ARITHMETIC-PROGRESSION-WEIGHTED SUBSEQUENCE SUMS

DAVID J. GRYNKIEWICZ AND ANDREAS PHILIPP AND VADIM PONOMARENKO

ABSTRACT. Let G be an abelian group, let S be a sequence of terms $s_1, s_2, \ldots, s_n \in G$ not all contained in a coset of a proper subgroup of G, and let W be a sequence of n consecutive integers. Let

$$W \odot S = \{w_1 s_1 + \ldots + w_n s_n : w_i \text{ a term of } W, w_i \neq w_j \text{ for } i \neq j\},$$

which is a particular kind of weighted restricted sumset. We show that $|W\odot S| \ge \min\{|G|-1,\,n\}$, that $W\odot S=G$ if $n\ge |G|+1$, and also characterize all sequences S of length |G| with $W\odot S\ne G$. This result then allows us to characterize when a linear equation

$$a_1x_1 + \ldots + a_rx_r \equiv \alpha \mod n$$
,

where $\alpha, a_1, \ldots, a_r \in \mathbb{Z}$ are given, has a solution $(x_1, \ldots, x_r) \in \mathbb{Z}^r$ modulo n with all x_i distinct modulo n. As a second simple corollary, we also show that there are maximal length minimal zero-sum sequences over a rank 2 finite abelian group $G \cong C_{n_1} \oplus C_{n_2}$ (where $n_1 \mid n_2$ and $n_2 \geq 3$) having k distinct terms, for any $k \in [3, \min\{n_1 + 1, \exp(G)\}]$. Indeed, apart from a few simple restrictions, any pattern of multiplicities is realizable for such a maximal length minimal zero-sum sequence.

1. Introduction

Let G be an abelian group and let S be a sequence of terms from G. It is a classical problem in additive number theory to study which elements from G can be represented as a sum of some subsequence of S (possibly of predetermined length). To make this formal, we let $\Sigma(S)$ denote the set of all elements from G that are the sum of terms from some non-empty subsequence of S, and we let $\Sigma_n(S)$, where $n \geq 0$ is an integer, denote the set of all elements from G that are the sum of terms from some n-term subsequence of S. Throughout this paper, we use the multiplicative standards from [22] [21] [17] for subsequence sum notation, with all formal definitions given in the next section and notation in the introduction kept to a minimum.

The Davenport constant $\mathsf{D}(G)$, which is the minimal length of a sequence from G that guarantees a subsequence with sum zero, i.e., that $0 \in \Sigma(S)$, is perhaps the most famous and well-studied subsequence sum question [47] [22]. Other examples include the Erdős-Ginzburg-Ziv Theorem [14] [22] [39], which states that a sequence S with length $|S| \geq 2|G|-1$ guarantees $0 \in \Sigma_{|G|}(S)$, the now proven Kemnitz Conjecture [45] [22], which states that $0 \in \Sigma_n(S)$ for $|S| \geq 4n-3$ when $G \cong C_n \oplus C_n$ is a rank 2 finite abelian group, and the Olson constant, which is analogous to the Davenport Constant only for sets instead of sequences [8] [18] [41]. Related to the Olson Constant is the Critical Number, which is the minimal cardinality of a subset A of G needed to guarantee that every element of G can be represented as a sum of distinct elements from A [15], i.e., that $\Sigma(A) = G$. See [27] [12] [40] for a handful of more recent results giving bounds for the number of elements representable as a subsequence sum of S.

All of the above concerns ordinary subsequence sum questions. Since the establishment of Caro's conjectured weighted Erdős-Ginzburg-Ziv Theorem [25], there has been considerable renewed interest to consider various weighted subsequence sum questions [51] [50] [49] [42] [38] [34] [33] [32] [30] [29] [23] [20] [2] [3] [4] [5] [6]. The basic idea is that given a sequence S of terms from an abelian group and a sequence W of integers (or, in the most general form, a sequence of homomorphisms between G and another abelian group G' [52]), one can instead consider which elements can be represented in the form $w_1s_1+\ldots+w_ns_n$ with the w_i and s_i being the terms of some subsequence from W and S, respectively. In this way, the sequence W is viewed as providing a list of potential weights, and one wishes to know which elements can be represented as a W-weighted subsequence sum rather than an ordinary subsequence sum, which is just the case when all terms in the weight sequence W are equal to 1. Formally, for a sequence $W = w_1 \cdot \ldots \cdot w_n$ of integers $w_i \in \mathbb{Z}$ and an equal length sequence $S = s_1 \cdot \ldots \cdot s_n$ with terms $s_i \in G$, we let

$$W \odot S = \{w_{\tau(1)}g_1 + \ldots + w_{\tau(n)}g_n : \tau \text{ a permuation of } \{1, 2, \ldots, n\}\}.$$

With this notation, the weighted Erdős-Ginzburg-Ziv Theorem says that if W is any zero-sum modulo |G| sequence of integers and S is a sequence of terms from G with length $|S| \ge 2|G| - 1$, then S has a

¹⁹⁹¹ Mathematics Subject Classification. 11B50, 11B75, 11D79, 11P70.

Supported in part by FWF, the Austrian Science Fund, project number P21576-N18.

|G|-term subsequence S' with $0 \in W \odot S'$. It is still an open conjecture of Bialostocki that the weaker hypothesis |S| = |G| with S zero-sum is enough to guarantee $0 \in W \odot S$ when |G| is even [10] [31].

If $n = |S| \le |W|$ and all terms of W are distinct (as will be the case in this paper), so that one may associate W with the set $A := \text{supp}(W) = \{w_i : w_i \text{ a term of } W\}$, then

$$W \odot S = \{w_1 s_1 + \ldots + w_n s_n : w_i \in A, w_i \neq w_j \text{ for } i \neq j\}.$$

When all $s_i = 1$, then this is precisely the restricted sumset

$$A + ... + A = \{a_1 + ... + a_n : a_i \in A, a_i \neq a_j \text{ for } i \neq j\},\$$

which has been extensively studied; see for instance [43] [35] [13] [7] [37] [44]. Thus, for such W, studying $W \odot S$ is the same as studying a particular weighted restricted sumset question. In the extreme case when |A| = n, there is only one possible element from the restricted sumset A + ... + A. However, once the s_i are allowed to take on more general values, the study of such weighted restricted sumsets $W \odot S$ quickly becomes more complicated.

Much of the initial attention regarding weighted subsequence sum problems remained on analogs of the Davenport Constant and Erdős-Ginzburg-Ziv Theorem, often providing results valid when both sequences W and S are arbitrary, the idea being that restricting such results to the case when W is the constant 1 sequence gives an extension of more classical subsequence sum questions. The weighted Erdős-Ginzburg-Ziv Theorem mentioned above gives one such example. However, there is a very natural non-constant weight sequence that has not yet been much studied: namely, one can consider W-weighted subsequence sums of S when W is an arithmetic progression of integers. The focus of this paper is to investigate such weighted subsequence sums. In particular, since the terms of W are generally all distinct, this is also a particular type of weighted restricted sumset question as discussed above.

Indeed, the main goal is to show that |G|+1 is the minimal length of a sequence S from a finite abelian group G needed to guarantee that every element of G is representable as a W-weighted subsequence sum, where W is an arithmetic progression of |S| consecutive integers (provided the terms of S do not all come from a coset of a proper subgroup, which is easily seen to be a necessary condition for $W \odot S = G$ to hold). Moreover, we also characterize the structure of those sequences of length one less which do not realize every element of G as a W-weighted subsequence sum and give a lower bound for $|W \odot S|$ in terms of |S|, which, at least in rather limited special cases, is tight (simply consider $S=0^{|S|-1}g$ with g a generator of G). In the notation of the following section, our main result is as follows. It is worth noting that Theorem 1.1 contains, as a very special case, the main result from [31], which was devoted to proving the aforementioned conjecture of Bialostocki in the case when the weight sequence is an arithmetic progression of even difference.

Theorem 1.1. Let G be a finite abelian group, let S be a sequence of terms from G not all contained in a coset of a proper subgroup, and let W be a sequence of |S| consecutive integers.

- $|W \odot S| \ge \min\{|G| 1, |S|\}.$
- If $|S| \ge |G|+1$, then $W \odot S = G$. Indeed, $W' \odot S' = G$ for some subsequence $S' \mid S$ with |S'| = |G|, where $W' = (0)(1) \cdot \ldots \cdot (|G| - 1) \in \mathcal{F}(\mathbb{Z})$.
- If |S| = |G| and $W \odot S \neq G$, then $|G| \geq 3$ and either

 - (i) $G \cong C_2 \oplus C_2$, $|\operatorname{supp}(S)| = |S| = |G| = 4$ and $W \odot S = G \setminus \{0\}$, or (ii) G is cyclic, $(-g' + S) = 0^{|G| 2}(g)(-g)$, for some $g, g' \in G$ with $\operatorname{ord}(g) = |G|$, and $W \odot S = G$ $G \setminus \{\frac{1}{2}(|G|-1)|G|g'\}$. In particular, $W \odot S$ contains every generator $h \in G$.

In the final sections, we give simple corollaries of the above theorem first regarding whether a linear equation has a solution modulo n with all members of the solution distinct modulo n, and then concerning the pattern of multiplicities possible in a maximal length minimal zero-sum sequence over a rank 2 finite abelian group, thus providing more refined information than immediately available from the recent characterization of such sequences [16] [19] [48] [46] [9].

2. Preliminaries

Our notation and terminology are consistent with [22] [21] [17]. We briefly gather some key notions and fix the notation concerning sequences and sumsets over finite abelian groups. Let $\mathbb N$ denote the set of positive integers and let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. For $a, b \in \mathbb{Z}$, we set $[a, b] = \{x \in \mathbb{Z} : a \le x \le b\}$. Throughout, all abelian groups will be written additively. We let C_n denote a cyclic group with n elements.

Let G be a finite abelian group, $H \leq G$ a subgroup and $A \subseteq G$ a subset. We use $\phi_H : G \to G/H$ to denote the canonical homomorphism and let $\langle A \rangle_* = \langle A - A \rangle$ denote the minimal subgroup $\langle A \rangle_*$ for which A is contained in a $\langle A \rangle_*$ -coset. Note that $\langle A \rangle_* = \langle A - a \rangle$ for any $a \in A$.

For subsets $A, B \subseteq G$, we set

$$A + B = \{a + b : a \in A, b \in B\}$$

for their sumset and, if $B = \{b\}$, write $A + B = A + b = \{a + b : a \in A\}$. We write

$$H(A) = \{ g \in G : g + A = A \}$$

for the *stabilizer* of A, which is in fact a subgroup of G for finite A. If A is a union of H-cosets, for some subgroup $H \leq G$, then we say A is H-periodic, which is equivalent to saying $H \leq \mathsf{H}(A)$, i.e, that A + H = A. We call A periodic if $\mathsf{H}(A)$ contains a nontrivial subgroup, and otherwise A is aperiodic. An element $x \in (A + H) \setminus A$ is referred to as an H-hole of A.

We use $\mathcal{F}(G)$ to denote all finite length (unordered) sequences with terms from G, refer to the elements of $\mathcal{F}(G)$ simply as sequences, and write all such sequences multiplicatively, so that a sequence $S \in \mathcal{F}(G)$ is written in the form

$$S = g_1 \cdot \ldots \cdot g_l = \prod_{g \in G} g^{\mathsf{v}_g(S)}, \quad \text{with } \mathsf{v}_g(S) \in \mathbb{N}_0 \quad \text{for all } g \in G.$$

We call $\mathsf{v}_g(S)$ the multiplicity of g in S and say that S contains g if $\mathsf{v}_g(S) > 0$. The notation $S_1 \mid S$ indicates that S_1 is a subsequence of S, that is, $\mathsf{v}_g(S_1) \leq \mathsf{v}_g(S)$ for all $g \in G$. If a sequence $S \in \mathcal{F}(G)$ is written in the form $S = g_1 \cdot \ldots \cdot g_l$, we tacitly assume that $l \in \mathbb{N}_0$ and $g_1, \ldots, g_l \in G$. A sequence of finite, nonempty subsets of G is called a set partition.

For a sequence

$$S = g_1 \cdot \ldots \cdot g_l = \prod_{g \in G} g^{\mathsf{v}_g(S)} \in \mathcal{F}(G)$$

and $n \in \mathbb{N}$, we call

$$|S| = l = \sum_{g \in G} \mathsf{v}_g(S) \in \mathbb{N}_0 \qquad \text{the } \mathit{length} \text{ of } S,$$

$$\sigma(S) = \sum_{i=1}^l g_i = \sum_{g \in G} \mathsf{v}_g(S)g \in G \qquad \text{the } \mathit{sum} \text{ of } S,$$

$$\sum_{n}(S) = \left\{\sum_{i \in I} g_i : \ I \subseteq [1, l], \ |I| = n\right\} \subseteq G \qquad \text{the } \mathit{set} \text{ of } n\text{-}\mathit{term} \text{ subsequence } \mathit{sums} \text{ of } S,$$

$$\sup_{n}(S) = \{g_1, \dots, g_l\} = \{g \in G : \mathsf{v}_g(S) > 0\} \qquad \text{the } \mathit{support} \text{ of } S, \text{ and}$$

$$\mathsf{h}(S) = \max\{\mathsf{v}_g(S) : g \in G\} \qquad \text{the } \mathit{maximum } \mathit{multiplicity} \text{ of a } \mathit{term} \text{ of } S.$$

For $g' \in G$, we write

$$(g'+S) = (g'+g_1) \cdot \ldots \cdot (g'+g_l) = \prod_{g \in G} (g'+g)^{\mathsf{v}_g(S)} = \prod_{g \in G} g^{\mathsf{v}_{g-g'}(S)} \in \mathcal{F}(G).$$

The sequence S is called

- a zero-sum sequence if $\sigma(S) = 0$,
- zero-sum free if there is no non-trivial zero-sum subsequence, and
- a minimal zero-sum sequence if |S| > 0, $\sigma(S) = 0$, and every subsequence $S' \mid S$ with 0 < |S'| < |S| is zero-sum free.

The Davenport constant $\mathsf{D}(G)$ of G is then the smallest integer $l \in \mathbb{N}$ such that every sequence S over G of length $|S| \ge l$ has a non-trivial zero-sum subsequence (equivalently, S is not zero-sum free).

The following is one of the foundational results of set addition. Note that multiplying both sides of the inequality from Kneser's Theorem [36] [39] [22] by |H| yields

$$\left|\sum_{i=1}^{n} A_{i}\right| \ge \sum_{i=1}^{n} |A_{i} + H| - (n-1)|H| = \sum_{i=1}^{n} |A_{i}| - (n-1)|H| + \rho,$$

where $\rho := \sum_{i=1}^{n} |(A_i + H) \setminus A_i|$ is the number of *H*-holes in the sets A_i . Additionally, if $\sum_{i=1}^{n} A_i$ is aperiodic, then Kneser's Theorem implies

$$\left|\sum_{i=1}^{n} A_i\right| \ge \sum_{i=1}^{n} |A_i| - n + 1.$$

Theorem 2.1 (Kneser's Theorem). Let G be an abelian group, let $A_1, \ldots, A_n \subseteq G$ be finite, nonempty subsets, and let $H = \mathsf{H}(\sum_{i=1}^n A_i)$. Then

$$|\sum_{i=1}^{n} \phi_H(A_i)| \ge \sum_{i=1}^{n} |\phi_H(A)| - n + 1.$$

We will also need the following simple consequence of the Pigeonhole Principle [39].

