Gelfand's Question in Different Bases

Vadim Ponomarenko

Department of Mathematics and Statistics
San Diego State University
Joint Math Meetings January 4, 2017
http:
//www-rohan.sdsu.edu/~vadim/gelfand-talk.pdf

Shameless advertising

Please encourage your students to apply to the
San Diego State University Mathematics REU. Summer 2017 projects: number theory, hydrodynamics

```
http://www.sci.sdsu.edu/math-reu/index.html
```

This work was done jointly with Jason Thoma, Master's student.

Background

Let $\langle\langle n\rangle\rangle$ denote the leading digit of positive integer n.
e.g. $\langle\langle 12\rangle\rangle=1,\langle\langle 345\rangle\rangle=3,\langle\langle 7\rangle\rangle=7$

Question 1: (Gelfand? 1965?)
Is there any $n \in \mathbb{N}$ with $\left\langle\left\langle 2^{\eta}\right\rangle\right\rangle=9$?

Question 2: Set $D=\{1,2, \ldots, 9\}$, the nonzero digits.
Given $d, t \in D$, is there any $n \in \mathbb{N}$ with $\left\langle\left\langle d^{n}\right\rangle\right\rangle=t$?

Note: $d=1$ is trivial, as $d^{n}=1$.

More Background

Question 3:
Given a vector t, i.e. $t \in D^{8}$, is there any $n \in \mathbb{N}$ with t achieved, i.e. $\left(\left\langle\left\langle 2^{n}\right\rangle\right\rangle,\left\langle\left\langle 3^{n}\right\rangle\right\rangle, \ldots,\left\langle\left\langle 9^{n}\right\rangle\right\rangle\right)=t$?

Special cases:
$t=(2,3, \ldots, 9)$, insisting that $n>1$
$t=(a, a, \ldots, a)$, for some $a \in D$
$t_{1} t_{2} \cdots t_{8}$, viewed as an 8-digit number, is prime

Eising, Radcliffe, Top paper

American Mathematical Monthly 122 (3) 2015
Eising, Radcliffe, Top
"A Simple Answer to Gelfand's Question"

Q1: $\left\langle\left\langle 2^{n}\right\rangle\right\rangle=9$? Yes
Q2: $d, t \in D,\left\langle\left\langle d^{n}\right\rangle\right\rangle=t$? Yes
Q3: $t \in D^{8}, t$ achieved?
17596 vectors t are achieved (out of $9^{8}=43046721$)
23456789 is not achieved, nor is any aaaaaaaa
1127 primes are achieved

Principal Technique

Kronecker's Theorem (1884):

Let $x_{1}, x_{2}, \ldots, x_{k} \in \mathbb{R}$. Set y to be the natural projection of $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ into the additive group $\mathbb{R}^{k} / \mathbb{Z}^{k}$. TFAE:
(1) $\left\{1, x_{1}, \ldots, x_{k}\right\}$ is \mathbb{Q}-linearly independent
(2) $\langle y\rangle$ is dense in $\mathbb{R}^{k} / \mathbb{Z}^{k}$.

Kronecker's Theorem, special case

Kronecker's Theorem:
Let $x_{1}, x_{2}, \ldots, x_{k} \in \mathbb{R}$. Set y to be the natural projection of $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ into the additive group $\mathbb{R}^{n} / \mathbb{Z}^{n}$. TFAE:
(1) $\left\{1, x_{1}, \ldots, x_{k}\right\}$ is \mathbb{Q}-linearly independent
(2) $\langle y\rangle$ is dense in $\mathbb{R}^{k} / \mathbb{Z}^{k}$.

Take $k=1$. Then $x \notin \mathbb{Q}$, if and only if $\langle x\rangle$ is dense in \mathbb{R} / \mathbb{Z}.

Kronecker's Theorem, in ERT

Special Case: $x \in \mathbb{R} \backslash \mathbb{Q}$, if and only if $\langle x\rangle$ is dense in \mathbb{R} / \mathbb{Z}.
Set $\pi: \mathbb{R} \rightarrow \mathbb{R} \cap[0,1)$ be the natural projection $(\bmod 1)$. ERT: $\langle\langle x\rangle\rangle=\left\lfloor 10^{\pi\left(\log _{10} x\right)}\right\rfloor$, where $\lfloor\cdot\rfloor$ is the floor function.

Now set $x=2^{n} .\langle\langle x\rangle\rangle=\left\lfloor 10^{\pi\left(n \log _{10} 2\right)}\right\rfloor$.
Since $\log _{10} 2 \notin \mathbb{Q},\left\langle\log _{10} 2\right\rangle$ is dense in \mathbb{R} / \mathbb{Z}. Hence for
some n, the exponent must be in $\left[\log _{10} 9,1\right)$.
(Question \#1) Note: $n=53$ is smallest such n.

