ and a_{1} is odd, we have $\frac{(n-1) n}{2} a_{1} \equiv \frac{n}{2}$ $\bmod n$. Thus (4.2) shows that (4.4) has a solution $\left(x_{1}, \ldots, x_{n}\right)$ with the x_{i} distinct modulo n if and only if $\frac{n}{2}-1 \in \operatorname{gcd}\left(a_{2}-a_{1}, a_{3}-a_{1}, \ldots, a_{n}-a_{1}, n\right) \mathbb{Z}$. This condition rephrases as $\operatorname{gcd}\left(a_{2}-a_{1}, a_{3}-a_{1}, \ldots, a_{n}-\right.$ $\left.a_{1}, n\right) \left\lvert\,\left(\frac{n}{2}-1\right)\right.$, which further rephrases as

$$
\begin{equation*}
\left.\operatorname{gcd}\left(\frac{a_{2}-a_{1}}{2}, \frac{a_{3}-a_{1}}{2}, \ldots, \frac{a_{n}-a_{1}}{2}, \frac{n}{2}\right) \right\rvert\, \frac{n-2}{4} \tag{4.5}
\end{equation*}
$$

If there were a common factor $p \geq 2$ dividing both x and $\frac{x-1}{2}$, where $x \in \mathbb{Z}^{+}$, then $p y=\frac{x-1}{2}$ and $p z=x$ for some positive integers $y, z \in \mathbb{Z}$, whence $2 y p+1=x=p z$ follows, implying $p(z-2 y)=1$, which contradicts that $p \geq 2$. Thus the integers x and $\frac{x-1}{2}$ can share no common factors. Applying this observation with $x=\frac{n}{2}$, we see that (4.5) holds precisely when $\operatorname{gcd}\left(\frac{a_{2}-a_{1}}{2}, \frac{a_{3}-a_{1}}{2}, \ldots, \frac{a_{n}-a_{1}}{2}, \frac{n}{2}\right)=1$, which is equivalent to $\operatorname{gcd}\left(a_{2}-a_{1}, a_{3}-a_{1}, \ldots, a_{n}-a_{1}, n\right)=2$. This completes the final part of the theorem.

5. Consequences for Minimal Zero-Sum Sequences

We briefly recall the structure of minimal zero-sum sequences of maximal length in groups of rank 2 . The following result was first shown as a conditional result in [48, Theorem 3.2], but by [16], [46], [9] and [19], the condition is satisfied.
Lemma 5.1 (cf. [48, Theorem 3.2]). Let G be a finite abelian group of rank two, say $G \cong C_{m} \oplus C_{m n}$ with $m, n \in \mathbb{N}$ and $m \geq 2$. The minimal zero-sum sequences of maximal length are of the following forms.

1. $S=e_{j}^{\text {ord } e_{j}-1} \prod_{i=1}^{\text {ord } e_{k}}\left(x_{i} e_{j}+e_{k}\right)$, where $\left\{e_{1}, e_{2}\right\}$ is a basis of G with ord $e_{2}=m n,\{j, k\}=\{1,2\}$, and $x_{i} \in \mathbb{N}_{0}$ with $\sum_{i=1}^{\text {ord } e_{k}} x_{i} \equiv 1 \bmod$ ord e_{j}.
2. $S=g_{1}^{s m-1} \prod_{i=1}^{(n+1-s) m}\left(x_{i} g_{1}+g_{2}\right)$, where $s \in[1, n],\left\{g_{1}, g_{2}\right\}$ is a generating set of G with ord $g_{2}=$ $m n$ and, in case $s \neq 1, m g_{1}=m g_{2}$ and $x_{i} \in \mathbb{N}_{0}$ with $\sum_{i=1}^{(n+1-s) m} x_{i}=m(n(n+1-s)-1)+1$.

