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Abstract. Length density is a recently introduced factorization invariant, assigned
to each element n of a cancellative commutative atomic semigroup S, that measures
how far the set of factorization lengths of n is from being a full interval. We examine
length density of elements of numerical semigroups (that is, additive subsemigroups
of the non-negative integers).

1. Introduction

A numerical semigroup S is an additively closed subset of Z≥0 containing 0, usually
specified using a generating set n1, . . . , nk, i.e.,

S = 〈n1, . . . , nk〉 = {z1n1 + z2n2 + · · ·+ zknk | z1, . . . , zk ∈ Z≥0}.
A factorization of an element of S is an expression of the form z1n1 + · · · + zknk.
Many classical problems surrounding factorizations in semigroup theory involve so-
called factorization invariants, which are arithmetic quantities, often combinatorial in
nature, that capture some precise aspect of non-uniqueness. For instance, the elasticity
invariant equals the quotient of the maximum and minimum factorization lengths of
an element n ∈ S, and the delta set invariant ∆S(n) contains the “gaps” in the set of
possible factorization lengths of n.

A recent paper [10] introduced a new invariant, known as length density, that mea-
sures the sparse-ness of the length set, defined in such a way that LDS(n) = 1 if
and only if the length set of n is a full interval. The length density of any numerical
semigroup S has the following immedate upper and lower bounds [10, Proposition 2.3]:

1

max ∆(S)
≤ LD(S) ≤ 1

min ∆(S)
.

It is not hard to see that the second inequality above is strict precisely when |∆(S)| > 1.
The strictness of the first inequality, on the other hand, turns out to be more nuanced.
With this in mind, we introduce and study the following property: we say S is tasty1

if LD(S) > 1/max ∆(S), and bland otherwise. In order for S to be bland, some n ∈ S
must have ∆S(n) = {max ∆(S)}, a phenomenon that has been studied in the context of
Krull monoids [8]. As such, determining when S is tasty necessitates sufficient control
over the delta sets of elements of S.

Date: October 22, 2021.
1This term was chosen since the McNugget semigroup is tasty; see Example 3.1.
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2 BROWER ET AL.

The aim of the present manuscript is to investigate how common the tasty and
bland properties are among numerical semigroups. Our results are as follows. After
reviewing the necessary background in Section 2, we provide in Section 3 an algorithm
for computing LD(S) for any numerical semigroup S, and characterize the asymptotic
behavior of length density for large elements of S. In the remaining sections, we
examine length density, and in particular the tastiness property, for several well-studied
families of numerical semigroups. Several interesting consequences are also obtained.

• Any numerical semigroup with at most 3 generators has its length density
achieved at a Betti element (Theorem 4.5). Note that a 4-generated numeri-
cal semigroup without this property is known (Example 4.6).
• If S has maximal embedding dimension and prime multiplicity, then the delta set

of any Betti element containing max ∆(S) must be a singleton. This resembles a
property of certain Krull monoids [8] that generally does not hold for numerical
semigroups.

2. Background

We open with a series of definitions.

Definition 2.1. A numerical semigroup is a subset of Z≥0 of the form

S = 〈n1, . . . , nk〉 = {z1n1 + · · ·+ zknk : z1, . . . , zk ∈ Z≥0}
for the semigroup generated by n1, . . . , nk. A factorization of n ∈ S is an expression

n = z1n1 + · · ·+ zknk

of n as a sum of generators of S, and the length of a factorization is the sum z1+· · ·+zk.
The set of factorizations of n is the set

ZS(n) = {z ∈ Zk≥0 : n = z1n1 + · · ·+ zknk}

viewed as a subset of Zk≥0, and the length set of n is the set

LS(n) = {z1 + · · ·+ zk : z ∈ ZS(n)},
of all possible factorization lengths of n. Writing LS(n) = {`1 < · · · < `r}, define

∆S(n) = {`i − `i−1 : 2 ≤ i ≤ r} and ∆(S) =
⋃
n∈S

∆S(n)

as the delta sets of n and S, respectively.

Definition 2.2. Fix a numerical semigroup S = 〈n1, . . . , nk〉. The factorization ho-
momorphism of S is the function ϕS : Z≥0 → S given by

ϕS(z1, . . . , zk) = z1n1 + · · ·+ zknk

sending each k-tuple to the element of S it is a factorization of. The kernel of ϕS is
the equivalence relation ∼ = kerϕS that sets z ∼ z′ whenever ϕS(z) = ϕS(z′). The
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kernel ∼ is in fact a congruence, meaning that z ∼ z′ implies (z + z′′) ∼ (z′ + z′′) for
all z, z′, z′′ ∈ Nk. A subset ρ ⊂ kerϕS, viewed as a subset of Nk ×Nk, is a presentation
of S if kerϕS is the smallest congruence on Nk containing ρ. We say ρ is a minimal
presentation if it is minimal with respect to containment among presentations for S.

Definition 2.3. The factorization graph of an element n of a numerical semigroup S
is the graph ∇n whose vertices are the elements of ZS(n) in which two factorizations
z, z′ ∈ ZS(n) are connected by an edge if zi > 0 and z′i > 0 for some i. If ∇n is
disconnected, we say n is a Betti element of S, and we write Betti(S) for the set of
Betti elements of S.