Kronecker's Theorem, in ERT

Special Case: $x \in \mathbb{R} \backslash \mathbb{Q}$, if and only if $\langle x\rangle$ is dense in \mathbb{R} / \mathbb{Z}.
Set $\pi: \mathbb{R} \rightarrow \mathbb{R} \cap[0,1)$ be the natural projection $(\bmod 1)$. ERT: $\langle\langle x\rangle\rangle=\left\lfloor 10^{\pi\left(\log _{10} x\right)}\right\rfloor$, where $\lfloor\cdot\rfloor$ is the floor function.

Now set $x=2^{n} \cdot\left\langle\langle x\rangle=\left\lfloor 10^{\pi\left(n \log _{10} 2\right)}\right\rfloor\right.$.

Since $\log _{10} 2 \notin \mathbb{Q},\left\langle\log _{10} 2\right\rangle$ is dense in \mathbb{R} / \mathbb{Z}. Hence for
some n, the exponent must be in $\left[\log _{10} 9,1\right)$.
(Question \#1) Note: $n=53$ is smallest such n.

Kronecker's Theorem, in ERT

Special Case: $x \in \mathbb{R} \backslash \mathbb{Q}$, if and only if $\langle x\rangle$ is dense in \mathbb{R} / \mathbb{Z}.
Set $\pi: \mathbb{R} \rightarrow \mathbb{R} \cap[0,1)$ be the natural projection $(\bmod 1)$. ERT: $\langle\langle x\rangle\rangle=\left\lfloor 10^{\pi\left(\log _{10} x\right)}\right\rfloor$, where $\lfloor\cdot\rfloor$ is the floor function.

Now set $x=2^{n} \cdot\langle\langle x\rangle\rangle=\left\lfloor 10^{\pi\left(n \log _{10} 2\right)}\right\rfloor$.

Since $\log _{10} 2 \notin \mathbb{Q},\left\langle\log _{10} 2\right\rangle$ is dense in \mathbb{R} / \mathbb{Z}. Hence for some n, the exponent must be in $\left[\log _{10} 9,1\right)$.
(Question \#1) Note: $n=53$ is smallest such n.

What about other bases?

Let $B \in \mathbb{N}$ be our base, and $D=\{1,2, \ldots, B-1\}$.

Kronecker: $x \in \mathbb{R} \backslash \mathbb{Q}$, if and only if $\langle x\rangle$ is dense in \mathbb{R} / \mathbb{Z}. ERT technique: $\langle\langle x\rangle\rangle=\left|B^{\pi\left(\log _{B} x\right)}\right|$

If B is not a perfect power, then $\log _{B} d \notin \mathbb{Q}$, and the same argument works; i.e. all t are achieved.
If B is a perfect power, then for certain $d, \log _{B} d \in \mathbb{Q}$, and $\left\langle\log _{B} d\right\rangle$ is not dense. What about $\left\langle\left\langle d^{n}\right\rangle\right\rangle$?
PT Thm: In that case certain t are not achieved.

What about other bases?

Let $B \in \mathbb{N}$ be our base, and $D=\{1,2, \ldots, B-1\}$.

Kronecker: $x \in \mathbb{R} \backslash \mathbb{Q}$, if and only if $\langle x\rangle$ is dense in \mathbb{R} / \mathbb{Z}. ERT technique: $\langle\langle x\rangle\rangle=\left\lfloor B^{\pi\left(\log _{B} x\right)}\right\rfloor$

If B is not a perfect power, then $\log _{B} d \notin \mathbb{Q}$, and the same argument works; i.e. all t are achieved.
If B is a perfect power, then for certain $d, \log _{B} d \in \mathbb{Q}$, and $\left\langle\log _{B} d\right\rangle$ is not dense. What about $\left\langle\left\langle d^{n}\right\rangle\right\rangle$?
PT Thm: In that case certain t are not achieved.

What about other bases?

Let $B \in \mathbb{N}$ be our base, and $D=\{1,2, \ldots, B-1\}$.

Kronecker: $x \in \mathbb{R} \backslash \mathbb{Q}$, if and only if $\langle x\rangle$ is dense in \mathbb{R} / \mathbb{Z}. ERT technique: $\langle\langle x\rangle\rangle=\left\lfloor B^{\pi\left(\log _{B} x\right)}\right\rfloor$

If B is not a perfect power, then $\log _{B} d \notin \mathbb{Q}$, and the same argument works; i.e. all t are achieved.
If B is a perfect power, then for certain $d, \log _{B} d \in \mathbb{Q}$, and
$\left\langle\log _{B} d\right\rangle$ is not dense. What about $\left\langle\left\langle d^{n}\right\rangle\right\rangle$?
PT Thm: In that case certain t are not achieved.