Lemma 2.2. Let G be a finite abelian group and let A, $B \subseteq G$ be nonempty subsets. If $|A| + |B| - 1 \ge |G|$, then A + B = G.

3. Proof of Theorem 1.1

For two sequences $W \in \mathcal{F}(\mathbb{Z})$ and $S \in \mathcal{F}(G)$, where G is an abelian group, set

$$W \odot S = \{ w_1 g_1 + \ldots + w_r g_r : w_1 \cdot \ldots \cdot w_r \mid W, g_1 \cdot \ldots \cdot g_r \mid S \text{ and } r = \min\{|W|, |S|\} \}.$$

Note that

$$W \odot S = (W0^{|S|-r}) \odot (S0^{|W|-r}) \quad \text{ with } \quad |W0^{|S|-r}| = |S0^{|W|-r}| = \max\{|W|,\,|S|\},$$

where $r = \min\{|W|, |S|\}$. Also, if $|W| \ge |S|$, then

$$(3.1) (W+w) \odot S = W \odot S + w\sigma(S) for all w \in \mathbb{Z},$$

while if $|S| \geq |W|$, then

$$(3.2) W \odot (S+g) = W \odot S + \sigma(W)g for all g \in G.$$

In particular, if |W| = |S|, then $G = W \odot S$ if and only if $G = (W + w) \odot (S + g)$ for all $w \in \mathbb{Z}$ and $g \in G$. We begin with a lemma dealing with the case |S| = 3 for Theorem 1.1.

Lemma 3.1. Let G be an abelian group, let $W = (0)(1) \cdot \ldots \cdot (|W|-1) \in \mathcal{F}(\mathbb{Z})$ be a sequence of consecutive integers, let $x, y \in G \setminus \{0\}$ be nonzero elements with $\langle x, y \rangle = G$, and set $S = xy \in \mathcal{F}(G)$.

- (i) If $|W| \ge 3$, then $\langle W \odot S \rangle_* = G$.
- (ii) If x = y, then $|W \odot S| \ge \min\{|G|, 2|W| 3\}$.
- (iii) If $x \neq y$, then $|W \odot S| \geq \min\{|G| 1, 2|W| 2\}$.

Proof. If $|W| \le 2$, then the lemma is easily verified. So we may assume $|W| \ge 3$. In this case, x, 2x, $2x + y \in W \odot S$, so that

$$\langle W \odot S \rangle_* \supseteq \langle x, 2x, 2x + y \rangle_* = \langle x, x + y \rangle = \langle x, y \rangle = G,$$

whence $\langle W \odot S \rangle_* = G$ follows, yielding (i). If x = y, then

$$W \odot S = \{x + 0, 2x + 0, \dots, (|W| - 1)x + 0, (|W| - 1)x + x, \dots, (|W| - 1)x + (|W| - 2)x\},\$$

from which (ii) is readily deduced. Therefore it remains to prove the lower bound for $|W \odot S|$ when $x \neq y$.

Without loss of generality, assume $\operatorname{ord}(x) \geq \operatorname{ord}(y)$. Let $r = |W| \geq 3$ and set $H = \langle x \rangle$. Since $G/H = \langle \phi_H(y) \rangle$, it follows that

$$|H| = \operatorname{ord}(x) \ge \operatorname{ord}(y) \ge \operatorname{ord}(\phi_H(y)) = |G/H|.$$

Now we have

(3.3)
$$W \odot S = \left\{ \begin{array}{ccccc} \Box & 0+y & 0+2y & \cdots & 0+(r-1)y \\ x & \Box & x+2y & \cdots & x+(r-1)y \\ 2x & 2x+y & \Box & \cdots & 2x+(r-1)y \\ 3x & 3x+y & 3x+2y & \cdots & 3x+(r-1)y \\ \vdots & \vdots & \vdots & & \vdots \\ (r-1)x & (r-1)x+y & (r-1)x+2y & \cdots & \Box \end{array} \right\}.$$

Note that each column consists of elements from the same H-coset. We divide the remainder of the proof into several cases based off the number of H-cosets in G.

Case 1: $|G/H| \ge 3$. If $r \le |G/H| \le |H| = \operatorname{ord}(x)$, then all columns in (3.3) correspond to distinct H-cosets filled with distinct elements, whence $|W \odot S| = r(r-1) \ge 2r-2$. If $|G/H| + 1 \le r \le |H| = \operatorname{ord}(x)$, then the first |G/H| columns in (3.3) are distinct and each contain at least r-1 elements, whence $|W \odot S| \ge (r-1)|G/H| \ge 3r-3 \ge 2r-2$. Finally, it remains to consider the case $r > |H| = \operatorname{ord}(x)$, for which $\operatorname{ord}(x) = |H|$ must be finite. Let r = |H| + s with $s \ge 1$. In this case, we see that the first |G/H| columns cover all distinct H-cosets and are each missing at most one element, while the first s > |G/H| columns are missing no elements. In consequence, $|W \odot S| \ge (|H|-1)|G/H| + \min\{|G/H|, s\}$. If $s \ge |G/H|$, then $|W \odot S| \ge |G|$ follows, as desired. Otherwise, when $1 \le s \le |G/H| - 1 \le |H| - 1$, we can recall that r = |H| + s and $|G/H| \ge 3$ and thus conclude that

$$|W \odot S| \ge (|H| - 1)|G/H| + s \ge 3|H| - 3 + s = r - 2 + |H| + (|H| - 1)$$

> $r - 2 + |H| + s = 2r - 2$,

also as desired.

Case 2: |G/H| = 2. In this case, since $r \ge 3 > |G/H|$, we see that the first two columns of (3.3) cover both distinct H-cosets. If $r \le \operatorname{ord}(x) = |H|$, then there are r-1 elements in both these columns, whence $|W \odot S| \ge 2(r-1)$, as desired. On the other hand, if $r \ge \operatorname{ord}(x) + 1$, then the first column is missing no element while the second column is missing at most one, whence $|W \odot S| \ge |G| - 1$, also as desired.

Case 3: |G/H| = 1. In this case, x generates G, and thus $y = \alpha x$ for some $\alpha \in \mathbb{Z}$ with $\alpha \in (-\frac{n}{2}, \lfloor \frac{n+1}{2} \rfloor]$, where $n := \operatorname{ord}(x) = |G|$. It suffices to prove (iii) when

$$|W| = r \le \left\lceil \frac{n+1}{2} \right\rceil,$$

as for larger |W|, one can simply apply (iii) using $r = \lceil \frac{n+1}{2} \rceil$ and note that $2r - 2 \ge n - 1 = |G| - 1$ holds in this case. Thus, in view of $r \ge 3$, it follows that $n = |G| \ge 4$. To simplify notation, we may assume x = 1 generates the cyclic group $G \cong C_n$.

Now, from (3.3), we know that $\{1, 2, \dots, (r-1)\} \subseteq W \odot S$. We also have

$$\{0 + \alpha, \ 2 + \alpha, \ 3 + \alpha, \ \dots, (r - 1) + \alpha\} \subseteq W \odot S.$$

Note that $r-1+\alpha \leq \lceil \frac{n+1}{2} \rceil -1 + \lfloor \frac{n+1}{2} \rfloor = n$. Thus, if $\alpha \geq r$, then the elements from (3.4) will be disjoint from $\{1,2,\ldots,(r-1)\}\subseteq W\odot S$, whence $|W\odot S|\geq 2(r-1)$, as desired. Likewise, if $\alpha \leq -(r-1)$, then we have $n+\alpha \geq \frac{n+1}{2} > r-1$, and the elements in (3.4) will again be disjoint from $\{1,2,\ldots,(r-1)\}\subseteq W\odot S$, yielding the desired bound $|W\odot S|\geq 2(r-1)$ once more. Thus, in both cases, (iii) holds, and we may now assume

$$(3.5) -r+2 \le \alpha \le r-1.$$

Suppose $\alpha \geq 0$. Then, in view of $y \neq x, \ y \neq 0$ and (3.5), we have $\alpha \in [2, r-1]$. The sums $0+1, 0+2, \ldots, 0+r-1 \in W \odot S$ show that $[1, r-1] \subseteq W \odot S$. The sums $j \cdot \alpha + (r-\alpha+i)$, for $j \in [1, r-1]$ and $i \in [0, \alpha-1] \setminus \{j-r+\alpha\}$, show that each interval $[r+(j-1)\alpha, r+j\alpha-1]$ is contained in $W \odot S$ apart from possibly the element $j\alpha + (r-\alpha+i) = j\alpha + j$ when $i = j-r+\alpha \in [0, \alpha-1]$, for $j \in [1, r-1]$. In particular, in order for an element to be missing from the interval $[r+(j-1)\alpha, r+j\alpha-1]$ in $W \odot S$, we must have $j-r+\alpha \geq 0$, i.e., $j \geq r-\alpha$. As a result, we conclude from all of the above that

$$[1,(r-\alpha+1)\alpha+r-\alpha]\setminus\{(r-\alpha)\alpha+(r-\alpha)\}\subseteq W\odot S,$$

from which, in view of $\alpha \in [2, r-1]$ and $r \geq 3$, it is easily deduced that

$$(3.6) |W \odot S| \ge \min\{|G| - 1, (r - \alpha + 1)\alpha + r - \alpha - 1\}$$

$$(3.7) > \min\{|G|-1, 3r-5, 2r-2\} > \min\{|G|-1, 2r-2\},\$$

as desired. So we now assume $\alpha < 0$.

Since $\alpha < 0$, we infer from (3.5) that $\alpha \in [-r+2, -1]$. Furthermore, (3.5) also gives

$$(3.8) r \ge |\alpha| + 2.$$

If $\alpha = -1$, then we clearly have

$$[-(r-1),-1] \cup [1,r-1] = ([1,r-1] \odot (-1) + 0 \cdot 1) \cup (0 \cdot (-1) + [1,r-1] \odot 1) \subseteq W \odot S,$$

from which (iii) easily follows. If $\alpha = -2$, then $[1, r - 1] = 0 \cdot (-2) + [1, r - 1] \odot 1 \subseteq W \odot S$ and

$$\{1 \cdot (-2) + 2 = 0, \quad 1 \cdot (-2) + 0 = -2,$$

$$2 \cdot (-2) + 1 = -3$$
, $2 \cdot (-2) + 0 = -4$, $3 \cdot (-2) + 1 = -5$, $3 \cdot (-2) + 0 = -6$, ..., $(r-1) \cdot (-2) + 1 = -2r + 3$, $(r-1) \cdot (-2) + 0 = -2r + 2$ $\subset W \odot S$.

Consequently,

$$[-2r+2,r-1]\setminus\{-1\}\subseteq W\odot S,$$

from which it is easily deduced that $|W \odot S| \ge \min\{|G|-1, 3r-3\} \ge \min\{|G|-1, 2r-2\}$, as desired. Therefore we may assume $\alpha \le -3$, in which case (3.8) gives

$$r \ge |\alpha| + 2 \ge 5.$$

We know $[1, r-1] = 0 \cdot \alpha + [1, r-1] \odot 1 \subseteq W \odot S$. Since $\alpha \le -3$ and $3 \le |\alpha| \le r-2$, we also have $1 \cdot \alpha + |\alpha| \cdot 1 = 0 \in W \odot S$, whence

$$[0, r-1] \subseteq W \odot S$$
.

Next we claim that, for each $j \in [1, r-1]$, $W \odot S$ also contains all elements from $[j\alpha, (j-1)\alpha - 1]$ except possibly $j\alpha + j$. Indeed, to see this, we have only to note that $j \cdot \alpha + \beta \cdot 1 \in W \odot S$ for $\beta \in [0, |\alpha| - 1] \setminus \{j\}$. Next, since $\alpha \leq -2$, it follows that

$$j\alpha + j = (j+1) \cdot \alpha + (|\alpha| + j) \cdot 1 \in W \odot S$$
 for $j \le r - 1 - |\alpha|$.

As a result, we conclude from the above work that

$$[(r - |\alpha| + 1)\alpha + (r - |\alpha| + 1) + 1, r - 1] \setminus \{(r - |\alpha|)\alpha + (r - |\alpha|)\} \subseteq W \odot S$$

which, combined with $|\alpha| \in [3, r-2]$ and $r \geq 5$, allows us to easily infer that

$$|W \odot S| \ge \min\{|G| - 1, (r - |\alpha| + 2)|\alpha| - 3\}$$

$$\ge \min\{|G| - 1, 3r - 6, 4r - 11\} \ge \min\{|G| - 1, 2r - 2\},$$

completing the proof.

We will need the following technical refinement of the case |W| = 3 from Lemma 3.1.

Lemma 3.2. Let G be an abelian group with $|G| \geq 5$, let $W = (0)(1)(2) \in \mathcal{F}(\mathbb{Z})$ be a sequence of 3 consecutive integers, let $x, y, z \in G$ be distinct elements with $\langle x, y, z \rangle_* = G$, and set $S = xyz \in \mathcal{F}(G)$. Suppose $\operatorname{ord}(x-z)$, $\operatorname{ord}(y-z)$, $\operatorname{ord}(x-y) \geq 3$. Then there exists a subset $X \subseteq W \odot S$ with |X| = 4, $|X \cap (3z + \langle x, z \rangle_*)| \geq 2$ and $\langle X \rangle_* = G$. Furthermore, if $G \not\cong C_6$, then $|H(X)| \neq 2$.

Proof. In view of (3.2), we can w.l.o.g. translate S so that z=0. If the three terms of S are in arithmetic progression, say S=0(x)(2x), S=0(y)(2y) or S=(-x)0(x), then $W\odot S=\{1,2,4,5\}\odot x$, $W\odot S=\{1,2,4,5\}\odot y$ or $W\odot S=\{-2,-1,1,2\}\odot x$, and the lemma is easily verified taking $X=W\odot S$. Therefore we may assume S is not in arithmetic progression, whence

(3.9)
$$y \notin \{-x, 0, x, 2x\}$$
 and $x \notin \{-y, 0, y, 2y\}$.

Consider the set $X := \{x, 2x, 2x + y, y\} \subseteq W \odot S$. In view of (3.9) and $\operatorname{ord}(x) \geq 3$, we have |X| = 4. We also have $\langle x, 2x, 2x + y \rangle_* = \langle x, x + y \rangle = \langle x, y \rangle = \langle x, y, z = 0 \rangle_* = G$, so that $\langle X \rangle_* = G$. Clearly, $|X \cap \langle x \rangle| \geq 2$.

Finally, if $|\mathsf{H}(X)| = 2$, then there must be a pairing up of the 4 elements of X such that the difference of elements in each pairing is equal to the same order two element. There are three such possible pairings: $\{x, 2x\}$ and $\{y, 2x + y\}$; $\{x, y\}$ and $\{2x, 2x + y\}$; $\{x, 2x + y\}$ and $\{y, 2x\}$. Since $\mathrm{ord}(x) \geq 3$ and $\mathrm{ord}(y) \geq 3$, we cannot have x and 2x, nor 2x and 2x + y, being in the same cardinality two coset, which rules out the first two possible pairings. On the other hand, if $\{x, 2x + y\}$ and $\{y, 2x\}$ are both cosets of the same order 2 subgroup, then we must have x + y = (2x + y) - x = 2x - y, contradicting (3.9). As this exhausts all possible pairings, we conclude that $|\mathsf{H}(X)| = 2$ does not hold, completing the proof.