In the second case of Lemma 5.1, the coefficients x_{i} are determined by equations only. But in the first case of Lemma 5.1, the coefficients x_{i} are determined by a congruence. Now suppose we are in case 1 and let G and S be as in Lemma 5.1. Then we may write S in the form

$$
S=e_{j}^{\operatorname{ord} e_{j}-1} \prod_{i=1}^{l}\left(x_{i} e_{j}+e_{k}\right)^{a_{i}}
$$

where $\left\{e_{1}, e_{2}\right\}$ is a basis of G, ord $e_{1}=m$, ord $e_{2}=m n,\{j, k\}=\{1,2\}, l \in\left[1, \operatorname{ord} e_{j}\right], a_{1}, \ldots, a_{l} \in \mathbb{N}$ with $a_{1}+\ldots+a_{l}=\operatorname{ord} e_{k}, x_{1}, \ldots, x_{l} \in\left[0\right.$, ord $\left.e_{j}-1\right]$ and all the x_{i} are distinct. Note $a_{1}+\ldots+a_{l}=\operatorname{ord} e_{k}$ with each $a_{i} \geq 1$ implies that $l \leq$ ord e_{k}. Thus the characterization given by Lemma 5.1.1 easily implies that $|\operatorname{supp}(S)| \in\left[3, \min \left\{l, \operatorname{ord} e_{j}\right\}\right]=[3, m+1]$ (we cannot have $|\operatorname{supp}(S)|=2$, as then all x_{i} from Lemma 5.1.1 would be equal modulo ord e_{j}, in which case the congruence $x_{1}+\ldots x_{\text {ord } e_{k}} \equiv 1 \bmod$ ord e_{j} could not hold).

Here, we consider ord $e_{j}-1, a_{1}, \ldots, a_{l}$ as a multiplicity pattern of the elements arising in S. Thus two natural questions appear:

- Which multiplicity patterns can occur?
- How big can the support of S be?

We use the main result from Section 4 to answer these questions. In particular, we will show that any value of $[3, m+1]$ can be achieved for $|\operatorname{supp}(S)|$, apart from $m+1$ when $n=1$ and $m \geq 3$, which, at least in the case $n=1$, was originally shown in [22, Proposition 5.8.5]. First we set $a_{i}=0$ for $i \in\left[l+1\right.$, ord $\left.e_{j}\right]$, choose $x_{l+1}, \ldots, x_{\text {ord } e_{j}} \in\left[0\right.$, ord $\left.e_{j}-1\right]$ such that all x_{i} are distinct, and obtain

$$
\begin{align*}
a_{1} x_{1}+\ldots+a_{\text {ord } e_{j}} x_{\text {ord } e_{j}} & \equiv 1 \quad \bmod \text { ord } e_{j} \text { and } \tag{5.1}\\
a_{1}+\ldots+a_{\text {ord } e_{j}} & =\operatorname{ord} e_{k} . \tag{5.2}
\end{align*}
$$

Now there are three possible cases depending on ord e_{j} and ord e_{k}.