The following theorem is a summary of multiple results which can be found in [1,
Section 5.3].

Theorem 2.4. A presentation ρ of a finitely generated semigroup S = 〈n0, . . . , nk〉 is
minimal if and only if for every n ∈ S, (i) the number of connected components in
the graph ∇n is one more than the number of relations in ρ containing factorizations
of n, and (ii) adding an edge to ∇n corresponding to each such relation in ρ yields a
connected graph.

Our next definition yields our main property of interest.

Definition 2.5. Fix a numerical semgiroup S = 〈n1, . . . , nk〉. The length density of
n ∈ S with |LS(n)| ≥ 2 is given by

LDS(n) =
|L(n)| − 1

max LS(n)−min LS(n)

and the length density of S is

LD(S) = inf{LDS(n) : n ∈ S, |LS(n)| ≥ 2}.

It is not hard to prove (see [10]) that

1

max ∆(S)
≤ LD(S) ≤ 1

min ∆(S)
.

We say S is tasty if

LD(S) >
1

max ∆(S)

and bland otherwise.

Before moving forward, we list a few basic results from [10] concerning the length
density.
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Figure 1. A plot with a point at (n,LDS(n)) for each n ∈ S = 〈6, 9, 20〉.

Theorem 2.6 ([10, Theorem 3.4 and Proposition 3.2]). For any numerical semigroup
S, some n ∈ S satisfies LDS(n) = LD(S). Additionally, S is bland if and only if

LDS(b) =
1

max ∆(S)

for some b ∈ Betti(S), which in particular occurs if ∆S(b) = {max ∆(S)}.

3. Asymptotics and computation

In this section, we characterize asymptotic behavior of LDS(n) for a given numerical
semigroup S. Like many other factorization invariants [17, 18], for large n the function
LDS(n) coincides with a quotient of quasilinear functions of n (Theorem 3.4). The pri-
mary consequence is an explicit upper bound on the smallest element of S with length
density LD(S) (Corollary 3.5), and thus an algorithm to compute LD(S) (Remark 3.6).

Example 3.1. Figure 1 depicts the function LDS(n) for S = 〈6, 9, 20〉. Note in par-
ticular that S is tasty since LD(S) = 4

7
> 1/max ∆(S) = 1

4
.

Throughout this section, suppose S = 〈n1 < · · · < nk〉 is a numerical semigroup
with gcd(n1, . . . , nk) = 1, and let

d = min ∆(S) and L =
nk − n1

d gcd(n1, nk)
.

Note L ∈ Z since d = gcd(n2 − n1, . . . , nk − nk−1) by [5, Proposition 2.9].
We begin by recalling some pertinent results from [12], wherein the authors identify

a constant NS, given as a (large) formula in terms of n1, . . . , nk, such that

∆S(n+ lcm(n1, nk)) = ∆S(n).
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for all n ≥ NS [12, Corollary 14]. Letting

L1(n) = {` ∈ LS(n) | 1
n1
n+NS( 1

n2
− 1

n1
) < ` ≤ 1

n1
n},

L2(n) = {` ∈ LS(n) | 1
nk
n+NS( 1

nk−1
− 1

nk
) ≤ ` ≤ 1

n1
n+NS( 1

n2
− 1

n1
)},

L3(n) = {` ∈ LS(n) | 1
nk
n ≤ ` < 1

nk
n+NS( 1

nk−1
− 1

nk
)}

so that

LS(n) = L1(n) ∪ L2(n) ∪ L3(n)

is a disjoint union, the following also follows directly from the work in [12].

Lemma 3.2. If n ≥ NS, then

L1(n+ n1) = {`+ 1 | ` ∈ L1(n)} and L3(n+ nk) = {`+ 1 | ` ∈ L3(n)},

and in particular,

|L1(n+ n1)| = |L1(n)|, |L3(n+ nk)| = |L3(n)|, and ∆(L2(n)) = {d}.

The following appeared as [17, Theorem 4.5] but without an explicit lower bound.
We provide here a proof that NS is such a lower bound.

Theorem 3.3. If n ≥ NS, then

|L(n+ lcm(n1, nk))| = |L(n)|+ L.

Proof. First, we set p = lcm(n1, nr). Using Lemma 3.2, we have

|L(n+ p)| = |L1(n+ p)|+ |L2(n+ p)|+ |L3(n+ p)|
= |L1(n)|+ |L2(n+ p)|+ |L3(n)|
= |L(n)|+ |L2(n+ p)| − |L2(n)|
= |L(n)|+ 1

d
(max L2(n+ p)−min L2(n+ p))− 1

d
(max L2(n)−min L2(n))

= |L(n)|+ 1
d
(min L1(n+ p)−max L3(n+ p))− 1

d
(min L1(n)−max L3(n))

= |L(n)|+ 1
d
(min L1(n)−max L3(n) + dL)− 1

d
(min L1(n)−max L3(n))

= |L(n)|+ L

as desired. �

Theorem 3.4. If n ≥ NS, then

LD(n+ lcm(n1, nk)) =
|L(n)| − 1 + L

max L(n)−min L(n) + dL
.