Next, we show that if the terms of S generate G (up to translation), then so do the elements of $W \odot S$.

Lemma 3.3. Let G be an abelian group, let $S \in \mathcal{F}(G)$ be a sequence, and let $W \in \mathcal{F}(\mathbb{Z})$ be a sequence of consecutive integers. If |W| = |S|, then $\langle W \odot S \rangle_* = \langle \operatorname{supp}(S) \rangle_*$.

Proof. In view of (3.2), (3.1) and |W| = |S|, there is no loss in generality if we translate W and S such that $W = (0)(1) \cdot \ldots \cdot (|S| - 1)$ and $0 \in \operatorname{supp}(S)$. If $|S| \leq 2$, then the lemma is easily verified. We proceed by induction on |S|. If $\operatorname{supp}(S) = \{0\}$, then $\langle \operatorname{supp}(S) \rangle_* = \{0\} = \langle W \odot S \rangle_*$. Therefore we may assume $|\operatorname{supp}(S)| \geq 2$. We trivially have $\langle W \odot S \rangle_* \subseteq \langle \operatorname{supp}(S) \rangle = \langle \operatorname{supp}(S) \rangle_*$, with the latter equality in view of $0 \in \operatorname{supp}(S)$. Therefore, it suffices to show the reverse inclusion $\langle \operatorname{supp}(S) \rangle_* \subseteq \langle W \odot S \rangle_*$.

Let $x \in \text{supp}(S)$ be nonzero. Let $K := \langle \text{supp}(Sx^{-1}) \rangle$. Since $0 \in \text{supp}(Sx^{-1})$, we have

$$K = \langle \operatorname{supp}(Sx^{-1}) \rangle_* = \langle \operatorname{supp}(Sx^{-1}) \rangle.$$

Thus, by induction hypothesis, we conclude that

$$\langle (0 \cdot x) + (W0^{-1} \odot Sx^{-1}) \rangle_* = K;$$

moreover, since $R \odot (Sx^{-1}) \subseteq \langle \operatorname{supp}(Sx^{-1}) \rangle = K$ for any sequence of integers $R \in \mathcal{F}(\mathbb{Z})$, we actually have

$$(0 \cdot x) + (W0^{-1} \odot Sx^{-1}) \subseteq K.$$

Consequently, to show $\langle \operatorname{supp}(S) \rangle_* \subseteq \langle W \odot S \rangle_*$, it suffices to show that $W \odot S$ contains some element from x + K. However, clearly

$$(1 \cdot x) + ((0)(2)(3) \cdot \dots \cdot (|S| - 1) \odot Sx^{-1}) \subset W \odot S$$

is a nontrivial subset of $x + \langle \operatorname{supp}(Sx^{-1}) \rangle = x + K$, so that $W \odot S$ indeed contains some element from x + K, completing the proof.

The following lemma can be found in [26] as observation (c.5). See [28, Proposition 5.2] for a more detailed proof.

Lemma 3.4. Let G be an abelian group, let $A \subseteq G$ be a finite, nonempty subset, and let $x \in G \setminus A$. If $A \cup \{x\}$ is H-periodic with $|H| \ge 3$, then $A \cup \{y\}$ is aperiodic for every $y \in G \setminus \{x\}$.

We now proceed with the proof of our main result.

Proof of Theorem 1.1. In view of (3.2) and (3.1), our problem is invariant when translating S or W, so we may w.l.o.g. assume $0 \in \text{supp}(S)$ is a term with maximum multiplicity $\mathsf{v}_0(S) = \mathsf{h}(S)$. For $|G| \leq 4$, the theorem is quickly verified by an exhaustive enumeration of all possible sequences. Likewise when $|S| \leq 2$, while the case |S| = 3 follows from Lemma 3.1(ii)–(iii). Therefore we may assume

$$|G| \ge 5$$
 and $|S| \ge 4$

and proceed by a double induction on (|G|, |S|), assuming the theorem proved for any sequence over a smaller cardinality subgroup as well as any sequence over G with smaller length than S.

In view of (3.2), we see that if $(-g'+S)=0^{|G|-2}(g)(-g)$, for some $g,g'\in G$ with $\operatorname{ord}(g)=|G|$, then $W\odot S=G\setminus \{\frac{1}{2}(|G|-1)|G|g'\}$; in particular, $W\odot S$ contains every generator $h\in G$ in view of $|G|\geq 3$. Thus the latter conclusions of (ii) are simple consequences of the structural characterization of S given there.

Next let us show that the structural characterization from the third part of the theorem implies the second part of the theorem. Indeed, if |S| = |G| + 1 and $W' \odot S0^{-1} \neq G$, then recalling that $|G| \geq 5$ and applying the characterization to $S0^{-1}$ yields $S = g'^{|G|-2}(g'+g)(g'-g)0$ for some $g, g' \in G$ with $\operatorname{ord}(g) = |G|$. Since $\operatorname{ord}(g) = |G| \geq 5$, we have $(g'+g) \neq (g'-g)$. Thus, if $g' \neq 0$, then $|G| - 2 \leq h(S) = v_0(S) \leq 2$, contradicting that $|G| \geq 5$. Therefore we conclude that $S = 0^{|G|-1}(g)(-g)$ with $\operatorname{ord}(g) = |G|$, and now clearly the subsequence $S' = 0^{|G|-1}g$ has $W' \odot S' = G$. So we see that it suffices to prove the first and third parts of the theorem. In particular, we can assume $|S| \leq |G|$ and we need to show either $|W \odot S| \geq |S|$ or else |S| = |G| with S being described by (ii).

Case 1: $|\sup(S)| = 2$.

In this case, in view of $\langle \operatorname{supp}(S) \rangle = G$, we have $S = 0^{|S| - \alpha} g^{\alpha}$ with $\operatorname{ord}(g) = |G|$ and $1 \le \alpha \le |S| - 1 \le |G| - 1$. As a result, it is easily seen that $W \odot S$ is an arithmetic progression with difference g and length

$$|W \odot S| = \min\{|G|, |\Sigma_{\alpha}([0,|S|-1])|\} = \min\{|G|, \alpha|S| - \alpha^2 + 1\} \ge |S|,$$

where the final equality follows in view of $1 \le \alpha \le |S| - 1 \le |G| - 1$. Thus $|W \odot S| \ge |S|$, as desired. This completes Case 1.

Case 2: $h(S) \ge |S| - 2$.

Since $\langle \operatorname{supp}(S) \rangle = G$ with $|G| \geq 5$, we trivially have $\operatorname{h}(S) \leq |S| - 1$. If $\operatorname{h}(S) = |S| - 1$, then $\langle \operatorname{supp}(S) \rangle = G$ and $\operatorname{v}_0(S) = \operatorname{h}(S)$ ensure that $S = 0^{|S|-1}g$ with $\operatorname{ord}(g) = |G|$, and now Case 1 completes the proof. So it remains to consider $\operatorname{h}(S) = |S| - 2$ for Case 2. In this case, $S = 0^{|S|-2}xy$ with $x, y \in G \setminus \{0\}$. In view of Case 1, we may assume $x \neq y$. Note

$$(3.10) (W(|S|-1)^{-1} \odot T) \cup (W0^{-1} \odot T) \subseteq W \odot S,$$

where $T := xy \in \mathcal{F}(G)$. Lemma 3.1(iii) and $|S| \geq 4$ together imply that

$$|(W(|S|-1)^{-1}) \odot T| \ge \min\{|G|-1, 2|W|-4\} = \min\{|G|-1, 2|S|-4\} = \min\{|G|-1, |S|\}.$$

In consequence, if $|S| \leq |G| - 1$, then the proof is complete, so we assume |S| = |G|. In this case, we have

$$|W(|S|-1)^{-1} \odot T| \ge |G|-1$$

and likewise $|W0^{-1}\odot T|\geq |G|-1$. Combined with (3.10), we once more obtain the desired conclusion $W\odot S=G$ unless $W0^{-1}\odot T=W(|S|-1)^{-1}\odot T$ with $|W0^{-1}\odot T|=|G|-1$. In particular, $W0^{-1}\odot T$ is aperiodic, in which case (3.1) shows that $W0^{-1}\odot T=W(|S|-1)^{-1}\odot T$ is only possible if $\sigma(T)=x+y=0$. Thus y=-x. We now know $S=0^{|G|-2}x(-x)$. Hence, since $\langle \operatorname{supp}(S)\rangle =G$, we conclude that x generates G, whence G is cyclic with $\operatorname{ord}(x)=|G|$, which gives the desired conclusion of (ii). This completes Case 2.

Case 3: There exists a subsequence $T \mid S$ with $\langle \operatorname{supp}(T) \rangle_* = H$, where H < G is a proper, nontrivial subgroup, and either $|T| \ge |H| + 1$ (if $|H| \ge 3$) or $|T| \ge |H|$ (if |H| = 2).

Let $W_T = (0)(1) \cdot \ldots \cdot (|H| - 1) \in \mathcal{F}(\mathbb{Z})$. By induction hypothesis, we can apply the theorem to T to conclude that $W_T \odot T'$ is an H-coset for some subsequence $T' \mid T$ with |T'| = |H|. By translating appropriately, we can w.l.o.g. assume $0 \in \text{supp}(T')$, though we may lose that $h(S) = v_0(S)$. Let

$$\langle \operatorname{supp}(\phi_H(ST'^{-1})) \rangle_* = K/H, \quad \text{where } H \leq K \leq G.$$

Then all terms of $\phi_H(ST'^{-1})$ are contained in a single K/H-coset, say supp $\{\phi_K(ST'^{-1})\} = \{\phi_K(\alpha)\}$, where $\alpha \in G$. Consequently, since $\langle \operatorname{supp}(S) \rangle_* = \langle \operatorname{supp}(S) \rangle = G$, so that $\langle \operatorname{supp}(\phi_K(S)) \rangle = G/K$, and since $\operatorname{supp}(T') \subseteq H \subseteq K$, so that $\operatorname{supp}(\phi_K(T')) = \{0\}$, it follows that

$$\langle \phi_K(\alpha) \rangle = G/K.$$

If $T \neq T'$, which holds whenever $|H| \geq 3$, then it follows in view of $\operatorname{supp}(\phi_H(T)) = \{0\}$ that $\operatorname{supp}(\phi_H(ST'^{-1})) = \operatorname{supp}(\phi_H(S))$, whence $\langle \operatorname{supp}(\phi_H(ST'^{-1})) \rangle_* = \langle \operatorname{supp}(\phi_H(S)) \rangle_* = G/H$. In summary, (3.12) $K = G \quad \text{when } T' \neq T \text{ or } |H| \geq 3.$

Next, let us show that

$$(3.13) |W \odot S| \ge 2|H|.$$

If $|\operatorname{supp}(\phi_H(ST'^{-1}))| \geq 2$, then $|WW_T^{-1} \odot \phi_H(ST'^{-1})| \geq 2$, which combined with the fact that $W_T \odot T'$ is an H-coset yields (3.13). Therefore assume instead $\operatorname{supp}(\phi_H(ST'^{-1})) = \{\phi_H(\beta)\}$, where $\beta \in \operatorname{supp}(ST'^{-1})$. Since $\operatorname{supp}(T) \subseteq H$, if $\phi_H(\beta) = 0$, then $\operatorname{supp}(S) \subseteq H < G$ follows, contradicting that $\langle \operatorname{supp}(S) \rangle = G$. Therefore $\phi_H(\beta) \neq 0$. However, if $|H| \geq 3$, then ST'^{-1} contains a term from T, and thus a term from H, in which case $\phi_H(\beta) = 0$, contrary to what we just noted. Therefore we can now assume |H| = |T| = 2 for proving (3.13). Now $(x + W_T) \odot T' = H$ for all $x \in [0, |S| - 2]$. Thus, if (3.13) fails, then we must have

(3.14)
$$|\bigcup_{x \in [0, |S|-2]} W(x+W_T)^{-1} \odot \phi_H(\beta)^{|S|-2}| = 1.$$

As a result, since $|S| \ge 4$, comparing the values x = 0 and x = 1 in (3.14) shows that

$$\left(\frac{(|S|-1)|S|}{2}-1\right)\phi_H(\beta) = \left(\frac{(|S|-1)|S|}{2}-3\right)\phi_H(\beta),$$

whence $2\phi_H(\beta) = 0$. However, since $\operatorname{supp}(\phi_H(S)) = \{0, \phi_H(\beta)\}$ must generate G/H, this implies that $|G| = |G/H| \cdot |H| = 2 \cdot 2 = 4$, contradicting the assumption $|G| \ge 5$. Thus (3.13) is established in all cases.

We can assume

$$(3.15) 2 \le |H| \le \frac{|S| - 1}{2},$$

else the desired conclusion $|W \odot S| \ge |S|$ follows from (3.13). We divide the remainder of the case into several subcases.

Subcase 3.1: K = G and $|S| \ge |H| + |G/H| + 1$.

In this case, we can apply the induction hypothesis to $\phi_H(ST'^{-1})$ to conclude that

$$(WW_T^{-1}) \odot \phi_H(ST'^{-1}) = G/H.$$

Hence, since $W_T \odot T'$ is an H-coset, it follows that $G = (WW_T^{-1}) \odot (ST'^{-1}) + W_T \odot T' \subseteq W \odot S$, as desired

Subcase 3.2: $|S| \leq |H| + |K/H| - 1 + \epsilon$, where $\epsilon = 0$ if $|K/H| \geq 3$ and $\epsilon = 1$ if $|K/H| \leq 2$.

In this case, we can apply the induction hypothesis to $WW_T^{-1} \odot \phi_H(ST'^{-1})$, recall that $W_T \odot T'$ is an H-coset, and use the bounds given by (3.15) to conclude that

$$(3.16) |W \odot S| \ge |H|(|S| - |T'|) = |H|(|S| - |H|) \ge \min\{2|S| - 4, \frac{|S|^2 - 1}{4}\}.$$

If the theorem fails for S, then $|W \odot S| \le |S| - 1$, which combined with (3.16) yields the contradiction $|S| \le 3$.

Subcase 3.3: |S| = |H| + |K/H|.

In view of Subcase 3.2, we can assume $|K/H| \ge 3$, whence $|K| \ge 3|H| \ge 6$. Applying the induction hypothesis to $WW_T^{-1} \odot \phi_H(ST'^{-1})$ and recalling that $W_T \odot T'$ is an H-coset, we conclude that

$$|W \odot S| \ge |H|(|K/H| - 1) = |K| - |H|.$$

If the theorem fails for S, then $|W \odot S| \le |S| - 1 = |H| + |K/H| - 1$, which combined with (3.17) yields $|K| \le 2|H| + |K/H| - 1$.