Case 1. ord $e_{j}=$ ord e_{k}, i.e. $n=1$ and ord $e_{j}=$ ord $e_{k}=m$. Then if equation (5.2) is satisfied, we must have either $a_{1}=\ldots=a_{\text {ord } e_{j}}=1$ or $a_{\text {ord } e_{j}}=0$. Now we apply Theorem 4.2 and find that there is only a solution to (5.1) in the first case when $m=2$, whence $|\operatorname{supp}(S)|=m+1$ is only possible when $m=2$, and that, in the second case, there is a solution to (5.1) for all choices of a_{1}, \ldots, a_{l} with $\operatorname{gcd}\left(a_{1}, \ldots, a_{l}\right.$, ord $\left.e_{j}\right)=1 \bmod n$, where $1<l<\operatorname{ord} e_{j}=m$. In particular, taking the sequence $1^{l-1}\left(\operatorname{ord} e_{j}-l+1\right) 0^{\text {ord } e_{j}-l}$ for $a_{1} a_{2} \cdot \ldots \cdot a_{\text {ord } e_{j}}$, where $l \in\left[2\right.$, ord $\left.e_{j}-1\right]$, shows that any value of $|\operatorname{supp}(S)| \in\left[3, \operatorname{ord} e_{j}\right]=[3, m]$ is possible.
Case 2. ord $e_{k}<$ ord e_{j}, i.e., ord $e_{k}=m$ and ord $e_{j}=m n \geq 4$ with $m, n \geq 2$. Then (5.2) forces $a_{\text {ord } e_{j}}=0$. Again we apply Theorem 4.2 and find that there is a solution to (5.1) for all choices of a_{1}, \ldots, a_{l} with $\operatorname{gcd}\left(a_{1}, \ldots, a_{l}\right.$, ord $\left.e_{j}\right)=1 \bmod n$, where $1<l \leq$ ord $e_{k}<\operatorname{ord} e_{j}$. In particular, taking the sequence $1^{l-1}\left(\operatorname{ord} e_{k}-l+1\right) 0^{\text {ord } e_{j}-l}$ for $a_{1} a_{2} \cdot \ldots \cdot a_{\text {ord } e_{j}}$, where $l \in\left[2\right.$, ord $\left.e_{k}\right] \subset\left[2\right.$, ord $\left.e_{j}\right]$, shows that any value of $|\operatorname{supp}(S)| \in\left[3, \operatorname{ord} e_{k}+1\right]=[3, m+1]$ is possible.
Case 3. ord $e_{j}<\operatorname{ord} e_{k}$, i.e., ord $e_{j}=m$ and ord $e_{k}=m n$. If $m=2$, then (5.1) has a solution provided a_{1} and a_{2} are both odd. For $m \geq 3$, we apply Theorem 4.2 and obtain the following. The condition

$$
\begin{equation*}
\operatorname{gcd}\left(a_{2}-a_{1}, a_{3}-a_{1} \ldots, a_{\text {ord } e_{j}}-a_{1}, \operatorname{ord} e_{j}\right) \leq 2 \tag{5.3}
\end{equation*}
$$

must always be fulfilled if (5.1) is to have a solution. Moreover, if m is odd or some a_{i} is even, then we must also have the inequality in (5.3) being strict, while if $4 \mid m$ and all a_{i} are odd, then no solution to (5.1) can be found. In particular, taking the sequence 1^{l-1} (ord $\left.e_{k}-l+1\right) 0^{\text {ord } e_{j}-l}$ for $a_{1} a_{2} \cdot \ldots \cdot a_{\text {ord } e_{j}}$, where $l \in\left[2, \operatorname{ord} e_{j}-1\right]=[1, m-1]$, shows that any value of $|\operatorname{supp}(S)| \in[3, m]$ is possible. For $m \geq 3$, taking the sequence $1^{m-2}(2)(m n-m)$ for $a_{1} a_{2} \cdot \ldots \cdot a_{\text {ord } e_{j}}$ shows that the value $|\operatorname{supp}(S)|=m+1$ is also possible. Taking $(m n-1)(1)$ for $a_{1} a_{2}$ when $m=2$ also shows that $|\operatorname{supp}(S)|=m+1=3$ is possible when $m=2$.

Note that, for groups of the form $G \cong C_{m} \oplus C_{m}$, all minimal zero-sum sequences of maximal length are of the form $S=e_{1}^{m-1} \prod_{i=1}^{m}\left(x_{i} e_{1}+e_{2}\right)$, where $\left\{e_{1}, e_{2}\right\}$ is a basis of G with ord $e_{1}=\operatorname{ord} e_{2}=m$ and $x_{i} \in \mathbb{N}_{0}$ with $\sum_{i=1}^{m} x_{i} \equiv 1 \bmod m$. In this situation, only Case 1 appears.