In particular, LD(n) is a quotient of eventually quasilinear functions of n, each with
period dividing lcm(n1, nk).



6 BROWER ET AL.

Proof. First, let p = lcm(n1, nk). It follows from [4, Theorems 4.2 and 4.3] that

max L(n+ n1) = max L(n) + 1 and min L(n+ nk) = min L(n) + 1

hold for all n ≥ n2
k, and since NS > n2

k, one readily checks that

LD(n+ p) =
|L(s+ p)| − 1

max(L(s+ p))−min(L(s+ p))

=
|L(s)| − 1 + L

(max(L(s)) + 1
n1
p)− (min(L(s)) + 1

nk
p)

=
|L(s)| − 1 + L

max(L(s))−min(L(s)) + dL

holds for all n ≥ NS. �

Our final result of the section is a corollary of Theorem 3.4 that is topological in
nature, reminiscent of [9, Theorems 2.1-2.2 and Corollary 2.3] and [4, Corollary 4.5]
concerning the set of elasticities of a numerical semigroup.

Corollary 3.5. We have

LD(S) = min{LD(n) | n ∈ S and n < NS + lcm(n1, nk)}.

Additionally, letting R(S) = {LD(n) : n ∈ S}, the set R(S) ∩ [0, α) is finite for each
α ∈ [0, 1

d
], and the only possible accumulation point of R(S) is

supR(S) = lim
n→∞

LD(n) = 1
d
.

Proof. All 3 claims follow from Theorem 3.4 and the observation that

LD(n+ lcm(n1, nk)) ≥ LD(n)

for all n ≥ NS. �

Remark 3.6. Corollary 3.5 yield a method of computing LD(S) from the generators
of S. Indeed, NS can be immeidately computed from the formula in [12, Section 3],
and the length sets of all n ≤ NS + lcm(n1, nk) can be computed relatively quickly
using the methods in [3, Section 3]. Additionally, Theorem 3.4 yields an algorithm to
compute LDS(n) for n ≥ NS whose runtime does not depend on n, since one only needs
to compute the length set of an appropriate element between NS and NS +lcm(n1, nk).

4. Families of numerical semigroups

In this section, we classify the length density and tastiness of numerical semigroups
residing in one of several well-studied families.
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4.1. Supersymmetric numerical semigroups. A numerical semigroup is called su-
persymmetric if it has exactly one Betti element. By [13, Theorem 12], this occurs if
and only if S can be written in the form

S = 〈 s
t1
, s
t2
, . . . , s

tk
〉

for some pairwise coprime t1 > · · · > tk with s = t1t2 · · · tk. Moreover, s is the unique
Betti element in this case, and has length set L(s) = {tk, . . . , t1}.

Lemma 4.1. For any m ≥ 1, |L(ms)| ≥ mk −m+ 1.

Proof. We proceed by induction on m. For the base case, notice that

|L(s)| = |{tk, . . . , t1}| ≥ (1)k − (1) + 1.

Next, assuming |L(ms)| ≥ mk −m+ 1, we want to show

|L((m+ 1)s)| ≥ (m+ 1)n− (m+ 1) + 1.

Since (m+ 1)s = ms+ s, it follows that

T := L(ms) + tk ⊆ L((m+ 1)s)

has at least mn−m+1 elements by our inductive hypothesis. Let ` denote the greatest
element of L(ms), and fix a factorization (a1, . . . , ak) of ms of length `. Then for each i,
(a1, . . . , ai+ ti, . . . , ak) is a length `+ ti factorization of (m+1)s. Since `+ tk = maxT ,

`+ t1, . . . , `+ tk−1 ∈ L((m+ 1)s) \ T,
from which we conclude

|L((m+ 1)s)| ≥ (mk −m+ 1) + k − 1 = (m+ 1)k − (m+ 1) + 1,

as desired. �

Theorem 4.2. If n ∈ S has at least 2 factorizations, then LD(n) ≥ LD(s). Moreover,

LD(S) = LD(s) =
k − 1

t1 − tk
,

and S is tasty if and only if t1, t2, . . . , tk does not form an arithmetic progression.

Proof. By [13, Theorem 12], we can write n = ms + r with m ≥ 1 such that r ∈ S
has unique factorization, say with length `. In this case, L(n) = L(ms) + `. Since
max L(ms) = mt1 and min L(ms) = mtn, Lemma 4.1 yields

LD(n) = LD(ms) =
|L(ms)| − 1

mt1 −mtk
≥ (mk −m+ 1)− 1

mt1 −mtk
=

k − 1

t1 − tk
= LD(s).

The final claim now follows from the fact that ∆(s) is a singleton if and only if

L(s) = {tk, . . . , t1}
forms an arithmetic progression. �
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4.2. Embedding dimension 3 numerical semigroups. Numerical semigroups with
3 generators have been well-studied, and it is known that their factorization structure
is largely determined by whether there are 1, 2, or 3 Betti elements. Throughout this
subsection, we use the notation from [19, Chapter 9], and refer the reader there for a
thorough overview of this dichotomy.

