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Background

Let 〈〈n〉〉 denote the leading digit of positive integer n.
e.g. 〈〈12〉〉 = 1, 〈〈345〉〉 = 3, 〈〈7〉〉 = 7

Question 1: (Gelfand? 1965?)
Is there any n ∈ N with 〈〈2n〉〉 = 9?

Question 2: Set D = {1,2, . . . ,9}, the nonzero digits.
Given d , t ∈ D, is there any n ∈ N with 〈〈dn〉〉 = t?

Note: d = 1 is trivial, as dn = 1.
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More Background

Question 3:
Given a vector t , i.e. t ∈ D8, is there any n ∈ N with t
achieved, i.e. (〈〈2n〉〉, 〈〈3n〉〉, . . . , 〈〈9n〉〉) = t?

Special cases:
t = (2,3, . . . ,9), insisting that n > 1
t = (a,a, . . . ,a), for some a ∈ D
t1t2 · · · t8, viewed as an 8-digit number, is prime
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Eising, Radcliffe, Top paper

American Mathematical Monthly 122 (3) 2015
Eising, Radcliffe, Top
“A Simple Answer to Gelfand’s Question”

Q1: 〈〈2n〉〉 = 9? Yes
Q2: d , t ∈ D, 〈〈dn〉〉 = t? Yes
Q3: t ∈ D8, t achieved?
17596 vectors t are achieved (out of 98 = 43046721)
23456789 is not achieved, nor is any aaaaaaaa
1127 primes are achieved
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Principal Technique

Kronecker’s Theorem (1884):

Let x1, x2, . . . , xk ∈ R. Set y to be the natural projection of
(x1, x2, . . . , xk ) into the additive group Rk/Zk . TFAE:

(1) {1, x1, . . . , xk} is Q-linearly independent

(2) 〈y〉 is dense in Rk/Zk .
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Kronecker’s Theorem, special case

Kronecker’s Theorem:
Let x1, x2, . . . , xk ∈ R. Set y to be the natural projection of
(x1, x2, . . . , xk ) into the additive group Rn/Zn. TFAE:
(1) {1, x1, . . . , xk} is Q-linearly independent
(2) 〈y〉 is dense in Rk/Zk .

Take k = 1. Then x /∈ Q, if and only if 〈x〉 is dense in R/Z.
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Kronecker’s Theorem, in ERT

Special Case: x ∈ R \Q, if and only if 〈x〉 is dense in R/Z.

Set π : R→ R ∩ [0,1) be the natural projection (mod 1).
ERT: 〈〈x〉〉 = b10π(log10 x)c, where b·c is the floor function.

Now set x = 2n. 〈〈x〉〉 = b10π(n log10 2)c.

Since log10 2 /∈ Q, 〈log10 2〉 is dense in R/Z. Hence for
some n, the exponent must be in [log10 9,1).
(Question #1) Note: n = 53 is smallest such n.
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What about other bases?

Let B ∈ N be our base, and D = {1,2, . . . ,B − 1}.

Kronecker: x ∈ R \Q, if and only if 〈x〉 is dense in R/Z.
ERT technique: 〈〈x〉〉 = bBπ(logB x)c

If B is not a perfect power, then logB d /∈ Q, and the same
argument works; i.e. all t are achieved.
If B is a perfect power, then for certain d , logB d ∈ Q, and
〈logB d〉 is not dense. What about 〈〈dn〉〉?
PT Thm: In that case certain t are not achieved.
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General Kronecker’s Theorem

Let x1, x2, . . . , xk ∈ R. Set y to be the natural projection of
(x1, x2, . . . , xk ) into the additive group Rn/Zn. TFAE:
(1) {1, x1, . . . , xk} is Q-linearly independent
(2) 〈y〉 is dense in Rk/Zk .

ERT: log10 2 + log10 5 = 1: 〈(log10 2, log10 5)〉 NOT dense
in R2/Z2. In particular, (〈〈2n〉〉, 〈〈5n〉〉) 6= (2,5) for n 6= 1.
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Results

• If B is a perfect power, not all t achieved for certain d .

• If B is not a perfect power, all t achieved for every digit d ,
singly.

• If B = uv for u, v > 1 and gcd(u, v) = 1, then
(〈〈un〉〉, 〈〈vn〉〉) 6= (u, v) for n 6= 1.
Also, (a,a, . . . ,a) is not achieved.

• If B is a prime, work in progress.
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For Further Reading

Jaap Eising, David Radcliffe, Jaap Top
A Simple Answer to Gelfand’s Question
American Mathematical Monthly 122 (3) 2015, pp. 234-245.