References

[1] D. G. Adams and V. Ponomarenko, Distinct Solutions to a Linear Congruence, Involve 3 (2010), no. 3, 345-347.
[2] S. D. Adhikari and P. Rath, Davenport constant with weights and some related questions, Integers 6 (2006), A 30 (electronic).
[3] S. D. Adhikari and Y. G. Chen, Davenport constant with weights and some related questions II, J. Combin. Theory Ser. A 115 (2008), no. 1, 178-184.
[4] S. D. Adhikari, R. Balasubramanian, F. Pappalardi and P. Rath, Some zero-sum constants with weights, Proc. Indian Acad. Sci. (Math. Sci), 118 (2008), no. 2, 183-188.
[5] S. D. Adhikari, Y. G. Chen, J. B. Friedlander, S. V. Konyagin and F. Pappalardi, Contributions to zero-sum problems, Discrete Math., 306 (2006), 1-10.
[6] S. D. Adhikari, C. David and J. Jimenez, Generalization of some zero-sum theorems, preprint.
[7] N. Alon, M. B. Nathanson, and I. Ruzsa, The polynomial method and restricted sums of congruence classes, J. Number Theory, 56 (1996), no. 2, 404-417.
[8] G. Bhowmik, J. C. Schlage-Puchta, An improvement on Olson's constant for $\mathbb{Z}_{p} \oplus \mathbb{Z}_{p}$, Acta Arith., 141 (2010), no. 4, 311-319.
[9] G. Bhowmik, I. Halupczok, and J. Schlage-Puchta, The structure of maximal zero-sum free sequences, Acta Arith., 143 (2010), no. 1, 21-50.
[10] A. Bialostocki, CANT2005 conference in combinatorial and additive number theory, New York (2005).
[11] A. Bialostocki, P. Dierker, D. J. Grynkiewicz, and M. Lotspeich, On some developments of the Erdős-Ginzburg-Ziv theorem II, Acta Arith., 110 (2003), no. 2, 173-184.
[12] M. DeVos, L. Goddyn, B. Mohar, and R. Sámal, A quadratic lower bound for subset sums, Acta Arith., 129 (2007), no. 2, 187--195.
[13] J. A. Dias da Silva and Y. O. Hamidoune, Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc., 26 (1994), no. 2, 140-146.
[14] P. Erdős, A. Ginzburg and A. Ziv, Theorem in Additive Number Theory, Bull. Res. Council Israel, 10F (1961), 41-43.
[15] M. Freeze, W. D. Gao, and A. Geroldinger, The critical number of finite abelian groups, J. Number Theory, 129 (2009), no. 11, 2766--2777.
[16] W. Gao and A. Geroldinger, On zero-sum sequences in $\mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z} / n \mathbb{Z}$, Integers, 3 (2003), no. A8, 45 pp. (electronic).
[17] W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: A survey, Expositiones Mathematicae, 24 (2006), no. 4, 337-369.
[18] W. D. Gao, I. Z. Ruzsa, and R. Thangadurai, Olson's constant for the group $\mathbb{Z}_{p} \oplus \mathbb{Z}_{p}$, J. Combin. Theory Ser. A, 107 (2004), no. 1, 49-67.
[19] W. D. Gao, A. Geroldinger, and D. J. Grynkiewicz, Inverse zero-sum problems III, Acta Arith., 141 (2010), no. 2, 103-152.
[20] W. Gao and W. Jin, Weighted sums in finite cyclic groups, Discrete Math., 283 (2004), no. 1-3, 243-247.
[21] A. Geroldinger, Additive group theory and non-unique factorizations, Combinatorial Number Theory and Additive Group Theory, Advanced Courses in Mathematics, eds. A. Geroldinger and I. Ruzsa, Birkhäuser, CRM Barcelona, 2009, 1-89.
[22] A. Geroldinger and F. Hatler-Koch, Non-Unique Factorizations: Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics: A series of Monographs and Textbooks, No. 278, Chapman \& Hall, an imprint of Taylor \& Francis Group, Boca Raton, FL (2006).
[23] S. Griffiths, The Erdos-Ginzurg-Ziv theorem with units, Discrete Math., 308 (2008), no. 23, 5473-5484.
[24] D. J. Grynkiewicz, On a Partition Analog of the Cauchy-Davenport Theorem, Acta Math. Hungar., 107 (2005), no. 1-2, 161-174.
[25] D. J. Grynkiewicz, A weighted Erdös-Ginzburg-Ziv theorem, Combinatorica, 26 (2006), no. 4, 445-453.
[26] D. J. Grynkiewicz, Quasi-periodic decompositions and the Kemperman structure theorem, European J. Combin., 26 (2005), no. 5, 559-575.