However, in view of $2 \leq |H| \leq \frac{|K|}{3}$, the above is only possible if |K| = 6 and |H| = 2. In this case, equality must hold in (3.17), which is only possible (in view of |K/H| = 3 and the characterization given by (ii)) if the 3 terms of $\phi_H(ST'^{-1})$ are the 3 distinct elements of some cardinality 3 coset $\phi_H(\beta) + K/H$, where $\beta \in G$. Let $K/H = \{0, \phi_H(g), 2\phi_H(g)\}$, where $\operatorname{ord}(\phi_H(g)) = 3$ and $g \in G$, so that

$$\phi_H(ST'^{-1}) = \phi_H(\beta)\phi_H(\beta + g)\phi_H(\beta + 2g).$$

Since $3 \equiv 1 \mod 2$, we have $(0)(3) \odot T' = H$, while

$$(1)(2)(4) \odot \phi_H(ST'^{-1}) = (1)(2)(4) \odot \phi_H(\beta)\phi_H(\beta+g)\phi_H(\beta+2g) = 7\phi_H(\beta) + \{0, \phi_H(g), 2\phi_H(g)\}$$

is a full K/H-coset, whence

$$7\beta + K = (0)(3) \odot T' + (1)(2)(4) \odot ST'^{-1} \subseteq W \odot S.$$

Thus $|W \odot S| \ge |K| = 6 > |S|$, as desired, which completes the subcase.

Observe that Subcases 3.1–3.3 cover all possibilities when K = G. Thus it remains to consider the case when K < G is proper, in which case (3.12) shows |H| = 2. Note that the following subcase covers all remaining possibilities.

Subcase 3.4: K < G is proper and $|S| \ge |H| + |K/H| + 1 = |K/H| + 3$.

In view of (3.12), we conclude there must be precisely 2 terms of S from H for this subcase, else $T \neq T'$ and K = G follows, contrary to subcase hypothesis.

Suppose $|S| \ge |H| + 2|K/H| + 1 = |K| + 3$. Then $|ST'^{-1}| \ge 2|K/H| + 1 = |K| + 1 \ge 3$. Recall that all terms of ST'^{-1} are from the K-coset $\alpha + K$. Thus $\langle \operatorname{supp}(ST'^{-1}) \rangle_* \le K < G$. Hence, if $\langle \operatorname{supp}(ST'^{-1}) \rangle_*$ is nontrivial, then, in view of $|ST'^{-1}| \ge |K| + 1 \ge 3$, we see that the hypotheses of Case 3 but not Subcase 3.4 hold using ST'^{-1} and $\langle \operatorname{supp}(ST'^{-1}) \rangle_*$ in place of T and H, whence one of the previous subcases can be applied to complete the case. On the other hand, if $\langle \operatorname{supp}(ST'^{-1}) \rangle_*$ is trivial, say w.l.o.g. $ST'^{-1} = \alpha^{|S|-2}$, then we can translate S so that $S = 0^{|S|-2}xy$ and apply Case 2 to complete the subcase. So we may instead assume

$$(3.18) |S| < |K| + 2.$$

Since $|S{T'}^{-1}| = |S| - |H| \ge |K/H| + 1$ holds by hypothesis, we can apply the induction hypothesis to $WW_T^{-1} \odot \phi_H(S{T'}^{-1})$ and recall that $W_T \odot T'$ is an H-coset to thereby conclude that

$$(3.19) |W \odot S| \ge |K|.$$

If the theorem fails for S, then we must have $|W \odot S| \le |S| - 1$, which, in view of (3.18) and (3.19), is only possible if

$$(3.20) 2|K/H| + 1 = |K| + 1 < |S| < |K| + 2.$$

From (3.15), we have $|S| \ge 2|H| + 1$, which combined with (3.20) implies that $|K/H| \ge 2$.

Recall that supp $(ST'^{-1}) \subseteq \alpha + K$. Since $|K/H| \ge 2$, we infer from (3.20) that $|\phi_H(ST'^{-1})| \ge |K/H| + 1$, whence applying the induction hypothesis to $\phi_H(ST'^{-1})$ shows that there exists a subsequence $R \mid ST'^{-1}$ with |R| = |K/H| such that $W' \odot \phi_H(R)$ is a K/H-coset for any sequence W' consisting of |K/H| consecutive integers.

Recall that $|K| \ge |H| \ge 2$. Thus, if $|W \odot S| \ge 2|K|$, then combining this with (3.18) shows that $|W \odot S| \ge |S|$, as desired. Therefore we conclude that

$$(3.21) |W \odot S| < 2|K|.$$

In view of the subcase hypothesis, $ST'^{-1}R^{-1}$ is a nonempty sequence, so we may find some $g \in \operatorname{supp}(ST'^{-1}R^{-1})$. Since $(0)(1) \odot T' = H$ and $(2)(3) \cdot \ldots (|K/H| + 1) \odot \phi_H(R)$ is a K/H-coset, we conclude that

$$(0)(1)\cdot\ldots\cdot(|K/H|+2)\odot T'Rg$$

contains the full K-coset

(3.22)
$$\left(\frac{(|K/H|+1)(|K/H|+2)}{2} - 1 \right) \alpha + (|K/H|+2)g + K.$$

Likewise, since $(1)(2) \odot T' = H$ and $(3)(4) \cdot \dots (|K/H| + 2) \odot \phi_H(R)$ is a K/H-coset, we conclude that

$$(0)(1)\cdot\ldots\cdot(|K/H|+2)\odot T'Rg$$

also contains the full K-coset

(3.23)
$$\left(\frac{(|K/H|+2)(|K/H|+3)}{2} - 3 \right) \alpha + K.$$

As all terms of ST'^{-1} are from $\alpha + K$, we have $\phi_K(\alpha) = \phi_K(g)$, while in view of $|W \odot S| < 2|K|$, both K-cosets given in (3.22) and (3.23) must be equal; which implies $2\phi_K(\alpha) = 0$. As a result, we derive from (3.11) and K < G that |G/K| = 2.

If $|K/H| \le 2$, then $|G| = |G/K||K/H| \le 2 \cdot 2 = 4$, contrary to assumption. Therefore we now conclude that $|K/H| \ge 3$. Next observe that

$$(0)(2) \odot T' + (1)(3)(4) \cdot \ldots \cdot (|K/H| + 2) \odot Rg \subseteq \left(\frac{(|K/H| + 2)(|K/H| + 3)}{2} - 2\right)\alpha + K,$$

which is a K-coset disjoint from that of (3.23). Consequently,

$$|W \odot S| \ge |K| + |(0)(2) \odot T' + (1)(3)(4) \cdot \dots \cdot (|K/H| + 2) \odot Rg|.$$

However, $(3)(4) \cdot \ldots \cdot (|K/H| + 2) \odot \phi_H(R)$ is a full K/H-coset (as previously derived by use of the induction hypothesis to define R), which readily implies that

$$|(0)(2) \odot T' + (1)(3)(4) \cdot \ldots \cdot (|K/H| + 2) \odot Rg| \ge |K/H| \ge 3.$$

Combined with (3.24) and (3.20), we conclude that $|W \odot S| \ge |K| + 3 \ge |S| + 1$, as desired. This completes the final subcase of Case 3. For the remainder of the arguments, we return to considering S translated so that $\mathsf{v}_0(S) = \mathsf{h}(S)$.

Case 4:
$$\frac{1}{3}(|S|+2) \le h(S) \le |S|-3$$
.

Note that the case hypothesis implies $|S| \ge 6$. If $g \in \text{supp}(S)$ is nonzero with $d := \text{ord}(g) \le \lceil \frac{1}{3}(|S|+2) \rceil$, then $0^d g \in \mathcal{F}(G)$ is a subsequence of S with length $|0^d g| = d + 1 = |\langle g \rangle| + 1 \le |S| \le |G|$; moreover, $\langle \text{supp}(0^d g) \rangle_*$ is equal to the proper (since the previous inequality implies d < |G|), nontrivial subgroup $\langle g \rangle$. Consequently, Case 3 can be invoked to complete the proof. Therefore we instead conclude that

(3.25)
$$\operatorname{ord}(g) \ge \lceil \frac{1}{3}(|S|+2)\rceil + 1 \quad \text{for all nonzero } g \in \operatorname{supp}(S).$$

Since $v_0(S) \leq |S| - 3$, choose some nonzero $x \in \operatorname{supp}(S)$. In view of Case 1, we have $|\operatorname{supp}(S)| \geq 3$, whence there must be some other nonzero $y \in \operatorname{supp}(S)$ with $x \neq y$. If, for every such nonzero $y \in \operatorname{supp}(S)$ with $x \neq y$, we have $y \in \langle x \rangle$, then $\langle x \rangle = \langle \operatorname{supp}(S) \rangle = G$. Otherwise, we can find some nonzero $y \in \operatorname{supp}(S)$ with $x \neq y$ and $\langle x, y \rangle > \langle x \rangle$. As a result, choosing the nonzero $y \in \operatorname{supp}(S) \setminus \{0, x\}$ appropriately and setting $K_1 = \langle x, y \rangle$, we obtain

$$(3.26) |K_1| = |\langle x, y \rangle| \ge \min\{|G|, 2 \operatorname{ord}(x)\} \ge \min\{|G|, 2\lceil \frac{1}{3}(|S|+2)\rceil + 2\},$$

where the latter bound follows from (3.25).

Let $R_1 = 0^{\lceil \frac{1}{3}(|S|+2)\rceil - 1}xy$. In view of the case hypothesis, we see that $R_1 \mid S$ with $0 \in \text{supp}(SR_1^{-1})$. Let $R_2 = SR_1^{-1}$, so that, in view of $|S| \ge 6$ and the previous observation, we have

$$(3.27) 0 \in \operatorname{supp}(R_1) \cap \operatorname{supp}(R_2).$$

Let $K_2 = \langle \operatorname{supp}(R_2) \rangle_* = \langle \operatorname{supp}(R_2) \rangle$. In view of (3.27), we also have $K_1 = \langle \operatorname{supp}(R_1) \rangle_* = \langle \operatorname{supp}(R_1) \rangle$. Observe that

$$(3.28) K_1 + K_2 = \langle \operatorname{supp}(S) \rangle = G.$$

From the case hypothesis $v_0(S) \leq |S| - 3$ and (3.27), we see that $|\sup(R_2)| \geq 2$, whence K_2 is nontrivial. If $|K_2| \leq |R_2| - 1 \leq |S| - 1 \leq |G| - 1$, then K_2 will be proper and R_2 will be a sequence of length at least $|K_2| + 1$ all of whose terms come from the coset $0 + K_2$, whence Case 3 completes the proof. Therefore we can assume

$$(3.29) |K_2| \ge |R_2| = |S| - |R_1| = |S| - \lceil \frac{1}{3}(|S| + 2) \rceil - 1 = \lfloor \frac{2|S| - 5}{3} \rfloor.$$

From (3.25), we also have

$$|K_2| \ge \lceil \frac{1}{3}(|S|+2)\rceil + 1.$$

Let $A_1 = (0)(1) \cdot \ldots \cdot (|R_1| - 1) \odot R_1$ and let $A_2 = (|R_1|)(|R_1| + 1) \cdot \ldots \cdot (|S| - 1) \odot R_2$. In view of Lemma 3.3, we have $\langle A_1 \rangle_* = \langle \operatorname{supp}(R_1) \rangle_* = K_1$ and $\langle A_2 \rangle_* = \langle \operatorname{supp}(R_2) \rangle_* = K_2$. Also, from their definition, we have

$$(3.31) A_1 + A_2 \subseteq W \odot S.$$

Since $|\operatorname{supp}(R_2)| \geq 2$, it is readily deduced that $|A_2| \geq 2$. In consequence, if $|A_1| \geq |G| - 1$, then applying Lemma 2.2 to $A_1 + A_2$ shows that $A_1 + A_2 = G$, which in view of (3.31) completes the proof. Therefore we can assume $|A_1| \leq |G| - 2$. Consequently, in view of $\langle \operatorname{supp}(R_1) \rangle_* = K_1$ and (3.26), applying Lemma 3.1(iii) to R_1 results in

$$(3.32) |A_1| \ge 2|R_1| - 2 = 2\lceil \frac{1}{3}(|S| + 2)\rceil.$$

Since $|R_2| < |S|$, we can apply the induction hypothesis to R_2 to yield

$$(3.33) |A_2| \ge \min\{|K_2| - 1, |R_2|\} = \min\{|K_2| - 1, \lfloor \frac{2|S| - 5}{3} \rfloor\} \ge \lfloor \frac{2|S| - 5}{3} \rfloor - 1,$$

where the final inequality follows from (3.29).

If $|A_1 + A_2| \ge |A_1| + |A_2| - 1$, then (3.32), (3.33) and (3.31) together yield

$$|W \odot S| \ge 2|R_1| - 2 + |R_2| - 2 = |S| + |R_1| - 4 = |S| + \lceil \frac{1}{3}(|S| + 2) \rceil - 3,$$

which is at least |S| for $|S| \ge 6$, as desired. So we can instead assume

$$|A_1 + A_2| < |A_1| + |A_2| - 1.$$

Let $H = H(A_1 + A_2)$ be the maximal period of $A_1 + A_2$. In view of (3.34) and Kneser's Theorem, it follows that H is a proper (else $W \odot S = G$, as desired), nontrivial subgroup with

$$|\phi_H(A_1 + A_2)| \ge |\phi_H(A_1)| + |\phi_H(A_2)| - 1.$$

We divide the remainder of the case into several subcases.

Subcase 4.1: $|\phi_H(A_1)| = |\phi_H(A_2)| = 1$.

In this case, $K_1 = \langle A_1 \rangle_* \leq H$ and $K_2 = \langle A_2 \rangle_* \leq H$, whence $G = K_1 + K_2 \leq H$ follows from (3.28), contradicting that H < G is proper.

Subcase 4.2: $|\phi_H(A_1)| \ge 2$ and $|\phi_H(A_2)| = 1$.

In this case, $K_2 = \langle A_2 \rangle_* \leq H$ and $|A_1 + A_2| \geq 2|H| \geq 2|K_2|$, which is at least $\frac{4}{3}|S| - \frac{14}{3}$ in view of (3.29). For $|S| \geq 12$, combing this with (3.31) implies $|W \odot S| \geq |A_1 + A_2| > |S| - 1$, as desired. For $|S| \leq 11$, we can use (3.30) and (3.31) to estimate $|W \odot S| \geq |A_1 + A_2| \geq 2|K_2| \geq \frac{2}{3}|S| + \frac{10}{3} > |S| - 1$, also as desired.

Subcase 4.3: $|\phi_H(A_2)| \geq 2$.

In this case, (3.35) and (3.31) imply

$$|W\odot S| \geq |A_1+A_2| \geq |A_1+H| + |A_2+H| - |H| \geq |A_1+H| + \frac{1}{2}|A_2+H| \geq |A_1| + \frac{1}{2}|A_2|.$$

Combined with (3.32) and (3.33), we obtain

$$|W \odot S| \ge 2\lceil \frac{1}{3}(|S|+2)\rceil + \frac{1}{2}(\lfloor \frac{2|S|-5}{3}\rfloor - 1) > |S|-1,$$

as desired, which completes the last subcase of Case 4.

Case 5: $h(S) \leq \frac{1}{3}(|S|+1)$.

