More on Euler's limit for e

November 16, 2022

The well-known Euler's limit is defined as $\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{n}=e=2.71828 \ldots$ (see, e.g, [1]). Recently, in [2], appeared the following generalisation of Euler's limit.

Theorem 1. Let A_{n} be a strictly increasing sequence of positive reals satisfying $A_{n+1} \sim A_{n}$. Then $\lim _{n \rightarrow \infty}\left(\frac{A_{n+1}}{A_{n}}\right)^{\frac{A_{n}}{A_{n+1}-A_{n}}}=e$.

Note that the symbol " \sim " means asymptotic equivalence, i.e., $x_{n} \sim y_{n}$ if $\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=$ 1.

Here, we offer the following generalisation.
Theorem 2. Let A_{n} be a strictly monotone sequence of positive reals satisfying $A_{n+1} \sim A_{n}$. Let B_{n} be any sequence of reals satisfying $B_{n} \sim \frac{A_{n}}{A_{n+1}-A_{n}}$. Then

$$
\lim _{n \rightarrow \infty}\left(\frac{A_{n+1}}{A_{n}}\right)^{B_{n}}=e
$$

Proof. First, we consider the case of A_{n} monotone increasing. Theorem 1 gives

$$
\lim _{n \rightarrow \infty}\left(\frac{A_{n+1}}{A_{n}}\right)^{B_{n}}=\lim _{n \rightarrow \infty}\left(\left(\frac{A_{n+1}}{A_{n}}\right)^{\frac{A_{n}}{A_{n+1}-A_{n}}}\right)^{\frac{B_{n}\left(A_{n+1}-A_{n}\right)}{A_{n}}}=e^{1}=e
$$

Now we consider the other case, of A_{n} monotone decreasing. We set $A_{n}^{\prime}=\frac{1}{A_{n}}$ and $B_{n}^{\prime}=B_{n}$ to get

$$
\lim _{n \rightarrow \infty}\left(\frac{A_{n+1}}{A_{n}}\right)^{B_{n}}=\lim _{n \rightarrow \infty}\left(\frac{A_{n}^{\prime}}{A_{n+1}^{\prime}}\right)^{B_{n}^{\prime}}
$$

We conclude by observing that $B_{n} \sim \frac{A_{n}}{A_{n+1}-A_{n}}=-\frac{A_{n+1}^{\prime}}{A_{n+1}^{\prime}-A_{n}^{\prime}} \sim-\frac{A_{n}^{\prime}}{A_{n+1}^{\prime}-A_{n}^{\prime}}$, and applying the first case to B_{n}^{\prime} and the monotone increasing A_{n}^{\prime}. Theorem 2 is proved.

Theorem 2 allows us to compare the speed of convergence of $\left(\frac{A_{n+1}}{A_{n}}\right)^{B_{n}}$ towards e as n increases by choosing different sequences A_{n} and B_{n}. For example, let $A_{n}=$ $n, B_{n}=n, n=100$. This gives $\left(\frac{A_{n+1}}{A_{n}}\right)^{B_{n}} \simeq 2.7048$. If $A_{n}=n, B_{n}=n+\frac{1}{2}, n=100$, then $\left(\frac{A_{n+1}}{A_{n}}\right)^{B_{n}} \simeq 2.7183$, which is a much better estimate. However, for these two
examples, it can be seen that when n increases the speed of convergence in the two cases approaches each other.

By changing A_{n} and B_{n}, we can further generalise Theorem 2. We take $A_{n+1}=$ $A_{n}\left(1+\epsilon_{n}\right)$, where $\epsilon_{n} \rightarrow 0$. Our previous assumptions of monotone increasing (decreasing) A_{n} now correspond to ϵ_{n} positive (negative). We have $B_{n} \sim \frac{1}{\epsilon_{n}}$. Set r_{n} to be a positive sequence with $r_{n} \rightarrow 1$. Now, Theorem 2 is equivalent to

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(1+\epsilon_{n}\right)^{\frac{r_{n}}{\epsilon_{n}}}=e \tag{1}
\end{equation*}
$$

The sign of ϵ_{n} do not matter for this limit, so we can generalise the left-hand side of (1). For any constant k and δ_{n} a sequence with $\left|\delta_{n}\right|$ monotone decreasing to 0 , we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(1+\epsilon_{n}\right)^{\delta_{n}+k}=1 \tag{2}
\end{equation*}
$$

Multiplying (1) by (2) we obtain

$$
\lim _{n \rightarrow \infty}\left(1+\epsilon_{n}\right)^{\frac{r_{n}}{\epsilon_{n}}+\delta_{n}+k}=e .
$$

This allows the reader to choose parameters to optimize convergence.

Acknowledgment

The authors would like to thank the Editor and the anonymous reviewer for their valuable suggestions.

References

[1] A. J. Macintyre, Euler's limit for e^{x} and the exponential series, Edinburgh Mathematical Notes, 37 (1949), pp. 26-28.
[2] R. Farhadian, A Generalization of Euler's Limit, Amer. Math. Monthly. 129 (2022), p. 384.

Reza Farhadian
Department of Statistics, Razi university, Kermanshah, Iran
Email: farhadian.reza@yahoo.com
Vadim Ponomarenko
Department of Mathematics and Statistics, San Diego State University, San Diego, USA

Email: vponomarenko@sdsu.edu