What about other bases?

Let $B \in \mathbb{N}$ be our base, and $D=\{1,2, \ldots, B-1\}$.

Kronecker: $x \in \mathbb{R} \backslash \mathbb{Q}$, if and only if $\langle x\rangle$ is dense in \mathbb{R} / \mathbb{Z}.
ERT technique: $\langle\langle x\rangle\rangle=\left\lfloor B^{\pi\left(\log _{B} x\right)}\right\rfloor$

If B is not a perfect power, then $\log _{B} d \notin \mathbb{Q}$, and the same argument works; i.e. all t are achieved.
If B is a perfect power, then for certain $d, \log _{B} d \in \mathbb{Q}$, and $\left\langle\log _{B} d\right\rangle$ is not dense. What about $\left\langle\left\langle d^{n}\right\rangle\right\rangle$?

What about other bases?

Let $B \in \mathbb{N}$ be our base, and $D=\{1,2, \ldots, B-1\}$.

Kronecker: $x \in \mathbb{R} \backslash \mathbb{Q}$, if and only if $\langle x\rangle$ is dense in \mathbb{R} / \mathbb{Z}.
ERT technique: $\langle\langle x\rangle\rangle=\left\lfloor B^{\pi\left(\log _{B} x\right)}\right\rfloor$

If B is not a perfect power, then $\log _{B} d \notin \mathbb{Q}$, and the same argument works; i.e. all t are achieved.
If B is a perfect power, then for certain $d, \log _{B} d \in \mathbb{Q}$, and $\left\langle\log _{B} d\right\rangle$ is not dense. What about $\left\langle\left\langle d^{n}\right\rangle\right\rangle$?
PT Thm: In that case certain t are not achieved.

General Kronecker's Theorem

Let $x_{1}, x_{2}, \ldots, x_{k} \in \mathbb{R}$. Set y to be the natural projection of $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ into the additive group $\mathbb{R}^{n} / \mathbb{Z}^{n}$. TFAE:
(1) $\left\{1, x_{1}, \ldots, x_{k}\right\}$ is \mathbb{Q}-linearly independent
(2) $\langle y\rangle$ is dense in $\mathbb{R}^{k} / \mathbb{Z}^{k}$.

ERT: $\log _{10} 2+\log _{10} 5=1:\left\langle\left(\log _{10} 2, \log _{10} 5\right)\right\rangle$ NOT dense in $\mathbb{R}^{2} / \mathbb{Z}^{2}$. In particular, $\left(\left\langle\left\langle 2^{n}\right\rangle\right\rangle,\left\langle\left\langle 5^{n}\right\rangle\right\rangle\right) \neq(2,5)$ for $n \neq 1$.

Results

- If B is a perfect power, not all t achieved for certain d.
- If B is not a perfect power, all t achieved for every digit d, singly.
- If $B=u v$ for $u, v>1$ and $\operatorname{gcd}(u, v)=1$, then $\left(\left\langle\left\langle u^{n}\right\rangle\right\rangle,\left\langle\left\langle v^{n}\right\rangle\right\rangle\right) \neq(u, v)$ for $n \neq 1$. Also, (a, a, \ldots, a) is not achieved.
- If B is a prime, work in progress.

Results

- If B is a perfect power, not all t achieved for certain d.
- If B is not a perfect power, all t achieved for every digit d, singly.
- If $B=u v$ for $u, v>1$ and $\operatorname{gcd}(u, v)=1$, then $\left(\left\langle\left\langle u^{n}\right\rangle\right\rangle,\left\langle\left\langle v^{n}\right\rangle\right\rangle\right) \neq(u, v)$ for $n \neq 1$. Also, (a, a, \ldots, a) is not achieved.
- If B is a prime, work in progress.

Results

- If B is a perfect power, not all t achieved for certain d.
- If B is not a perfect power, all t achieved for every digit d, singly.
- If $B=u v$ for $u, v>1$ and $\operatorname{gcd}(u, v)=1$, then $\left(\left\langle\left\langle u^{n}\right\rangle\right\rangle,\left\langle\left\langle v^{n}\right\rangle\right\rangle\right) \neq(u, v)$ for $n \neq 1$. Also, (a, a, \ldots, a) is not achieved.
- If B is a prime, work in progress.

For Further Reading

围 Jaap Eising, David Radcliffe, Jaap Top
A Simple Answer to Gelfand's Question American Mathematical Monthly 122 (3) 2015, pp. 234-245.