Proposition 4.3. If S = 〈n1, n2, n3〉 has 3 Betti elements, then S is bland.

Proof. Each b ∈ Betti(S) has exactly 2 factorizations, which, after relabeling the gen-
erators accordingly, have the form

b = c1n1 = r2n2 + r3n3.

As such, either ∆(b) = ∅ or ∆(b) = {δ}, where δ = |r2 + r3− c1|. Thus, S is bland. �

Proposition 4.4. If S = 〈n1, n2, n3〉 with Betti(S) = {b1, b2} and b1 < b2, then S is
tasty if and only if max ∆(b2) > max ∆(b1) and b2 − b1 ∈ S.

Proof. For the backward direction, suppose max ∆(b2) > max ∆(b1) and b2 − b1 ∈ S.
We must have max ∆(S) = max ∆(b2) by [7, Theorem 2.5], but since b2 − b1 ∈ S, the
trade defined at b1 can be used at b2 to obtain an element of ∆(b2) at most max ∆(b1).
As such, |∆(b2)| ≥ 2, so S is tasty.

Conversely, if max ∆(b2) ≤ max ∆(b1), then S is bland since |∆(b1)| = 1, and if
b2 − b1 /∈ S, then b1 and b2 both have singleton delta sets, so again S is bland. This
completes the proof. �

Theorem 4.5. If S = 〈n1, n2, n3〉, then LD(S) occurs at a Betti element.

Proof. If S has 1 Betti element, then S is supersymmetric, so apply Theorem 4.2.
The claim clearly holds if S is bland, so by Propositions 4.3 and 4.4 it suffices to assume
Betti(S) = {b1, b2}, b2 − b1 ∈ S, and max ∆(b2) > max ∆(b1). Write S = 〈n1, n2, n3〉,

b1 = c1n1 = c2n2 and b2 = c3n3 = r1n1 + r2n2,

and let
δ1 = c1 − c2 and δ2 = r1 + r2 − c3.

Notice t1 = (c1,−c2, 0) and t2 = (r1, r2,−c3) form a minimal presentation for S.
Assume c1 > c2, and the two given factorizations of b2 have extremal lengths in L(b2)
(or, equivalently, that |δ2| is maximal among choices for the trade t2).

Fix n ∈ S not uniquely factorable. If n− b2 /∈ S, then only the trade t1 is available,
so ∆(n) = {δ1} and thus LD(n) = LD(b1). As such, suppose n − b2 ∈ S. Fix a
factorization z = (z1, z2, z3) ∈ Z(n) with z3 maximal, and write z3 = qc3 + r with
q, r ∈ Z≥0 and r < c3. Since t2 is the only trade involving n3, we must have

{y3 : (y1, y2, y3) ∈ Z(n)} = {r, r + c3, . . . , r + qc3}.
Moreover, let ` = z1 + z2 + z3 − c3, and let

L = L(b2) + {`, `+ δ2, . . . , `+ (q − 1)δ2}.
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By repeatedly performing the trade t2 to z, we see L ⊆ L(n), and by the maximality
of |δ2|, L is a union of translations of L(b2) with matching endpoints. In particular,

LD(L) = LD(b2) > LD(b1) = 1
δ1
.

The key obsevation is now that by the maximality of |δ2|, every length in L(n) \ L
is attained by a factorization obtained from performing the trade t, perhaps multiple
times, to some factorization whose length lies in L. As such, letting m = |L(n) \ L|,
we obtain

LD(n) ≥ |L|+m

maxL−minL+mδ1
≥ |L|

maxL−minL
= LD(b2),

as desired. �

Example 4.6. The conclusion of Theorem 4.5 can fail if S has 4 or more generators.
Indeed, the semigroup S = 〈20, 28, 42, 73〉, which appeared as [10, Example 3.3], has
Betti element length sets L(84) = {2, 3}, L(140) = {4, 5, 7}, and L(146) = {2, 4, 5}, but
a strictly smaller length density results from L(202) = {4, 6, 7, 9}.

4.3. Maximal embedding dimension numerical semigroups. We say S is max-
imal embedding dimension (or MED) if e(S) = m(S). In this subsection, we write

S = 〈m,n1, . . . , nm−1〉
and assume ni ≡ i mod m for each i. It is known in this case that

Betti(S) = {ni + nj : 1 ≤ i ≤ j ≤ m− 1};
we refer the reader to [19, Section 7.4].

We begin by identifying a class of Betti elements whose delta sets are singletons.

Proposition 4.7. Suppose b ∈ Betti(S) is the smallest Betti element in the equivalence
class of k ∈ [0,m− 1] modulo m. If k = 0 or k is a unit in Zm, then |L(b)| ≤ 2.

