ERT Result

Extending to Other Bases

Bibliography

Gelfand's Question in Different Bases

Vadim Ponomarenko

Department of Mathematics and Statistics San Diego State University

Joint Math Meetings January 4, 2017

http:

//www-rohan.sdsu.edu/~vadim/gelfand-talk.pdf

Extending to Other Bases

Bibliography

Shameless advertising

Please encourage your students to apply to the

San Diego State University Mathematics REU. Summer 2017 projects: number theory, hydrodynamics

http://www.sci.sdsu.edu/math-reu/index.html

This work was done jointly with Jason Thoma, Master's student.

ERT Resul

Extending to Other Bases

Bibliography

Background

Let $\langle\!\langle n \rangle\!\rangle$ denote the leading digit of positive integer *n*. e.g. $\langle\!\langle 12 \rangle\!\rangle = 1, \langle\!\langle 345 \rangle\!\rangle = 3, \langle\!\langle 7 \rangle\!\rangle = 7$

Question 1: (Gelfand? 1965?) Is there any $n \in \mathbb{N}$ with $\langle\!\langle 2^n \rangle\!\rangle = 9$?

Question 2: Set $D = \{1, 2, ..., 9\}$, the nonzero digits. Given $d, t \in D$, is there any $n \in \mathbb{N}$ with $\langle\!\langle d^n \rangle\!\rangle = t$?

Note: d = 1 is trivial, as $d^n = 1$.

ERT Resul

Extending to Other Bases

Bibliography

More Background

Question 3:

Given a vector *t*, i.e. $t \in D^8$, is there any $n \in \mathbb{N}$ with *t* achieved, i.e. $(\langle \langle 2^n \rangle \rangle, \langle \langle 3^n \rangle \rangle, \dots, \langle \langle 9^n \rangle \rangle) = t$?

Special cases:

t = (2, 3, ..., 9), insisting that n > 1t = (a, a, ..., a), for some $a \in D$ $t_1 t_2 \cdots t_8$, viewed as an 8-digit number, is prime

Eising, Radcliffe, Top paper

American Mathematical Monthly 122 (3) 2015 Eising, Radcliffe, Top "A Simple Answer to Gelfand's Question"

Q1: $\langle\!\langle 2^n \rangle\!\rangle = 9$? Yes Q2: $d, t \in D, \langle\!\langle d^n \rangle\!\rangle = t$? Yes Q3: $t \in D^8$, t achieved? 17596 vectors t are achieved (out of $9^8 = 43046721$) 23456789 is not achieved, nor is any *aaaaaaaa* 1127 primes are achieved

ERT Result

Extending to Other Bases

Bibliography

Principal Technique

Kronecker's Theorem (1884):

Let $x_1, x_2, ..., x_k \in \mathbb{R}$. Set *y* to be the natural projection of $(x_1, x_2, ..., x_k)$ into the additive group $\mathbb{R}^k / \mathbb{Z}^k$. TFAE:

(1) $\{1, x_1, \ldots, x_k\}$ is \mathbb{Q} -linearly independent

(2) $\langle y \rangle$ is dense in $\mathbb{R}^k / \mathbb{Z}^k$.

Kronecker's Theorem, special case

Kronecker's Theorem:

Let $x_1, x_2, ..., x_k \in \mathbb{R}$. Set y to be the natural projection of $(x_1, x_2, ..., x_k)$ into the additive group $\mathbb{R}^n / \mathbb{Z}^n$. TFAE: (1) {1, $x_1, ..., x_k$ } is Q-linearly independent (2) $\langle y \rangle$ is dense in $\mathbb{R}^k / \mathbb{Z}^k$.

Take k = 1. Then $x \notin \mathbb{Q}$, if and only if $\langle x \rangle$ is dense in \mathbb{R}/\mathbb{Z} .

Kronecker's Theorem, in ERT

Special Case: $x \in \mathbb{R} \setminus \mathbb{Q}$, if and only if $\langle x \rangle$ is dense in \mathbb{R}/\mathbb{Z} .

Set $\pi : \mathbb{R} \to \mathbb{R} \cap [0, 1)$ be the natural projection (mod 1). ERT: $\langle \langle x \rangle \rangle = |10^{\pi(\log_{10} x)}|$, where $|\cdot|$ is the floor function.

Now set $x = 2^n$. $\langle\!\langle x \rangle\!\rangle = \lfloor 10^{\pi (n \log_{10} 2)} \rfloor$.