Let

$$\epsilon = \left\{ \begin{array}{ll} 1, & \text{if } |S| \equiv 2 \mod 3 \\ 0, & \text{else} \end{array} \right.$$

and let $r = \lfloor \frac{1}{3}(|S|+1) \rfloor$. Note $r \geq 1$ in view of $|S| \geq 4$. We assume by contradiction that S fails to satisfy the theorem (solely for the statements of the properties below, which might not hold if S satisfied the conditions of the theorem).

The assumption $h(S) \leq \frac{1}{3}(|S|+1)$ allows us to factorize the sequence S into square-free subsequences in the following way (this is the basic construction for the existence of an r-set partition; see [11]):

- If $|S| \equiv 0 \mod 3$, then $r = \frac{1}{3}|S|$, $\epsilon = 0$, and we can factorize $S = S_1 \cdot \ldots \cdot S_r$ such that $|\sup(S_i)| = |S_i| = 3$ for all $i \in [1, r]$.
- If $|S| \equiv 1 \mod 3$, then $r = \frac{1}{3}(|S| 1)$, $\epsilon = 0$, and we can factorize $S = S_1 \cdot ... \cdot S_r S_{r+1}$ such that $|\operatorname{supp}(S_i)| = |S_i| = 3$ for all $i \in [1, r]$ and $|\operatorname{supp}(S_{r+1})| = |S_{r+1}| = 1$.
- If $|S| \equiv 2 \mod 3$, then $r = \frac{1}{3}(|S|+1)$, $\epsilon = 1$, and we can factorize $S = S_1 \cdot \ldots \cdot S_r$ such that $|\sup(S_i)| = |S_i| = 3$ for all $i \in [1, r-1]$ and $|\sup(S_r)| = |S_r| = 2$.

Note ϵ counts the number of S_i with length 2 in the factorization. For the purposes of the proof, we will refer to a factorization $S_1 \cdot \ldots \cdot S_r$ (of S or SS_{r+1}^{-1}) as well-balanced if it satisfies the above criteria and also has $|\langle \sup(S_j) \rangle_*| \geq 5$ for any S_j with $|S_j| \geq 3$. Let us show that such a factorization exists.

Let $S_1 \cdot \ldots \cdot S_r \mid S$ be a factorization satisfying the appropriate bulleted criteria above. We trivially have $|\langle \operatorname{supp}(S_j) \rangle_*| \geq 3$ for each S_j with $|S_j| = |\operatorname{supp}(S_j)| = 3$. If $|\langle \operatorname{supp}(S_j) \rangle_*| = 4$, then the pigeonhole principle guarantees that there are distinct $x, y \in \operatorname{supp}(S_j)$ with $\operatorname{ord}(x-y)=2$, whence invoking Case 3 with $H=\langle x-y \rangle$ shows that the theorem holds for S, contrary to assumption. Therefore, we see that $|\langle \operatorname{supp}(S_j) \rangle_*| \geq 5$ or $|\langle \operatorname{supp}(S_j) \rangle_*| = 3$ for each S_j with $|S_j|=3$. Consider a factorization $S_1 \cdot \ldots \cdot S_r \mid S$ satisfying the appropriate bulleted criteria so that the number of S_j with $|S_j|=|\langle \operatorname{supp}(S_j) \rangle_*|=3$ is minimal. If by contradiction no well-balanced factorization exists, then there will be some S_j with $|S_j|=|\langle \operatorname{supp}(S_j) \rangle_*|=3$. Thus $\operatorname{supp}(S_j)$ is a coset of the cardinality 3 subgroup $H:=\langle \operatorname{supp}(S_j) \rangle_*$. In view of $|S|\geq 4$, there is some S_k with $k\in [1,r+1],\ k\neq j,$ and k=r+1 only if $|S|=4\equiv 1$ mod 3. If $\operatorname{supp}(S_k)$ and $\operatorname{supp}(S_j)$ share a common element, then there will be 4 terms of S from the same cardinality three H-coset, whence invoking Case 3 shows that the theorem holds for S, contrary to

assumption. Therefore we may instead assume that $\operatorname{supp}(S_k)$ and $\operatorname{supp}(S_j)$ are disjoint. Thus if we swap any term x from S_j for a term y from S_k and let $S'_j = S_j x^{-1} y$ and $S'_k = S_k y^{-1} x$ denote the resulting sequences, then Lemma 3.4 guarantees that $\operatorname{supp}(S'_j)$ cannot be periodic. In particular, $\operatorname{supp}(S'_j)$ is not a coset of a cardinality 3 subgroup. If $\operatorname{supp}(S'_k)$ is also not a coset of a cardinality three subgroup, then set $S''_j = S'_j$ and $S''_k = S'_k$. On the other hand, if $\operatorname{supp}(S'_k)$ is a coset of a cardinality 3 subgroup, then Lemma 3.4 again shows that $S''_k := S'_k y'^{-1} y$ is not periodic, and thus not coset of cardinality 3 subgroup, where y' is any element from $\operatorname{supp}(S_k)$ distinct from y. Moreover, we also have $S''_j := S'_j y^{-1} y' = S_j x^{-1} y'$ not being a coset of a cardinality three subgroup (by repeating the arguments used to show this for S'_j only using y' instead of y). However, now the factorization $S_1 \cdot \ldots \cdot S_r S_j^{-1} S_k^{-1} S_j'' S_k''$ satisfies the appropriate bulleted condition and also has at least one less S_j with $|S_j| = |\langle \operatorname{supp}(S_j) \rangle_*| = 3$, contradicting the assumed minimality assumption. This shows that a well-balanced factorization $S_1 \cdot \ldots \cdot S_r$ exists.

For the moment, let $S_1 \cdot \ldots \cdot S_r \mid S$ be an arbitrary well-balanced factorization. Let $W = W_1 \cdot \ldots \cdot W_r$ be a factorization of W with $|W_i| = |S_i|$ for all $i \in [1, r]$ such that each W_i is a sequence of consecutive integers. Note we can apply Lemma 3.2 to each S_j with $|S_j| = 3$ since the definition of a well-balanced factorization ensures that $|\langle \operatorname{supp}(S_j) \rangle_*| \geq 5$ while we have $\operatorname{ord}(x-y) \geq 3$ for all distinct $x, y \in \operatorname{supp}(S_j)$, else Case 3 applied with $H = \langle x - y \rangle$ shows that the theorem holds for S, contrary to assumption. For each S_j with $|S_j| = 3$, let $A_j \subseteq W_j \odot S_j$ be the resulting subset with

$$(3.36)$$
 $|A_j| = 4$, $\langle A_j \rangle_* = \langle \operatorname{supp}(S_j) \rangle_*$, and either $\langle A_j \rangle_* \cong C_6$ or $|\mathsf{H}(A_j)| \neq 2$.

For any S_j with $|S_j| \neq 3$, let $A_j = W_j \odot S_j$. If $|S| \not\equiv 1 \mod 3$, set $A_{r+1} = \{0\}$. Note that $|A_{r+1}| = 1$ (regardless of the value of |S| modulo 3) and that $|A_r| = 2$ when $|S_r| = 2$. We also have

$$(3.37) \sum_{i=1}^{r+1} A_i \subseteq W \odot S.$$

For the purposes of the proof, we will refer to a set partition $A = A_1 \cdot \ldots \cdot A_r A_{r+1}$ obtained as above from a well-balanced factorization $S_1 \cdot \ldots \cdot S_r \mid S$ as a well-balanced set partition.

Our plan is to show that a well-balanced set partition with maximal cardinality sumset has $|\sum_{i=1}^{r+1} A_i| \ge |S|$, which in view of (3.37) will yield the concluding contradiction $|W \odot S| \ge |S|$. To do this, we must first establish some properties that any well balanced set partition has. We begin with the following.

Property 1: If $A_1 \cdot \ldots \cdot A_r A_{r+1}$ is a well-balanced set partition and

where $I \subseteq [1, r]$ is a nonempty subset, then $|\mathsf{H}(\sum_{i \in I} A_i)| \geq 5$.

Let $H = \mathsf{H}(\sum_{i \in I} A_i)$ and suppose by contradiction that $|H| \le 4$. In view of (3.38) and Kneser's Theorem, we know $|H| \ge 2$ with

$$|\sum_{i \in I} A_i| \ge \sum_{i \in I} |A_i| - |I| + 1 - (|I| - 1)(|H| - 1) + \rho,$$

where $\rho = \sum_{i \in I} (|A_i + H| - |A_i|)$ denotes the number of H-holes in the A_i with $i \in I$. In particular,

$$(3.39) \rho < (|I| - 1)(|H| - 1).$$

Suppose $|H| \in \{3,4\}$. Now all but at most one A_i with $i \in I \subseteq [1,r]$ has $|A_i| = 4$. Since $|\langle A_i \rangle_*| = |\langle \sup(S_i) \rangle_*| \ge 5 > |H|$ for such A_i , we know that each such A_i intersects at least two H-cosets, whence

$$|A_i + H| - |A_i| \ge 2|H| - 4 \ge |H| - 1.$$

Thus $\rho = \sum_{i \in I} (|A_i + H| - |A_i|) \ge (|I| - 1)(|H| - 1)$, contradicting (3.39). So we may instead assume |H| = 2.

If A_i is H-periodic with $|A_i| = 2$, then Lemma 3.3 implies that S_i consists of 2 distinct elements from the same cardinality 2 H-coset, whence applying Case 3 shows that the theorem holds for S, contrary to assumption. Therefore only A_i with $|A_i| = 4$ can be H-periodic.

If at most one A_i with $i \in I$ is H-periodic, then $|A_i + H| - |A_i| \ge 1 = |H| - 1$ will hold for all but at most one $i \in I$, and we will again contradict (3.39). Therefore there must be at least two A_i with $i \in I$ that are H-periodic, and in view of the previous paragraph, we must have $|A_i| = 4$ for each such A_i . However (3.36) shows this is only possible for A_i if $\langle \operatorname{supp}(S_i) \rangle_* = \langle A_i \rangle_* \cong C_6$, in which case A_i is a cardinality 4 subset of a coset of the cardinality 6 subgroup $\langle A_i \rangle_*$.

Let $J \subseteq I$ be the subset of all those indices $i \in I$ such that A_i is H-periodic. Since there are at least two A_i with $i \in I$ and A_i being H-periodic, as shown above, we have $|J| \geq 2$. By the argument of the previous paragraph, each A_i with $i \in J$ has $\langle \phi_H(A_i) \rangle_* \cong C_3$. Thus, if $\langle \phi_H(A_i) \rangle_* = \langle \phi_H(A_j) \rangle_*$ for distinct $i, j \in J$, then Lemma 2.2 implies that $A_i + A_j$ is $\langle A_j \rangle_*$ -periodic, contradicting that $H < \langle A_j \rangle_*$ is the maximal period of $\sum_{i \in I} A_i$. Therefore we may assume each $\langle \phi_H(A_i) \rangle_*$, for $i \in J$, is a distinct cardinality 3 subgroup. In consequence, we have

$$|\phi_H(A_i) + \phi_H(A_j)| = 4 \quad \text{for } i, j \in J \text{ distinct.}$$

Since H is the maximal period of $\sum_{i \in I} A_i$ and $J \subseteq I$, it follows that $\sum_{i \in J} \phi_H(A_i)$ is aperiodic. Thus, pairing up the $\phi_H(A_j)$ with $j \in J$ into $\lfloor \frac{1}{2} |J| \rfloor$ pairs, applying the equality (3.40) to each pair, and then applying Kneser's Theorem to the aperiodic $\lceil \frac{1}{2} |J| \rceil$ -term sumset whose summands consist of the sumsets of each of the $\lfloor \frac{1}{2} |J| \rfloor$ pairs along with the one unpaired set $\phi_H(A_i)$ with $i \in J$ (if |J| is odd) yields the estimates

(3.41)
$$|\sum_{i \in J} \phi_H(A_i)| \ge 4\left(\frac{|J|-1}{2}\right) + 2 - \frac{|J|+1}{2} + 1 = \frac{3}{2}|J| + \frac{1}{2}$$
 if $|J|$ is odd,
$$|\sum_{i \in J} \phi_H(A_i)| \ge 4\left(\frac{|J|}{2}\right) - \frac{1}{2}|J| + 1 = \frac{3}{2}|J| + 1$$
 if $|J|$ is even.

For each $i \in I \setminus J \subseteq [1, r]$, we know A_i is not H-periodic. As a result, if $i \in I \setminus J$ with $|A_i| = 4$, then $|\phi_H(A_i)| \ge 3$, while if $i \in I \setminus J$ with $|A_i| = 2$, then $|\phi_H(A_i)| = 2$. Consequently, since $\sum_{i \in I} \phi_H(A_i)$ is aperiodic (as H is the maximal period of $\sum_{i \in I} A_i$), Kneser's Theorem and (3.41) together imply

$$(3.42) |\sum_{i \in I} \phi_H(A_i)| \ge |\sum_{i \in J} \phi_H(A_i)| + \sum_{i \in I \setminus J} |\phi_H(A_i)| - (|I \setminus J| + 1) + 1 \ge \frac{3}{2}|J| + \frac{1}{2} + 2|I \setminus J| - \epsilon \ge \frac{3}{2}|I| + \frac{1}{2} - \epsilon.$$

Since $\sum_{i \in I} A_i$ is H-periodic with |H| = 2, (3.42) implies $|\sum_{i \in I} A_i| \ge 3|I| + 1 - 2\epsilon = \sum_{i \in I} |A_i| - |I| + 1$, contradicting (3.38) and completing the proof of Property 1.

Next, recalling the definition of r, we observe that

$$\sum_{i=1}^{r} |A_i| - r + 1 = 4r - 2\epsilon - r + 1 = 3r - 2\epsilon + 1 \ge |S|.$$

Consequently, in view of (3.37) and $W \odot S \neq G$, it follows that

$$|\sum_{i=1}^{r} A_i| < \min\{|G|, \sum_{i=1}^{r} |A_i| - r + 1\}.$$

Thus Property 1 ensures that $H_1 := \mathsf{H}(\sum_{i=1}^r A_i)$ has $|H_1| \geq 5$. Since H_1 must be a proper subgroup, it follows that |G| is composite with

$$|G| \ge 2|H_1| \ge 10.$$

Let $I_1 \subseteq [1, r]$ denote all those indices $i \in [1, r]$ such that $|\phi_{H_1}(A_i)| = 1$. Our next goal is the following.

Property 2: If $A_1 \cdot \ldots \cdot A_r A_{r+1}$ is a well-balanced set partition with $H_1 = \mathsf{H}(\sum_{i=1}^r A_i)$ and $I_1 \subseteq [1, r]$ being the subset of all $i \in [1, r]$ with $|\phi_{H_1}(A_i)| = 1$, then $|I_1| \ge \lceil \frac{1}{3}(|H_1| - 2) \rceil + 2$.