Proof. First, suppose k = 0, so that b is the smallest Betti element of S divisible by m.
We claim any factorization of b involving ni with 1 ≤ i ≤ m − 1 must have length 2
(and thus must be the factorization ni + nm−i). Indeed, by the minimality of b,

ni + nm−i − b = cm

for some c ≥ 0, so any factorization of b of length 3 or more involving ni would yield a
factorization of nm−i of length at least 2, which is impossible since nm−i is a minimal
generator of S. This proves L(b) = {2, a}, where b = am.

In all remaining cases, b ≡ k mod m with 1 ≤ k ≤ m− 1. Write

b = am+ nk = ni + nk−i,

where a ≥ 2 and 1 ≤ i ≤ m − 2. By similar reasoning as above, any factorization
involving ni with i 6= k must be the factorization ni + nk−i by the minimality of b.
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As such, since k is a unit in Zm, any factorization involving nk other than am + nk
must contain (m+ 1)nk, which is impossible since

(m+ 1)nk = cnk + (m+ 1− c)nk > ni + nk−i ≥ b

for some c. This again yields the desired claim. �

Theorem 4.8. If m ≥ 3 is prime, then S is bland.

Proof. Fix a ≥ 1 so that am is the smallest Betti element that is a multiple of m.
By relabeling the generators of S using an appropriately chosen automorphism of Zm,
it suffices to assume am = n1 + nm−1. In what follows, we show

max ∆(S) = a− 2,

which completes the proof since ∆(am) = {a− 2} by Proposition 4.7.
First, fix b′ = nj + nm−j ∈ Betti(S), and suppose b′ > am. Let

b = ni + nm−i ∈ Betti(S)

in such a way that i is maximal such that i < j and b < b′ (note i = 1 satisfies both
constraints, so the set of eligible i is nonempty). By induction on b′, we can assume
max ∆(b) ≤ a− 2. Fix c, c′ ≥ 1 such that

b′ = cm+ ni + nm−i and ni+1 + nm−i−1 = c′m+ ni + nm−i.

Since ni+1 is a minimal generator of S, ni + n1 > ni+1 and thus ni + n1 ≥ ni+1 + m.
Similarly, nm−i + nm−1 ≥ nm−i−1 +m, and we obtain

c′m = ni+1 + nm−i−1 − (ni + nm−i) ≤ n1 + nm−1 − 2m = m(a− 2),

so by maximality of i, we have c ≤ c′ ≤ a− 2. As such, from

{2} ∪ (c+ 2 + L(b)) ⊆ L(b′),

we conclude max ∆(b′) ≤ a− 2.
Next, fix k ∈ [1,m− 1]. Letting b = n1 + nk−1 = cm+ nk, for some c, we see

cm = n1 + nk−1 − nk ≤ n1 + nm−1 −m = m(a− 1).

This means L(b) ⊂ [2, c + 1] ⊂ [2, a], so max ∆(b) ≤ a − 2. More generally, let
b′ = nj +nk−j with 1 ≤ j ≤ k− j ≤ k, and let b = ni +nj−i with i maximal subject to
i < j and b < b′. By inductionon b′, we can assume max ∆(b) ≤ a− 2. Fix c, c′ so that

b′ = cm+ ni + nk−i and ni+1 + nk−i−1 = c′m+ ni + nk−i.

We obtain

c′m = ni+1 + nk−i−1 − (ni + nk−i) ≤ n1 + nm−1 − 2m = m(a− 2),

so by the maximality of i, we have c ≤ c′ ≤ a− 2. As before, we have

{2} ∪ (c+ 2 + L(b)) ⊆ L(b′),
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and can conclude max ∆(b′) ≤ a − 2. A similar argument for b′ = nk+j + nm−j with
k + 1 ≤ k + j ≤ m− j ≤ m− 1 completes the proof. �

Proposition 4.9. There exist both bland and tasty MED numerical semigroups of each
composite multiplicity.

Proof. The numerical semigroup S = 〈m,m+ 1, . . . , 2m− 1〉 is bland since it is arith-
metical and thus has singleton delta set by [2, Theorem 2.2].

Now, if m = pq with p prime and q ≥ 2, then we claim S = 〈m,n1, . . . , nm−1〉 with

ni =

{
m+ i if p | i;
2qm+ i if p - i,

is tasty. Indeed, consider a Betti element b = ni +nj. For convenience in what follows,
we write ni+j = ni+j−m if i+ j > m. If p | i, then p | j if and only if p | (i+ j), so

ni + nj =

{
m+ ni+j if i+ j < m;

2m+ ni+j−m if i+ j > m,

and thus L(b) ⊆ {2, 3}. Alternatively, if p - i and p - j, then b = ni+j + cm with c ≥ 2q,
so the trade qnp = (q + 1)m can be performed at least once, meaning min ∆(b) = 1.

The above argument implies each b ∈ Betti(S) has either ∆(b) = ∅ or 1 ∈ ∆(b).
Lastly, the Betti element n1 + nm−1 = (2B + 1)m has no factorizations of length 3,
since any such factorization can use only m,np, . . . , nm−p but 3nm−p < n1 + nm−1.
Thus, max ∆(S) > 1 and occurs at a Betti element with non-singleton delta set. �

We close this section by examining multiplicity 4 MED numerical semigroups, where
geometry plays a role in determining whether each semigroup is bland or tasty.