Since $\log_{10} 2 \notin \mathbb{Q}$, $\langle \log_{10} 2 \rangle$ is dense in \mathbb{R}/\mathbb{Z} . Hence for some *n*, the exponent must be in $[\log_{10} 9, 1)$. (Question #1) Note: n = 53 is smallest such *n*.

Kronecker's Theorem, in ERT

Special Case: $x \in \mathbb{R} \setminus \mathbb{Q}$, if and only if $\langle x \rangle$ is dense in \mathbb{R}/\mathbb{Z} .

Set $\pi : \mathbb{R} \to \mathbb{R} \cap [0, 1)$ be the natural projection (mod 1). ERT: $\langle \! \langle x \rangle \! \rangle = \lfloor 10^{\pi(\log_{10} x)} \rfloor$, where $\lfloor \cdot \rfloor$ is the floor function.

Now set $x = 2^n$. $\langle\!\langle x \rangle\!\rangle = \lfloor 10^{\pi (n \log_{10} 2)} \rfloor$.

Since $\log_{10} 2 \notin \mathbb{Q}$, $\langle \log_{10} 2 \rangle$ is dense in \mathbb{R}/\mathbb{Z} . Hence for some *n*, the exponent must be in $[\log_{10} 9, 1)$. (Question #1) Note: n = 53 is smallest such *n*.

Kronecker's Theorem, in ERT

Special Case: $x \in \mathbb{R} \setminus \mathbb{Q}$, if and only if $\langle x \rangle$ is dense in \mathbb{R}/\mathbb{Z} .

Set $\pi : \mathbb{R} \to \mathbb{R} \cap [0, 1)$ be the natural projection (mod 1). ERT: $\langle \langle x \rangle \rangle = |10^{\pi(\log_{10} x)}|$, where $|\cdot|$ is the floor function.

Now set $x = 2^n$. $\langle\!\langle x \rangle\!\rangle = \lfloor 10^{\pi (n \log_{10} 2)} \rfloor$.

Since $\log_{10} 2 \notin \mathbb{Q}$, $\langle \log_{10} 2 \rangle$ is dense in \mathbb{R}/\mathbb{Z} . Hence for some *n*, the exponent must be in $[\log_{10} 9, 1)$. (Question #1) Note: n = 53 is smallest such *n*.

ERT Result

Extending to Other Bases

Bibliography

What about other bases?

Let $B \in \mathbb{N}$ be our base, and $D = \{1, 2, \dots, B-1\}$.

Kronecker: $x \in \mathbb{R} \setminus \mathbb{Q}$, if and only if $\langle x \rangle$ is dense in \mathbb{R}/\mathbb{Z} . ERT technique: $\langle \langle x \rangle \rangle = \lfloor B^{\pi(\log_B x)} \rfloor$

If *B* is not a perfect power, then $\log_B d \notin \mathbb{Q}$, and the same argument works; i.e. all *t* are achieved.

If *B* is a perfect power, then for certain *d*, $\log_B d \in \mathbb{Q}$, and $(\log_B d)$ is not dense. What about $\langle\!\langle d^n \rangle\!\rangle$?

ERT Result

Extending to Other Bases

Bibliography

What about other bases?

Let $B \in \mathbb{N}$ be our base, and $D = \{1, 2, \dots, B-1\}$.

Kronecker: $x \in \mathbb{R} \setminus \mathbb{Q}$, if and only if $\langle x \rangle$ is dense in \mathbb{R}/\mathbb{Z} . ERT technique: $\langle \langle x \rangle \rangle = \lfloor B^{\pi(\log_B x)} \rfloor$

If *B* is not a perfect power, then $\log_B d \notin \mathbb{Q}$, and the same argument works; i.e. all *t* are achieved.

If *B* is a perfect power, then for certain *d*, $\log_B d \in \mathbb{Q}$, and $(\log_B d)$ is not dense. What about $\langle\!\langle d^n \rangle\!\rangle$?

ERT Result

Extending to Other Bases

Bibliography

What about other bases?

Let $B \in \mathbb{N}$ be our base, and $D = \{1, 2, \dots, B-1\}$.

Kronecker: $x \in \mathbb{R} \setminus \mathbb{Q}$, if and only if $\langle x \rangle$ is dense in \mathbb{R}/\mathbb{Z} . ERT technique: $\langle \langle x \rangle \rangle = \lfloor B^{\pi(\log_B x)} \rfloor$

If *B* is not a perfect power, then $\log_B d \notin \mathbb{Q}$, and the same argument works; i.e. all *t* are achieved.