27] D. J. Grynkiewicz, On a conjecture of Hamidoune for subsequence sums, Integers, 5 (2005), no. 2, A7, 11 pp. (electronic).
[28] D. J. Grynkiewicz, Sumsets, Zero-Sums and Extremal Combinatorics, Ph.D. Dissertation, Caltech, August 2005.
[29] D. J. Grynkiewicz and J. Zhuang, Weighted Sequences in Finite Cyclic Groups, Applied Mathematics E-Notes, 9 (2009), 40-46.
[30] D. J. Grynkiewicz, L. E. Marchan and O. Ordaz, Representation of finite abelian group elements by subsequence sums, to appear in J. Théor. Nombres Bordeaux.
[31] S. Guo and Z. W. Sun, On Bialostocki's Conjecture for Zero-Sum Sequences, Acta Arith. 140 (2009), no. 4, 329--334.
[32] Y. Hamidoune, A weighted Generalization of Gao's $n+D-1$ Theorem, Combin. Probab. Comput., 17 (2008), no. 6, 1-6.
[33] Y. O. Hamidoune, On weighted sequence sums, Comb. Prob. Comput., 4 (1995), 363-367.
[34] Y. O. Hamidoune, On weighted sums in abelian groups, Discrete Math., 162 (1996), 127-132.
[35] G. Károlyi, The Erdős-Heilbronn problem in abelian groups, Israel J. Math., 139 (2004), 349-359.
[36] M. Kneser, Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen, Math. Z., 64 (1955), 429-434.
[37] V. F. Lev, Restricted set addition in groups I: The classical setting, J. London Math. Soc. (2) 62 (2000), no. 1, $27-40$.
[38] F. Luca, A generalization of a classical zero-sum problem, Discrete Math. 307 (2007), 1672-1678.
[39] M. B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer-Verlag, Harrisonburg, VA (1996).
[40] H. H. Nguyen, E. Szemerédi, and V. H. Vu, Subset sums modulo a prime, Acta Arith., 131 (2008), no. 4, $303-316$.
[41] O. Ordaz, A. Phillipp, I. Santos and W. A. Schmid, On the Olson and the Strong Davenport Constants, J. Théor. Nombres Bordeaux, to appear.
[42] O. Ordaz and D. Quiroz, Representation of group elements as subsequences sums, Discrete Mathematics, 308 (2008), no. 15, 3315-3321.
[43] H. Pan and Z. W. Sun, Restricted sumsets and a conjecture of Lev, Israel J. Math., 154 (2006), 21--28.
[44] H. Pan and Z. W. Sun, A new extension of the Erdo"s-Heilbronn conjecture, J. Combin. Theory Ser. A, 116 (2009), no. 8, 1374--1381.
[45] C. Reiher, On Kemnitz' conjecture concerning lattice-points in the plane, Ramanujan J., 13 (2007), no. 1-3, 333--337.
[46] C. Reiher, A proof of the theorem according to which every prime number posseses Property B, Ph.D. Dissertation, University of Rostock (2010).
[47] K. Rogers, A combinatorial problem in abelian groups, Proc. Cambridge Philos. Soc., 59 (1963), 559-562.
[48] W. A. Schmid, Inverse zero-sum problems II, Acta Arith., 143 (2010), no. 4, 333-343.
[49] R. Thangadurai, A variant of Davenport's constant, Proc. Indian Acad. Sci. (Math. Sci), 117. (2007), no. 2, $147-158$.
[50] Xingwu Xia, Two generalized constants related to zero-sum problems for two special sets, Integers, 7 (2007) (electronic).
[51] P. Yuan and X. Zeng, Davenport constant with weights, Davenport constant with weights, European J. Combin., 31 (2010), no. 3, 677-680.
[52] P. Yuan and X. Zeng, Weighted Davenport's Constant and Weighted EGZ Theorem, preprint.
University of Graz, Institute for Mathematics and Scientific Computing, Heinrichstrasse 36, 8010 Graz, Austria

E-mail address: diambri@hotmail.com, andreas.philipp@uni-graz.at, vadim123@gmail.com