Given n1, n2, n3 > 4 with ni ≡ i mod 4 for each i, the semigroup S = 〈4, n1, n2, n3〉
is MED if and only if

2n1 > n2 n1 + n2 > n3, n2 + n3 > n1, and 2n3 > n2

each hold [15]. As such, it is natural to representing each MED numerical semigroup
S = 〈4, n1, n2, n3〉 as a point (n1, n2, n3) ∈ R3. Examining semigroups with fixed
coordinate sum n1 + n2 + n3 yields a cross section as depicted on the left in Figure 2.
The two regions labeled “bland” coincide with the semigroups where min(n1, n2, n3)
equals n1 and n3, respectively (Proposition 4.10). For the remaining semigroups, if
n1 +n3 is sufficiently larger than n2, then S is guaranteed tasty by (Theorem 4.12) and
lies in the region labeled “tasty” on the left. This phenomenon is also visible in the
plot on the right in Figure 2, which depicts the cross section n2 = 18, placing a large
(red) point at (n1, n3) if S is bland and a smaller (black) point if S is tasty.

We note that the geometric viewpoint discussed above, first outlined in [15], has
proven fruitful in recent years for studying enumerative questions surrouding numerical
semigroups; we direct the interested reader to [6, 14].



12 BROWER ET AL.

20 30 40 50 60 70 80 90 100
20
30
40
50
60
70
80
90

100

Figure 2. A diagram (left) of a cross section of MED numerical semi-
groups S = 〈4, n1, n2, n3〉 with n1 + n2 + n3 fixed, and a plot (right)
obtained by setting n2 = 18 and placing a large (red) point at (n1, n3)
if S is bland and a smaller (black) point if S is tasty.

Proposition 4.10. If m = 4 and min(n1, n2, n3) 6= n2, then S is bland.

Proof. Throughout this proof, we assume n1 = min(n1, n2, n3), as an analogous argu-
ment follows upon reversing the roles of n1 and n3 throughout.

The Betti elements n1 + n2 and n2 + n3 are unique in their respective equivalence
classes, and have singleton delta set by Proposition 4.7. Consider the Betti elements
b = 4a and b′ = 4(a+ c) with a, c ≥ 0. Again by Proposition 4.7, b has singleton delta
set, and for b′, there are two cases. First, suppose

b = 4a = n1 + n3 and b′ = 4(a+ c) = 4c+ n1 + n3 = 2n2.

Clearly L(b′) ⊆ [2, a+ c], so max ∆(b′) ≤ max(c, a− 2). We know ∆(b) = {a− 2}, and
since n2 is a minimal generator of S,

2n1 ≥ n2 + 4 and 2n3 ≥ n2 + 4,

so we obtain
4c = 2n2 − (n1 + n3) ≤ n1 + n3 − 8 = 4(a− 2)

and thus c ≤ a− 2. As such, max ∆(b′) ≤ max ∆(b). Second, suppose

b = 4a = 2n2 and b′ = 4(a+ c) = 4c+ 2n2 = n1 + n3.

Again, clearly L(b′) ⊆ [2, a+ c]. Since n2 and n3 are minimal generators of S, we have

2n1 ≥ n2 + 4 and n1 + n2 ≥ n3 + 4,

from which we obtain 3n1 ≥ n3 + 8. From there, n1 < n2 implies

4c = n1 + n3 − 2n2 ≤ 4n1 − 2n2 − 8 ≤ 2n2 − 8 = 4(a− 2)

and we again conclude c ≤ a− 2 and max ∆(b′) ≤ max ∆(b).
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This leaves the Betti elements 2n1 and 2n3. Write

2n1 = n2 + 4d and 2n3 = 2n1 + 4e

for d, e ≥ 1. Now, since n1 < n2, we have 4d = 2n1 − n2 < n1 < 4a, so d ≤ a − 1.
As such, since L(2n1) ⊂ [2, d+ 1], we have

max ∆(2n1) ≤ a− 2 = max ∆(b).

Lastly, from n1 + n2 ≥ n3 + 4 and 3n1 ≥ n3 + 8, we obtain

4e = 2n3 − 2n1 ≤ 2n2 − 8 and 4e = 2n3 − 2n1 ≤ n1 + n3 − 8,

so e ≤ a− 2 and thus max ∆(2n3) ≤ a− 2 as well. �

By examining where in the proof of Proposition 4.10 the hypothesis n2 < n1 is used,
we obtain the following.

Corollary 4.11. If m = 4, then max ∆(S) occurs at max(2n2, n1+n3) or min(2n1, 2n3).

Proof. By the proof of Proposition 4.10, it suffices to ensure max ∆(S) does not occur at

b = n1 + n2 = 4d+ n3 or b′ = n2 + n3 = 4e+ n1.

Writing 4a = min(2n2, n1 + n3), summing these equalities above yields

4d+ 4e = 2n2 ≥ 4a,

so max ∆(b) = d− 1 ≤ a− 2 and max ∆(b′) = e− 1 ≤ a− 2. �

Theorem 4.12. Suppose m = 4 and n2 < n1, n3. If 2n1 + 2n3 > n2
2, then S is tasty.