First let us handle the case when $|I_1| = r = \lfloor \frac{|S|+1}{3} \rfloor$. In this case, we need to show $|S| \ge |H_1| + 5$, for which, in view of $|W \odot S| < |S|$, it suffices to show that $|W \odot S| \ge |H_1| + 4$. Since $|\sum_{i=1}^r A_i| \le |W \odot S| < |S|$, we have the initial estimate $|S| \ge |H_1| + 1$. However, if $|W \odot S| = |H_1|$, then $\langle \operatorname{supp}(S) \rangle_* = \langle W \odot S \rangle_* = H_1 < G$ follows from Lemma 3.3, contradicting the hypothesis $\langle \operatorname{supp}(S) \rangle_* = G$. Therefore we instead conclude that $|W \odot S| \ge |H_1| + 1$, in turn implying

$$|S| > |W \odot S| + 1 > |H_1| + 2 > 7.$$

Since $|I_1|=r$, we know that every A_i with $i\in[1,r]$ is contained in an H_1 -coset. Consequently, in view of (3.36), we see that each S_i with $i\in[1,r]$ has all its terms from a single H_1 -coset, say $\sup(S_i)\subseteq\alpha_i+H_1$. If it is the same H_1 -coset for all S_i with $i\in[1,r]$, then we will have at least $|S|-1\geq |H_1|+1$ terms from the same H_1 -coset (in view of (3.44)), whence Case 3 shows that the theorem holds for S, contrary to assumption. Therefore we can instead assume $\alpha_j+H_1\neq\alpha_r+H_1$ for some $j\in[1,r-1]$. Let $g_r\in\sup(S_r)$

and $g_j \in \operatorname{supp}(S_j)$ and define $A'_r = W_r \odot S_r g_r^{-1} g_j$ and $A'_j = W_j \odot S_j g_j^{-1} g_r$. For $i \in [1, r+1] \setminus \{r, j\}$, set $A'_i = A_i$. Then, since neither $S_r g_r^{-1} g_j$ nor $S_j g_j^{-1} g_r$ is contained in a single H_1 -coset, it follows from Lemma 3.3 that $|\phi_{H_1}(A'_j)| \geq 2$ and $|\phi_{H_1}(A'_r)| \geq 2$. In consequence, the subset $\sum_{i=1}^{r+1} A'_i \subseteq W \odot S$ intersects at least two H_1 -cosets, one of which must be disjoint from the H_1 -coset that contained $\sum_{i=1}^{r+1} A_i$.

If $r \geq 3$, then there will be some $A_i = A_i'$ with $i \in [1, r-1] \setminus \{j\}$, which will be a cardinality 4 subset of a single H_1 -coset, thus ensuring that every H_1 -coset that intersects $\sum_{i=1}^{r+1} A_i'$ must contain at least 4 elements. As a result, if $r \geq 3$, then $|W \odot S| \geq |H_1| + 4$, as desired. Therefore it remains to consider the case when $r \leq 2$ in order to finish the case when $|I_1| = r$. However, (3.44) shows that $r \leq 2$ is only possible if $|H_1| = 5$, |S| = 7, r = 2 and j = 1. In this case, $|S| \equiv 1 \mod 3$, so that S_{r+1} contains a term from S. Since $\alpha_1 + H_1 = \alpha_j + H_1 \neq \alpha_r + H_1 = \alpha_2 + H_1$, we can w.l.o.g. assume $\alpha_2 + H_1 \neq \alpha_3 + H_1$, where α_3 is the single term from S_3 . But now, defining $A_1'' = A_1 \subseteq (0)(1)(2) \odot S_1$, $A_2'' = (3)(4) \odot S_2 g_2^{-1}$ and $A_3'' = (5)(6) \odot S_r g_2$, we can repeat the arguments from the $r \geq 3$ case using the A_i'' instead of the A_i' in order to conclude $|W \odot S| \geq |H_1| + 4$ in this final remaining case as well. So, for the remainder of the proof of Property 2, we can now assume $|I_1| \leq r - 1$.

From Kneser's Theorem, (3.37), the definitions of I_1 and r, and the assumption $|W \odot S| < |S|$, we have

(3.45)
$$|S| - 1 \ge |\sum_{i=1}^{r} A_i| \ge (r - |I_1| + 1)|H_1| = (\lfloor \frac{|S| + 1}{3} \rfloor - |I_1| + 1)|H_1|,$$

from which we derive both

$$|I_1| \geq \lfloor \frac{|S|+1}{3} \rfloor + 1 - \frac{|S|-1}{|H_1|} \geq (|S|-1) \frac{|H_1|-3}{3|H_1|} + 1$$

and $|S| \ge (e+1)|H_1| + 1$, where $e := r - |I_1| \ge 1$. Combining these inequalities yields

$$|I_1| \ge (e+1)\frac{|H_1|}{3} - e.$$

Since $|H_1| \geq 5$, the above bound is minimized for small e. Thus, since $e \geq 1$, we obtain

$$(3.46) |I_1| \ge \lceil \frac{2}{3} |H_1| \rceil - 1,$$

which is at least the desired bound $\lceil \frac{1}{3}(|H_1|-2) \rceil + 2$ except when $|H_1|=6$. In this case, we must have $|S|=2|H_1|+1=13$ with e=1, else the estimate (3.46) will become strict, yielding the desired bound on $|I_1|$. Thus r=4.

Since $|S| = 13 \equiv 1 \mod 3$, the set S_{r+1} contains a term from S, say α_{r+1} . In view of (3.36) and the definition of I_1 , we know each $\operatorname{supp}(S_i)$, for $i \in I_1$, is contained in a single H_1 -coset. If this single H_1 -coset is equal to $\alpha_{r+1} + H$ for each $i \in I_1$, then we will have $3|I_1| + 1 = 10 \ge |H_1| + 1$ terms of S from the same H_1 -coset, whence invoking Case 3 shows that the theorem holds for S, contrary to assumption. Therefore there must be some $j \in I_1$ such that $\operatorname{supp}(S_j) \subseteq \alpha_j + H_1 \ne \alpha_{r+1} + H_1$, say w.l.o.g. j = r. Set $A'_i = A_i$ for $i \in [1, r-1]$, set $A'_r = (9)(10) \odot S_r g^{-1}$ and set $A'_{r+1} = (11)(12) \odot S_{r+1} g$, where $g \in \operatorname{supp}(S_r)$. Observe that $\phi_{H_1}(A_i) = \phi_{H_1}(A'_i)$ for $i \in [1, r-1]$ while $|\phi_{H_1}(A_r)| = |\phi_{H_1}(A'_r)| = 1$. Consequently, $\sum_{i=1}^r \phi_H(A'_i)$ is

a translate of $\sum_{i=1}^{r} \phi_H(A_i)$; in particular, $\sum_{i=1}^{r} \phi_{H_1}(A'_i)$ is aperiodic in view of H_1 being the maximal period of $\sum_{i=1}^{r} A_i$. However, since $\operatorname{supp}(S_{r+1}g)$ is not contained in a single H_1 -coset, it follows from Lemma 3.3

that $|\phi_{H_1}(A'_{r+1})| \geq 2$, whence, since $\sum_{i=1}^r \phi_{H_1}(A'_i)$ is aperiodic, Kneser's Theorem implies that

$$\left|\sum_{i=1}^{r+1} \phi_{H_1}(A_i')\right| > \left|\sum_{i=1}^{r} \phi_{H_1}(A_i')\right| = \left|\sum_{i=1}^{r} \phi_{H_1}(A_i)\right| = \left|\sum_{i=1}^{r+1} \phi_{H_1}(A_i)\right|.$$

Thus $\sum_{i=1}^{r+1} A_i' \subseteq W \odot S$ intersects some H_1 -coset that is disjoint from $\sum_{i=1}^{r+1} A_i \subseteq W \odot S$, which combined with (3.45) and the definition of e implies that

$$|S| > |W \odot S| > |\sum_{i=1}^{r+1} A_i| = |\sum_{i=1}^r A_i| \ge (e+1)|H_1| = 12,$$

yielding the contradiction $|S| \ge 14$. Thus Property 2 is established in the final remaining case.

Property 3: Let $A_1 \cdot \ldots \cdot A_r A_{r+1}$ be a well-balanced set partition, let $K \leq G$ be a subgroup, let $J \subseteq [1, r]$ be a subset of indices with $|\phi_K(A_i)| = 1$ and $|A_i| = 4$ for all $i \in J$, let $L = \mathsf{H}(\sum_{i \in J} A_i)$, and let $I \subseteq J$ denote all those indices $i \in J$ with $|\phi_L(A_i)| = 1$. If $|J| \geq \lceil \frac{1}{3}(|K| - 2) \rceil$ and $5 \leq |L| < |K|$, then $|I| \geq \lceil \frac{1}{3}(|L| - 2) \rceil + 2$.

Since $|\phi_K(A_i)| = 1$ for all $i \in J$, each A_i with $i \in J$ is contained in a single K-coset, whence $\sum_{i \in J} A_i$ is also contained in a single K-coset. Thus $L \leq K$, so that our hypothesis |L| < |K| implies $|L| \leq \frac{1}{2}|K|$. In particular,

$$|K| \ge 2|L| \ge 10.$$

Suppose by contradiction that $|I| \leq \lceil \frac{1}{3}(|L|-2) \rceil + 1 \leq \frac{1}{3}|L|+1$. For each $i \in J \setminus I$, we have $|\phi_L(A_i)| \geq 2$. Thus, in view of $L \neq K$, Kneser's Theorem implies that $|J \setminus I| = |J| - |I| \leq |K/L| - 2$. Combined with our assumption on the size of |I| and the hypothesis for the size of |J|, we find that

$$\left\lceil \frac{|K|-2}{3} \right\rceil - |K/L| + 2 \le |I| \le \left\lceil \frac{|L|-2}{3} \right\rceil + 1,$$

which implies $\frac{1}{3}|K| \leq \frac{1}{3}|L| + |K/L| - \frac{1}{3}$, in turn yielding

$$|K| \le |L| + \frac{3|K|}{|L|} - 1.$$

Considering the right hand side of (3.48) as a function of |L|, we find that its maximum will be obtained for a boundary value of |L|, i.e., for |L|=5 or $|L|=\frac{1}{2}|K|$. If $|L|=\frac{1}{2}|K|$, we obtain $|K|\leq\frac{1}{2}|K|+5$, and if |L|=5, we obtain $|K|\leq\frac{3}{5}|K|+4$. In view of $|K|\geq10$, both of these inequalities can only hold for |K|=10 with |L|=5 (in view of $|L|\geq5$). However, for these values, we see that (3.47) instead implies $3-2+2\leq2$, a contradiction. Thus Property 3 is established.

With the above three properties established for an arbitrary well-balanced setpartition $\mathcal{A} = A_1 \cdot \ldots \cdot A_r A_{r+1}$, we now proceed to complete the proof by considering a well-balanced setpartition satisfying an iterated list of extremal conditions. The argument that follows is a simple variation of the basic strategy used to proof the Partition Theorem [24]. During the course of the construction of \mathcal{A} , we will at times declare certain quantities fixed, by which we mean that any additional assumption on \mathcal{A} is always subject to all previously fixed quantities being maintained in their current state.

We begin by setting $J_1 = [1, r]$, fixing S_{r+1} , and assuming our well-balanced set partition $A_1 \cdot \ldots \cdot A_r A_{r+1}$ has maximal cardinality sumset $|\sum_{i \in J_1} A_i| < |S| \le |G|$ (in view of $|W \odot S| < |S|$). Fix $\sum_{i \in J_1} A_i$ up to translation. Let $H_1 = \mathsf{H}(\sum_{i \in J_1} A_i)$ and I_1 be as defined above Property 2.

Next assume that $|I_1|$ is minimal (subject to all prior fixed quantities and extremal assumptions). We showed above that $H_1 = \mathsf{H}(\sum_{i=1}^r A_i)$ has $|H_1| \geq 5$, while Property 2 ensures that $|I_1| \geq \lceil \frac{1}{3}(|H_1| - 2) \rceil + 2$. We have $\langle A_i \rangle_* \subseteq H_1$ for all $i \in I_1$, whence (3.36) ensures that $\langle \operatorname{supp}(S_i) \rangle_* \subseteq H_1$ for all $i \in I_1$. Thus each $\operatorname{supp}(S_i)$, for $i \in I_1$, is contained in some H_1 -coset. If it is the same H_1 -coset for every $i \in I_1$, then we will have at least $3|I_1| - \epsilon \geq 3(\frac{1}{3}(|H_1| - 2) + 2) - \epsilon \geq |H_1| + 1$ terms of S all from the same H_1 -coset, whence Case 3 applied using the group $\langle \operatorname{supp}(\prod_{i \in I_1} S_i) \rangle_* \leq H_1 < G$ shows that the theorem holds for S, contrary to assumption. Therefore we may instead assume that there are distinct $k_1, k_1' \in I_1$ with $\operatorname{supp}(S_{k_1})$ and $\operatorname{supp}(S_{k_1'})$ contained in distinct H_1 -cosets; moreover, if $|A_j| = 2$ for some $j \in I_1$, then we can additionally assume $j \in \{k_1, k_1'\}$. Let $J_2 = I_1 \setminus \{k_1, k_1'\}$. Note $|A_i| = 4$ for all $i \in J_2$.

can additionally assume $j \in \{k_1, k_1'\}$. Let $J_2 = I_1 \setminus \{k_1, k_1'\}$. Note $|A_i| = 4$ for all $i \in J_2$. Fix S_i for all $i \in [1, r] \setminus J_2$, next assume that $|\sum_{i \in J_2} A_i|$ is maximal subject to all prior extremal assumptions still holding, and then fix $\sum_{i \in J_2} A_i$ up to translation. In view of $|J_2| = |I_1| - 2 \ge \lceil \frac{1}{3}(|H_1| - 2) \rceil$ and $|H_1| \ge 5$, we see that $|J_2|$ is nonempty. Moreover, we have

(3.49)
$$\sum_{i \in J_2} |A_i| - |J_2| + 1 = 3|J_2| + 1 \ge |H_1| - 1.$$

Let us next show that $|\sum_{i\in J_2} A_i| < |H_1| - 1$. Suppose this is not the case: $|\sum_{i\in J_2} A_i| \ge |H_1| - 1$. Now $\sup(S_{k_1})$ and $\sup(S_{k_1})$ are contained in disjoint H_1 -cosets. Consequently, if we can swap a term between S_{k_1} and S_{k_1} with the result giving a well-balanced set partition satisfying all extremal assumptions coming

before the assumption on $|\sum_{i\in J_2} A_i|$, then we will have contradicted the minimality of $|I_1|$. We proceed to do so.