If *B* is a perfect power, then for certain *d*, $\log_B d \in \mathbb{Q}$, and $(\log_B d)$ is not dense. What about $\langle \langle d^n \rangle \rangle$?

What about other bases?

Let $B \in \mathbb{N}$ be our base, and $D = \{1, 2, \dots, B-1\}$.

Kronecker: $x \in \mathbb{R} \setminus \mathbb{Q}$, if and only if $\langle x \rangle$ is dense in \mathbb{R}/\mathbb{Z} . ERT technique: $\langle \langle x \rangle \rangle = \lfloor B^{\pi(\log_B x)} \rfloor$

If *B* is not a perfect power, then $\log_B d \notin \mathbb{Q}$, and the same argument works; i.e. all *t* are achieved.

If *B* is a perfect power, then for certain *d*, $\log_B d \in \mathbb{Q}$, and $(\log_B d)$ is not dense. What about $\langle\!\langle d^n \rangle\!\rangle$?

What about other bases?

Let $B \in \mathbb{N}$ be our base, and $D = \{1, 2, \dots, B-1\}$.

Kronecker: $x \in \mathbb{R} \setminus \mathbb{Q}$, if and only if $\langle x \rangle$ is dense in \mathbb{R}/\mathbb{Z} . ERT technique: $\langle \langle x \rangle \rangle = \lfloor B^{\pi(\log_B x)} \rfloor$

If *B* is not a perfect power, then $\log_B d \notin \mathbb{Q}$, and the same argument works; i.e. all *t* are achieved.

If *B* is a perfect power, then for certain *d*, $\log_B d \in \mathbb{Q}$, and $(\log_B d)$ is not dense. What about $\langle\!\langle d^n \rangle\!\rangle$?

General Kronecker's Theorem

Let $x_1, x_2, \ldots, x_k \in \mathbb{R}$. Set *y* to be the natural projection of (x_1, x_2, \ldots, x_k) into the additive group $\mathbb{R}^n / \mathbb{Z}^n$. TFAE: (1) $\{1, x_1, \ldots, x_k\}$ is \mathbb{Q} -linearly independent (2) $\langle y \rangle$ is dense in $\mathbb{R}^k / \mathbb{Z}^k$.

ERT: $\log_{10} 2 + \log_{10} 5 = 1$: $\langle (\log_{10} 2, \log_{10} 5) \rangle$ NOT dense in $\mathbb{R}^2/\mathbb{Z}^2$. In particular, $(\langle 2^n \rangle, \langle 5^n \rangle) \neq (2, 5)$ for $n \neq 1$.

ERT Result

Extending to Other Bases

Bibliography

Results

- If *B* is a perfect power, not all *t* achieved for certain *d*.
- If *B* is not a perfect power, all *t* achieved for every digit *d*, singly.
- If *B* = *uv* for *u*, *v* > 1 and gcd(*u*, *v*) = 1, then (⟨⟨*uⁿ*⟩⟩, ⟨⟨*vⁿ*⟩⟩) ≠ (*u*, *v*) for *n* ≠ 1.
 Also, (*a*, *a*, ..., *a*) is not achieved.
- If *B* is a prime, work in progress.

ERT Result

Extending to Other Bases

Bibliography

Results

- If *B* is a perfect power, not all *t* achieved for certain *d*.
- If *B* is not a perfect power, all *t* achieved for every digit *d*, singly.
- If B = uv for u, v > 1 and gcd(u, v) = 1, then $(\langle\!\langle u^n \rangle\!\rangle, \langle\!\langle v^n \rangle\!\rangle) \neq (u, v)$ for $n \neq 1$. Also, (a, a, \dots, a) is not achieved.
- If *B* is a prime, work in progress.

ERT Result

Extending to Other Bases

Bibliography

Results

- If *B* is a perfect power, not all *t* achieved for certain *d*.
- If *B* is not a perfect power, all *t* achieved for every digit *d*, singly.
- If B = uv for u, v > 1 and gcd(u, v) = 1, then $(\langle\!\langle u^n \rangle\!\rangle, \langle\!\langle v^n \rangle\!\rangle) \neq (u, v)$ for $n \neq 1$. Also, (a, a, \dots, a) is not achieved.
- If *B* is a prime, work in progress.

ERT Result

Extending to Other Bases

Bibliography

For Further Reading

Jaap Eising, David Radcliffe, Jaap Top A Simple Answer to Gelfand's Question American Mathematical Monthly 122 (3) 2015, pp. 234-245.