In particular, for fixed n2, there are only finitely many bland numerical semigroups.

Proof. As in the proof of Proposition 4.10, let 2n2 = 4a so that L(2n2) = {2, a}. Let

b = n1 + n3 = 4c

for c ≥ 1, and write c = qa + r with 0 ≤ r < a. Any factorization of b aside from
n1 + n3 uses only n2 and 4, the shortest of which is

4r + 2qn2 = 4r + 4aq = 4c = b.

This means ∆(b) = {a− 2, 2q + r− 2}, so S is tasty if 2q + r 6= a. This is achieved by

4a(2q + r) = 8qa+ 4ar > 8qa+ 8r = 8c = 2n1 + 2n3 > n2
2 = 4a2

whenever 2n1 + 2n3 > n2
2.

Supposing n1 < n3, by Corollary 4.11 it remains to show

b′ = 2n1 = 4d+ n2

is either non-singleton or does not contain max ∆(S). Since n1 + n2 ≥ n3 + 4, we have

8d = 4n1 − 2n2 ≥ 2n1 + 2n3 > n2
2 > 4n2 = 8a,

meaning some element of ∆(b′) is at most a − 2, as desired. An analogous argument
when n3 < n1 completes the proof. �
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5. Tasty and bland gluings of numerical semigroups

Given two numerical semigroups S1 = 〈n1, . . . , nr〉 and S2 = 〈nr+1, . . . , nk〉 and
non-atoms λ ∈ S1 and µ ∈ S2 such that gcd(λ, µ) = 1, we say the numerical semigroup

µS1 + λS2 = 〈µn1, . . . , µnr, λnr+1, . . . , λnk〉

is a gluing of S1 and S2 by λ and µ. It is known that the above generating set for S is
minimal, and that

Betti(S) = µBetti(S1) ∪ λBetti(S2) ∪ {λµ}.

For more background on gluings, see [19, Chapter 8].

In this section, we investigate the following question.

If S1 and S2 are fixed and µ and λ are allowed to vary, what can be said
about how often the gluing µS1 + λS2 is tasty, and how often it is bland?

Our results are extremal in nature. Theorem 5.1 implies there will always be infinitely
many tasty gluings µS1 + λS2 for fixed S1 and S2, but the same does not hold for
bland gluings. In particular, it is possible for two given numerical semigroups S1 and
S2 to have infinitely many bland gluings (Theorem 5.2), finitely many bland gluings
(Theorem 5.3), or no bland gluings (Theorem 5.5).

Theorem 5.1. Given numerical semigroups S1 and S2, there are infinitely many glu-
ings S = µS1 + λS2 that are tasty.

Proof. Let nk denote the largest atom of S2, and let d = max(∆(S1) ∪∆(S2)). First,
choose any prime λ ∈ S1 such that |LS1(λ)| ≥ 2 and λ > n2. Next, choose any prime
p > λ such that

p ≥ max LS1(λ) + d+ 1

and let µ = pnk so that min LS2(µ) = p. Clearly gcd(λ, µ) = 1. Letting S = µS1 +λS2,
by [19, Theorem 8.2] we have

LS(λµ) = LS1(λ) ∪ LS2(µ)

and thus

max ∆(S) = max ∆S(λµ) = min LS2(µ)−max LS1(λ) = p−max LS1(λ) ≥ d+ 1,

which ensures S is tasty since |LS1(λ)| ≥ 2. �

Theorem 5.2. Fix numerical semigroups S1 and S2. If S1 is bland and

max ∆(S1) ≥ max ∆(S2),

then there exists infinitely many gluings µS1 + λS2 that are bland.
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Proof. Let nk denote the largest atom of S2. Choose any prime λ ∈ S1 such that

λ > max Betti(S1), λ > n2, and max LS1(λ) > max Betti(S2),

and let µ = (max LS1(λ))nk so that min LS2(µ) = max LS1(λ). Clearly max LS1(λ) < λ,
so gcd(λ, µ) = 1. Letting S = µS1 + λS2, we see max Betti(S) = λµ, ensuring

• LS(µb) = LS1(b) for each b ∈ Betti(S1),
• LS(λb) = LS2(b) for each b ∈ Betti(S2), and
• LS(λµ) = LS1(λ) ∪ LS2(µ) with ∆S(λµ) ≤ max(∆(S1) ∪∆(S2)).

We conclude max ∆(S) is attained at a Betti element with singleton delta set. �

Theorem 5.3. Let S1 = 〈2, 3〉 and S2 = 〈6, 9, 20〉. A gluing S = µS1 + λS2 is bland if
and only if λ = 4 and µ = 27.

Proof. Note that Betti(S) = {6µ, 18λ, 60λ, λµ}, and that ∆S(6µ), ∆S(18λ), and ∆S(60λ)
each contain 1.

First, suppose µ > 61. In this case, µλ > 60λ > 18λ, so max ∆(S) ≥ max ∆(S2) = 4,
and 1 ∈ ∆S(λµ) since 1 ∈ ∆S2(µ), so S must be tasty.