Let $x \in \operatorname{supp}(S_{k_1})$ and let $y \in \operatorname{supp}(S_{k'_1})$. If swapping the terms x and y does not result in a well-balanced factorization, then w.l.o.g. we must have $|S_{k_1}| = 3$ with $\operatorname{supp}(S_{k_1}x^{-1}y)$ a coset of a cardinality 3 subgroup (as argued in the existence of a well-balanced set partition). However, in view of Lemma 3.4, this means that $\operatorname{supp}(S_{k_1}x^{-1}y')$ is not periodic, and thus not a coset of cardinality 3 subgroup, for all other $y' \in \operatorname{supp}(S_{k'_1}y^{-1})$. Moreover, if $|\operatorname{supp}(S_{k'_1})| = 3$, then Lemma 3.4 also ensures that $S_{k'_1}xy'^{-1}$ cannot be a coset of a cardinality 3 subgroup for both remaining terms $y' \in \operatorname{supp}(S_{k'_1}y^{-1})$. Thus, for any $x \in \operatorname{supp}(S_{k_1})$, we can find a $y \in \operatorname{supp}(S_{k'_1})$ such that swapping x for y results in a well-balanced factorization, thus inducing a well-balanced set partition where $A'_{k_1} \subseteq W_{k_1} \odot (A_{k_1}x^{-1}y)$ and $A'_{k'_1} \subseteq W_{k'_1} \odot (A_{k'_1}y^{-1}x)$ are obtained via Lemma 3.2 and have replaced A_{k_1} and $A_{k'_1}$. Furthermore, either $|A'_{k_1}| = 4$ or $|A'_{k'_1}| = 4$, say $|A'_{k_1}| = 4$, and then the construction of A'_{k_1} given by Lemma 3.2 allows us to assume there is a 2 element subset of A'_{k_1} contained in an H_1 -coset.

us to assume there is a 2 element subset of A'_{k_1} contained in an H_1 -coset. Since $|\sum_{i\in J_2}A_i|\geq |H_1|-1$, Lemma 2.2 implies that $\sum_{i\in I_1}A_i$ was a full H_1 -coset (it cannot be larger as all sets A_i with $i\in J_2\subseteq I_1$ are each themselves contained in an H_1 -coset). However, since A'_{k_1} still contains two elements from an H_1 -coset, Lemma 2.2 also ensures that $\sum_{i\in J_2}A_i+A_{k'_1}+A_{k'_2}$ contains a translate of this H_1 -coset. Thus an appropriate translate of the sumset of the new set partition contains all elements of $\sum_{i=1}^r A_i$, whence the maximality of $|\sum_{i=1}^r A_i|$ ensures that the sumset has not changed up to translation. Hence, since there are two less sets contained in a single H_1 -coset in the new set partition, we see that we have contradicted the minimality of $|I_1|$. So we instead conclude that $|\sum_{i\in J_2}A_i|<|H_1|-1$, as claimed, which, in view of (3.49), implies that

(3.50)
$$|\sum_{i \in J_2} A_i| < \min\{|H_1|, \sum_{i \in J_2} |A_i| - |J_2| + 1\}.$$

In view of (3.50) and Property 1, we see that $H_2:=(\sum_{i\in J_2}A_i)$ has $5\leq |H_2|<|H_1|$. Let $I_2\subseteq J_2$ be all those indices $i\in J_2$ with $|\phi_{H_2}(A_i)|=1$. Assume $|I_2|$ is minimal (subject to all prior fixed quantities and extremal assumptions). Since $|J_2|=|I_1|-2\geq \lceil\frac{1}{3}(|H_1|-2)\rceil$, we can apply Property 3 (with $L=H_2$ and $K=H_1$) to conclude $|I_2|\geq \lceil\frac{1}{3}(|H_2|-2)\rceil+2$. As before, all terms A_i with $i\in I_2$ are contained in a single H_2 -coset but not all in the same H_2 -coset, else applying Case 3 shows that the theorem holds for S, contrary to assumption. This allows us to find $k_2, k_2'\in I_2$ such that A_{k_2} and $A_{k_2'}$ are contained in disjoint H_2 -cosets. Set $J_3=I_2\setminus\{k_2,k_2'\}$. Now fix all S_i for all $i\in[1,r]\setminus J_3$, next assume that $|\sum_{i\in J_3}A_i|$ is maximal subject to all prior extremal assumptions still holding, and then fix $\sum_{i\in J_3}A_i$ up to translation. Repeating the above arguments, we again find that

$$\left|\sum_{i\in J_3} A_i\right| < \min\{|H_2|, \sum_{i\in J_3} |A_i| - |J_3| + 1\}.$$

Thus Property 1 implies that $H_3:=(\sum_{i\in J_2}A_i)$ has $5\leq |H_3|<|H_2|$. Iterating the arguments of this paragraph, we obtain an infinite chain of subgroups $\infty>|G|>|H_1|>|H_2|>|H_3|>\ldots$, which is clearly impossible. This contradiction completes the proof. (Essentially, the only way the above process terminates after a finite number of steps is when we find enough elements from the same proper coset, whence Case 3 shows that the theorem holds for S.)

4. Distinct Solutions to a Linear Congruence

Let $r \in [2, n]$ and let $\alpha, a_1, \ldots, a_r \in \mathbb{Z}$. For each $x \in \mathbb{Z}$, we let $\overline{x} \in C_n$ denote x reduced modulo n. Consider the linear congruence

$$a_1x_1 + \ldots + a_rx_r \equiv \alpha \mod n.$$

Since the a_i are allowed to be zero, there is no loss of generality to assume r = n when studying the above congruence, in which case we have

$$(4.1) a_1 x_1 + \ldots + a_n x_n \equiv \alpha \mod n.$$

It is a simple and well-known result that there is a solution $(x_1, \ldots, x_n) \in \mathbb{Z}^n$ to (4.1) precisely when $\alpha \in \gcd(a_1, \ldots, a_n, n)\mathbb{Z}$. It is less immediate when a solution (x_1, \ldots, x_n) with all x_i distinct modulo n exists. However, noting that the elements $a_1x_1 + \ldots + a_nx_n$ having the x_i distinct modulo n, when

considered modulo n, are precisely the elements of $W \odot S$, where $W = 0(1) \cdot \dots (n-1) \in \mathcal{F}(\mathbb{Z})$ and $S = \overline{a_1} \cdot \overline{a_2} \cdot \dots \cdot \overline{a_n} \in \mathcal{F}(C_n)$, we then see that there existing a solution to (4.1) is equivalent to asking whether $\overline{\alpha} \in W \odot S$. If $n \geq 3$, then our main result Theorem 1.1 shows that $\overline{\alpha} \in W \odot S$ typically holds precisely when

(4.2)
$$\alpha \in \frac{(n-1)n}{2}a_1 + \gcd(a_2 - a_1, a_3 - a_1, \dots, a_n - a_1, n)\mathbb{Z},$$

the only exception being when, for some distinct $j, k, l \in [1, n]$, we have $a_j - a_l \equiv -a_k + a_l \mod n$, $\gcd(a_j - a_l, n) = 1$, and $a_i \equiv a_l \mod n$ for all $i \in [1, n] \setminus \{j, k\}$, in which case $\overline{\alpha} \in W \odot S$ instead holds precisely when

(4.3)
$$\alpha \in \frac{(n-1)n}{2}a_l + (\mathbb{Z} \setminus n\mathbb{Z}).$$

Thus Theorem 1.1 characterizes when a solution $(x_1, \ldots, x_n) \in \mathbb{Z}^n$ to (4.1) exists having all x_i distinct modulo n.

When $\alpha = 1$, the congruence (4.1) becomes

$$(4.4) a_1 x_1 + \ldots + a_n x_n \equiv 1 \mod n.$$

Fairly recently, in [1], solutions to (4.4) with all x_i distinct modulo n were constructed under the assumption that $\gcd(a_1,n)=\ldots=\gcd(a_k,n)=1$ and $a_{k+1}=\ldots=a_n=0$ for some $k<\varphi(n)$, where $\varphi(\cdot)$ denotes the Euler totient function. Additionally, [1, Theorem 2] proves the special case of Theorem 4.2 when n is prime, and Theorem 4.2 generalizes [1, Conjecture 3].

When n=2, there are essentially only three possible choices for (a_1,a_2) , namely (0,0), (0,1), and (1,1). For (0,0), there is no solution (x_1,x_2) to (4.4) with the x_i distinct modulo 2; for (0,1), there is a solution (x_1,x_2) to (4.1) with the x_i distinct modulo 2 for all α ; and for (1,1), there is a solution (x_1,x_2) to (4.4) with the x_i distinct modulo 2 but no such solution to (4.1) for $\alpha=0$. The following result gives some special instances of the characterization given by (4.2) and (4.3) for $n \geq 3$.

The first corollary addresses the question of when every $\alpha \in \mathbb{Z}$ has a solution (x_1, \ldots, x_n) to (4.1) with the x_i distinct modulo n.

Corollary 4.1. Let $n \geq 3$ and let $a_1, \ldots, a_n \in \mathbb{Z}$.

- 1. If, for some distinct $j, k, l \in [1, n]$, we have $a_j a_l \equiv -a_k + a_l \mod n$, $\gcd(a_j a_l, n) = 1$, and $a_i \equiv a_l \mod n$ for all $i \in [1, n] \setminus \{j, k\}$, then there is a solution $(x_1, \ldots, x_n) \in \mathbb{Z}^n$ to (4.4) with the x_i distinct modulo n but there is some $\alpha \neq 1$ for which there is no solution (x_1, \ldots, x_n) to (4.1) with all the x_i distinct modulo n.
- 2. Otherwise, the following are equivalent.
 - (a) For every $\alpha \in \mathbb{Z}$, there is a solution (x_1, \ldots, x_n) to (4.1) with the x_i distinct modulo n.
 - (b) For some $i \in [1, n]$, $gcd(a_1 a_i, ..., a_n a_i, n) = 1$.

Proof. Noting that $gcd(a_1 - a_i, \dots, a_n - a_i, n) = gcd(a_1 - a_j, \dots, a_n - a_j, n)$ for all $i, j \in [1, n]$, it follows that these are both simple consequences of (4.3) and (4.2).

The next result addresses the question of when (4.4) has a solution (x_1, \ldots, x_n) with the x_i distinct modulo n. We remark that the arguments used below for $\alpha = 1$ would actually work for any $\alpha \in \mathbb{Z}$ with $gcd(\alpha, n) = 1$.

Theorem 4.2. Let $n \geq 2$ and let $a_1, \ldots, a_n \in \mathbb{Z}$.

- 1. If n is odd or some a_i is even, then (4.4) has a solution (x_1, \ldots, x_n) with the x_i distinct modulo n if and only if $gcd(a_2 a_1, a_3 a_1, \ldots, a_n a_1, n) = 1$.
- 2. If $n \equiv 0 \mod 4$ and all a_i are odd, then (4.4) has no solution (x_1, \ldots, x_n) with the x_i distinct modulo n.
- 3. If $n \equiv 2 \mod 4$ and all a_i are odd, then (4.4) has a solution (x_1, \ldots, x_n) with the x_i distinct modulo n if and only if $\gcd(a_2 a_1, a_3 a_1, \ldots, a_n a_1, n) = 2$.

Proof. That the theorem holds for n=2 can be easily checked, so we assume $n\geq 3$.

1. If the a_i satisfy the hypothesis of Corollary 4.1.1, then $\gcd(a_2-a_1,a_3-a_1,\ldots,a_n-a_1,n)=1$ and Corollary 4.1.1 shows that (4.4) has a solution. Therefore assume the a_i do not satisfy the hypothesis of Corollary 4.1.1. If n is odd, then $\frac{(n-1)n}{2}a_1\equiv 0\mod n$, whence (4.2) shows that (4.4) has a solution (x_1,\ldots,x_n) with the x_i distinct modulo n if and only if $\gcd(a_2-a_1,a_3-a_1,\ldots,a_n-a_1,n)=1$. If some a_i is even, then we may w.l.o.g. re-index so that a_1 is even, whence $\frac{(n-1)n}{2}a_1\equiv 0\mod n$ again holds, completing the proof as before.

2. Since the a_i are odd and n is even, we have $2 \mid \gcd(a_2 - a_1, a_3 - a_1, \dots, a_n - a_1, n)$, in which case the hypotheses of Corollary 4.1.1 cannot hold for the a_i . Additionally, since $4 \mid n$, we have $2 \mid \frac{(n-1)n}{2}a_1$ as well, whence

$$\frac{(n-1)n}{2}a_1 + \gcd(a_2 - a_1, a_3 - a_1, \dots, a_n - a_1, n)\mathbb{Z} \subseteq 2\mathbb{Z}$$

and thus cannot contain 1. Hence (4.2) shows that (4.4) has no solution (x_1, \ldots, x_n) with the x_i distinct

3. As was the case in part 2, we have $2 \mid \gcd(a_2 - a_1, a_3 - a_1, \dots, a_n - a_1, n)$, so that the hypotheses of Corollary 4.1.1 cannot hold for the a_i . Since $n \equiv 2 \mod 4$ and a_1 is odd, we have $\frac{(n-1)n}{2}a_1 \equiv \frac{n}{2}$ mod n. Thus (4.2) shows that (4.4) has a solution (x_1, \ldots, x_n) with the x_i distinct modulo n if and only if $\frac{n}{2}-1 \in \gcd(a_2-a_1,a_3-a_1,\ldots,a_n-a_1,n)\mathbb{Z}$. This condition rephrases as $\gcd(a_2-a_1,a_3-a_1,\ldots,a_n-a_n)$ a_1, n | $(\frac{n}{2} - 1)$, which further rephrases as

(4.5)
$$\gcd(\frac{a_2 - a_1}{2}, \frac{a_3 - a_1}{2}, \dots, \frac{a_n - a_1}{2}, \frac{n}{2}) \left| \frac{n - 2}{4} \right|.$$

If there were a common factor $p \geq 2$ dividing both x and $\frac{x-1}{2}$, where $x \in \mathbb{Z}^+$, then $py = \frac{x-1}{2}$ and pz = x for some positive integers $y, z \in \mathbb{Z}$, whence 2yp + 1 = x = pz follows, implying p(z - 2y) = 1, which contradicts that $p \geq 2$. Thus the integers x and $\frac{x-1}{2}$ can share no common factors. Applying this observation with $x = \frac{n}{2}$, we see that (4.5) holds precisely when $\gcd(\frac{a_2 - a_1}{2}, \frac{a_3 - a_1}{2}, \dots, \frac{a_n - a_1}{2}, \frac{n}{2}) = 1$, which is equivalent to $\gcd(a_2 - a_1, a_3 - a_1, \dots, a_n - a_1, n) = 2$. This completes the final part of the theorem.

5. Consequences for Minimal Zero-Sum Sequences

We briefly recall the structure of minimal zero-sum sequences of maximal length in groups of rank 2. The following result was first shown as a conditional result in [48, Theorem 3.2], but by [16], [46], [9] and [19], the condition is satisfied.

Lemma 5.1 (cf. [48, Theorem 3.2]). Let G be a finite abelian group of rank two, say $G \cong C_m \oplus C_{mn}$ with $m, n \in \mathbb{N}$ and $m \geq 2$. The minimal zero-sum sequences of maximal length are of the following forms.

- S = e_j^{ord e_j-1} ∏_{i=1}^{ord e_k} (x_ie_j + e_k), where {e₁, e₂} is a basis of G with ord e₂ = mn, {j,k} = {1,2}, and x_i ∈ N₀ with ∑_{i=1}^{ord e_k} x_i ≡ 1 mod ord e_j.
 S = g₁^{sm-1} ∏_{i=1}^{(n+1-s)m} (x_ig₁ + g₂), where s ∈ [1, n], {g₁, g₂} is a generating set of G with ord g₂ = mn and, in case s ≠ 1, mg₁ = mg₂ and x_i ∈ N₀ with ∑_{i=1}^{(n+1-s)m} x_i = m(n(n+1-s)-1) + 1.

In the second case of Lemma 5.1, the coefficients x_i are determined by equations only. But in the first case of Lemma 5.1, the coefficients x_i are determined by a congruence. Now suppose we are in case 1 and let G and S be as in Lemma 5.1. Then we may write S in the form

$$S = e_j^{\text{ord } e_j - 1} \prod_{i=1}^l (x_i e_j + e_k)^{a_i},$$

where $\{e_1, e_2\}$ is a basis of G, ord $e_1 = m$, ord $e_2 = mn$, $\{j, k\} = \{1, 2\}$, $l \in [1, \text{ord } e_j], a_1, \ldots, a_l \in \mathbb{N}$ with $a_1 + \ldots + a_l = \operatorname{ord} e_k, x_1, \ldots, x_l \in [0, \operatorname{ord} e_i - 1]$ and all the x_i are distinct. Note $a_1 + \ldots + a_l = \operatorname{ord} e_k$ with each $a_i \geq 1$ implies that $l \leq \text{ord } e_k$. Thus the characterization given by Lemma 5.1.1 easily implies that $|\operatorname{supp}(S)| \in [3, \min\{l, \operatorname{ord} e_j\}] = [3, m+1]$ (we cannot have $|\operatorname{supp}(S)| = 2$, as then all x_i from Lemma 5.1.1 would be equal modulo ord e_j , in which case the congruence $x_1 + \dots x_{\text{ord } e_k} \equiv 1 \mod \text{ord } e_j$ could not hold).

Here, we consider ord $e_i - 1, a_1, \ldots, a_l$ as a multiplicity pattern of the elements arising in S. Thus two natural questions appear:

- Which multiplicity patterns can occur?
- How big can the support of S be?

We use the main result from Section 4 to answer these questions. In particular, we will show that any value of [3, m+1] can be achieved for $|\operatorname{supp}(S)|$, apart from m+1 when n=1 and $m\geq 3$, which, at least in the case n=1, was originally shown in [22, Proposition 5.8.5]. First we set $a_i=0$ for $i\in[l+1, \text{ord }e_i]$, choose $x_{l+1}, \ldots, x_{\text{ord } e_j} \in [0, \text{ord } e_j - 1]$ such that all x_i are distinct, and obtain

(5.1)
$$a_1x_1 + \ldots + a_{\operatorname{ord} e_i}x_{\operatorname{ord} e_i} \equiv 1 \mod \operatorname{ord} e_j$$
 and

$$(5.2) a_1 + \ldots + a_{\operatorname{ord} e_i} = \operatorname{ord} e_k.$$

Now there are three possible cases depending on ord e_i and ord e_k .

Case 1. ord $e_j = \operatorname{ord} e_k$, i.e. n=1 and $\operatorname{ord} e_j = \operatorname{ord} e_k = m$. Then if equation (5.2) is satisfied, we must have either $a_1 = \ldots = a_{\operatorname{ord} e_j} = 1$ or $a_{\operatorname{ord} e_j} = 0$. Now we apply Theorem 4.2 and find that there is only a solution to (5.1) in the first case when m=2, whence $|\operatorname{supp}(S)| = m+1$ is only possible when m=2, and that, in the second case, there is a solution to (5.1) for all choices of a_1,\ldots,a_l with $\gcd(a_1,\ldots,a_l,\operatorname{ord} e_j)=1$ mod n, where $1 < l < \operatorname{ord} e_j = m$. In particular, taking the sequence $1^{l-1}(\operatorname{ord} e_j - l + 1)0^{\operatorname{ord} e_j - l}$ for $a_1a_2 \cdot \ldots \cdot a_{\operatorname{ord} e_j}$, where $l \in [2,\operatorname{ord} e_j - 1]$, shows that any value of $|\operatorname{supp}(S)| \in [3,\operatorname{ord} e_j] = [3,m]$ is possible.

Case 2. ord $e_k < \text{ord } e_j$, i.e., ord $e_k = m$ and ord $e_j = mn \ge 4$ with $m, n \ge 2$. Then (5.2) forces $a_{\text{ord } e_j} = 0$. Again we apply Theorem 4.2 and find that there is a solution to (5.1) for all choices of a_1, \ldots, a_l with $\gcd(a_1, \ldots, a_l, \operatorname{ord} e_j) = 1 \mod n$, where $1 < l \le \operatorname{ord} e_k < \operatorname{ord} e_j$. In particular, taking the sequence $1^{l-1}(\operatorname{ord} e_k - l + 1)0^{\operatorname{ord} e_j - l}$ for $a_1 a_2 \cdot \ldots \cdot a_{\operatorname{ord} e_j}$, where $l \in [2, \operatorname{ord} e_k] \subset [2, \operatorname{ord} e_j]$, shows that any value of $|\operatorname{supp}(S)| \in [3, \operatorname{ord} e_k + 1] = [3, m + 1]$ is possible.

Case 3. ord $e_j < \text{ord } e_k$, i.e., ord $e_j = m$ and ord $e_k = mn$. If m = 2, then (5.1) has a solution provided a_1 and a_2 are both odd. For $m \ge 3$, we apply Theorem 4.2 and obtain the following. The condition

(5.3)
$$\gcd(a_2 - a_1, a_3 - a_1 \dots, a_{\operatorname{ord} e_j} - a_1, \operatorname{ord} e_j) \le 2$$

must always be fulfilled if (5.1) is to have a solution. Moreover, if m is odd or some a_i is even, then we must also have the inequality in (5.3) being strict, while if $4 \mid m$ and all a_i are odd, then no solution to (5.1) can be found. In particular, taking the sequence $1^{l-1}(\operatorname{ord} e_k - l + 1)0^{\operatorname{ord} e_j - l}$ for $a_1a_2 \cdot \ldots \cdot a_{\operatorname{ord} e_j}$, where $l \in [2, \operatorname{ord} e_j - 1] = [1, m - 1]$, shows that any value of $|\operatorname{supp}(S)| \in [3, m]$ is possible. For $m \geq 3$, taking the sequence $1^{m-2}(2)(mn-m)$ for $a_1a_2 \cdot \ldots \cdot a_{\operatorname{ord} e_j}$ shows that the value $|\operatorname{supp}(S)| = m+1$ is also possible. Taking (mn-1)(1) for a_1a_2 when m=2 also shows that $|\operatorname{supp}(S)| = m+1 = 3$ is possible when m=2.

Note that, for groups of the form $G \cong C_m \oplus C_m$, all minimal zero-sum sequences of maximal length are of the form $S = e_1^{m-1} \prod_{i=1}^m (x_i e_1 + e_2)$, where $\{e_1, e_2\}$ is a basis of G with ord $e_1 = \operatorname{ord} e_2 = m$ and $x_i \in \mathbb{N}_0$ with $\sum_{i=1}^m x_i \equiv 1 \mod m$. In this situation, only Case 1 appears.

References

- [1] D. G. Adams and V. Ponomarenko, Distinct Solutions to a Linear Congruence, Involve 3 (2010), no. 3, 345–347.
- [2] S. D. Adhikari and P. Rath, Davenport constant with weights and some related questions, *Integers* 6 (2006), A 30 (electronic).
- [3] S. D. Adhikari and Y. G. Chen, Davenport constant with weights and some related questions II, *J. Combin. Theory Ser. A* 115 (2008), no. 1, 178–184.
- [4] S. D. Adhikari, R. Balasubramanian, F. Pappalardi and P. Rath, Some zero-sum constants with weights, *Proc. Indian Acad. Sci. (Math. Sci.)*, 118 (2008), no. 2, 183–188.
- [5] S. D. Adhikari, Y. G. Chen, J. B. Friedlander, S. V. Konyagin and F. Pappalardi, Contributions to zero-sum problems, Discrete Math., 306 (2006), 1–10.
- [6] S. D. Adhikari, C. David and J. Jimenez, Generalization of some zero-sum theorems, preprint.
- [7] N. Alon, M. B. Nathanson, and I. Ruzsa, The polynomial method and restricted sums of congruence classes, J. Number Theory, 56 (1996), no. 2, 404—417.
- [8] G. Bhowmik, J. C. Schlage-Puchta, An improvement on Olson's constant for $\mathbb{Z}_p \oplus \mathbb{Z}_p$, $Acta\ Arith.$, 141 (2010), no. 4, 311—319.
- [9] G. Bhowmik, I. Halupczok, and J. Schlage-Puchta, The structure of maximal zero-sum free sequences, Acta Arith., 143 (2010), no. 1, 21–50.
- [10] A. Bialostocki, CANT2005 conference in combinatorial and additive number theory, New York (2005).
- [11] A. Bialostocki, P. Dierker, D. J. Grynkiewicz, and M. Lotspeich, On some developments of the Erdős-Ginzburg-Ziv theorem II, *Acta Arith.*, 110 (2003), no. 2, 173—184.
- [12] M. DeVos, L. Goddyn, B. Mohar, and R. Sámal, A quadratic lower bound for subset sums, Acta Arith., 129 (2007), no. 2, 187—195.
- [13] J. A. Dias da Silva and Y. O. Hamidoune, Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc., 26 (1994), no. 2, 140—146.
- [14] P. Erdős, A. Ginzburg and A. Ziv, Theorem in Additive Number Theory, Bull. Res. Council Israel, 10F (1961), 41–43.
- [15] M. Freeze, W. D. Gao, and A. Geroldinger, The critical number of finite abelian groups, J. Number Theory, 129 (2009), no. 11, 2766-2777.
- [16] W. Gao and A. Geroldinger, On zero-sum sequences in $\mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z}$, Integers, 3 (2003), no. A8, 45 pp. (electronic).
- [17] W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: A survey, Expositiones Mathematicae, 24 (2006), no. 4, 337–369.
- [18] W. D. Gao, I. Z. Ruzsa, and R. Thangadurai, Olson's constant for the group $\mathbb{Z}_p \oplus \mathbb{Z}_p$, J. Combin. Theory Ser. A, 107 (2004), no. 1, 49—67.
- [19] W. D. Gao, A. Geroldinger, and D. J. Grynkiewicz, Inverse zero-sum problems III, Acta Arith., 141 (2010), no. 2, 103–152.
- [20] W. Gao and W. Jin, Weighted sums in finite cyclic groups, Discrete Math., 283 (2004), no. 1-3, 243-247.
- [21] A. Geroldinger, Additive group theory and non-unique factorizations, Combinatorial Number Theory and Additive Group Theory, Advanced Courses in Mathematics, eds. A. Geroldinger and I. Ruzsa, Birkhäuser, CRM Barcelona, 2009, 1–89.

- [22] A. Geroldinger and F. Hatler-Koch, Non-Unique Factorizations: Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics: A series of Monographs and Textbooks, No. 278, Chapman & Hall, an imprint of Taylor & Francis Group, Boca Raton, FL (2006).
- [23] S. Griffiths, The Erdos-Ginzurg-Ziv theorem with units, Discrete Math., 308 (2008), no. 23, 5473–5484.
- [24] D. J. Grynkiewicz, On a Partition Analog of the Cauchy-Davenport Theorem, Acta Math. Hungar., 107 (2005), no. 1–2, 161–174.
- [25] D. J. Grynkiewicz, A weighted Erdös-Ginzburg-Ziv theorem, Combinatorica, 26 (2006), no. 4, 445—453.
- [26] D. J. Grynkiewicz, Quasi-periodic decompositions and the Kemperman structure theorem, European J. Combin., 26 (2005), no. 5, 559—575.
- [27] D. J. Grynkiewicz, On a conjecture of Hamidoune for subsequence sums, Integers, 5 (2005), no. 2, A7, 11 pp. (electronic).
- [28] D. J. Grynkiewicz, Sumsets, Zero-Sums and Extremal Combinatorics, Ph.D. Dissertation, Caltech, August 2005.
- [29] D. J. Grynkiewicz and J. Zhuang, Weighted Sequences in Finite Cyclic Groups, Applied Mathematics E-Notes, 9 (2009), 40–46.
- [30] D. J. Grynkiewicz, L. E. Marchan and O. Ordaz, Representation of finite abelian group elements by subsequence sums, to appear in J. Théor. Nombres Bordeaux.
- [31] S. Guo and Z. W. Sun, On Bialostocki's Conjecture for Zero-Sum Sequences, Acta Arith. 140 (2009), no. 4, 329-334.
- [32] Y. Hamidoune, A weighted Generalization of Gao's n + D 1 Theorem, Combin. Probab. Comput., 17 (2008), no. 6, 1–6.
- [33] Y. O. Hamidoune, On weighted sequence sums, Comb. Prob. Comput., 4 (1995), 363-367.
- [34] Y. O. Hamidoune, On weighted sums in abelian groups, Discrete Math., 162 (1996), 127–132.
- [35] G. Károlyi, The Erdős-Heilbronn problem in abelian groups, Israel J. Math., 139 (2004), 349—359.
- [36] M. Kneser, Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen, Math. Z., 64 (1955), 429–434.
- [37] V. F. Lev, Restricted set addition in groups I: The classical setting, J. London Math. Soc. (2) 62 (2000), no. 1, 27—40.
- [38] F. Luca, A generalization of a classical zero-sum problem, Discrete Math. 307 (2007), 1672–1678.
- [39] M. B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer-Verlag, Harrisonburg, VA (1996).
- [40] H. H. Nguyen, E. Szemerédi, and V. H. Vu, Subset sums modulo a prime, Acta Arith., 131 (2008), no. 4, 303—316.
- [41] O. Ordaz, A. Phillipp, I. Santos and W. A. Schmid, On the Olson and the Strong Davenport Constants, *J. Théor. Nombres Bordeaux*, to appear.
- [42] O. Ordaz and D. Quiroz, Representation of group elements as subsequences sums, Discrete Mathematics, 308 (2008), no. 15, 3315–3321.
- [43] H. Pan and Z. W. Sun, Restricted sumsets and a conjecture of Lev, Israel J. Math., 154 (2006), 21-28.
- [44] H. Pan and Z. W. Sun, A new extension of the Erdo"s-Heilbronn conjecture, J. Combin. Theory Ser. A, 116 (2009), no. 8, 1374-1381.
- [45] C. Reiher, On Kemnitz' conjecture concerning lattice-points in the plane, Ramanujan J., 13 (2007), no. 1–3, 333–337.
- [46] C. Reiher, A proof of the theorem according to which every prime number posseses Property B, Ph.D. Dissertation, University of Rostock (2010).
- [47] K. Rogers, A combinatorial problem in abelian groups, Proc. Cambridge Philos. Soc., 59 (1963), 559-562.
- [48] W. A. Schmid, Inverse zero-sum problems II, Acta Arith., 143 (2010), no. 4, 333–343.
- [49] R. Thangadurai, A variant of Davenport's constant, Proc. Indian Acad. Sci. (Math. Sci), 117. (2007), no. 2, 147–158.
- [50] Xingwu Xia, Two generalized constants related to zero-sum problems for two special sets, Integers, 7 (2007) (electronic).
- [51] P. Yuan and X. Zeng, Davenport constant with weights, Davenport constant with weights, European J. Combin., 31 (2010), no. 3, 677—680.
- [52] P. Yuan and X. Zeng, Weighted Davenport's Constant and Weighted EGZ Theorem, preprint.

University of Graz, Institute for Mathematics and Scientific Computing, Heinrichstrasse 36, 8010 Graz, Austria

 $E-mail\ address:$ diambri@hotmail.com, andreas.philipp@uni-graz.at, vadim123@gmail.com