Next, suppose µ ≤ 60 and λ > 33. In this case, 1 ∈ ∆S1(λ) and thus 1 ∈ ∆S(λµ), so
S is tasty if and only if max ∆(S) > 1. We have LS2(µ) ⊆ [2, 10]∩Z, and since λ > 33,
min LS1(λ) ≥ 12. From this, we conclude max ∆S(λµ) ≥ 2 and thus S is tasty.

At this point, only finitely many gluings remain, and an exhaustive computation
with the GAP package numericalsgps [11] completes the proof. �

Example 5.4. We briefly examine the exceptional case identified in Theorem 5.3.
Let S1 = 〈2, 3〉, S2 = 〈6, 9, 20〉, λ = 4, and µ = 27, and let

S = µS1 + λS2 = 〈2µ, 3µ, 6λ, 9λ, 20λ〉.
From λµ = 6µ+ 6λ+ 2µ, one can can readily verify

LS(60λ) = LS1(λ) ∪ (LS(6µ) + 2) = {3, 7, 8, 9, 10} ∪ {4, 5, 6, 7}
and

LS(λµ) = LS1(λ) ∪ LS2(µ) = {2, 4} ∪ {3},
resulting in ∆(S) = {1} and ensuring S is bland.

Theorem 5.5. Every gluing S = µS1 + λS2 of S1 = 〈2, 3〉 and S2 = 〈6, 9, 26〉 is tasty.

Proof. We begin by noting Betti(S2) = {18, 78}, ∆S2(18) = {1}, and ∆S2(78) = {1, 6},
and that every n ∈ S2 with n > 73 has |LS2(n)| ≥ 2.

First, suppose µ > 78. It is easy to show that 1 lies in ∆S(b) for each b ∈ Betti(S).
Since 1 ∈ ∆S2(µ) implies 1 ∈ ∆S(µλ), and since λµ is the largest Betti element, 1 lies
in the delta set of each b ∈ Betti(S). Furthermore, max ∆S(78λ) = 6, so S is tasty.

Next, suppose µ ≤ 78 and λ > 42. We have min LS1(λ) ≥ 15 and LS2(µ) ⊆ [2, 13]∩Z,
so max ∆S(λµ) ≥ 2, and 1 ∈ ∆S(λµ) since 1 ∈ ∆S1(µ). This again implies S is tasty.

Now, all remaining gluings satisfy λ ≤ 42 and µ ≤ 78, and an exhaustive computa-
tion using [11] verifies each is tasty. �
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Figure 3. Plots for S = 〈2, 5〉 (left) and S = 〈3, 4〉 (right) with a large
(red) dot at (λ, µ) if µS+λS is tasty, and a small (black) dot if µS+λS
is bland. Each linear constraint in Proposition 5.6 is also depicted.

Our final result of this section concerns gluings µS+λS of a numerical semigroup S
with itself. In the case e(S) = 2, we identify the asymptotic proportion of gluings
µS + λS that are tasty (Theorem 5.7). The plots in Figure 3 depicts the choices of λ
and µ that are assured tasty or bland by Proposition 5.6.

Proposition 5.6. Fix S = 〈n1, n2〉 and integers λ > µ > 2n1n2 − n1 − n2 with
gcd(λ, µ) = 1, and denote the gluing G = µS + λS.

(a) If λ > n2

n1
µ+ n2(n2 − n1), then G is tasty.

(b) If λ < n2

n1
µ− n2(n2 − n1), then G is bland.

Proof. The lower bound on λ and µ ensures |LS(λ)| ≥ 2 and |LS(µ)| ≥ 2, and that λµ
is the largest Betti element of G. If λ > n2

n1
µ+ n2(n2 − n1), then

min LS(λ) ≥ 1
n2
λ > 1

n1
µ+ (n2 − n1) ≥ max LS(µ) + max ∆(S),

and thus max ∆(G) = max ∆G(λµ) > max ∆(S). From this, we conclude G is tasty.
If, on the other hand, λ < n2

n1
µ− n2(n2 − n1), then

min LS(λ)−max LS(µ) < ( 1
n2
λ+ (n2 − n1))− ( 1

n1
µ− (n2 − n1)) < n2 − n1,

and similarly

max LS(λ)−min LS(µ) > 1
n1
λ− 1

n2
µ− 2(n2 − n1) > 0.
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From these inequalities, we conclude there exists δ ∈ ∆G(λµ) with 0 < δ < n2 − n1,
and since LS(λµ) = LS1(λ) ∪ LS2(µ), we must have ∆G(λµ) = {δ, n2 − n1}. It follows
that max ∆(G) = n2 − n1, so ∆G(λn1n2) = {n2 − n1} implies G is bland. �

Theorem 5.7. Given a numerical semigroup S = 〈n1, n2〉, the proportion of tasty
gluings of S with itself is n1/n2. More precisely,

lim
N→∞

# tasty gluings µS + λS with λ, µ < N

# gluings µS + λS with λ, µ < N
=
n1

n2

.

Proof. Let L denote the limit on the left hand side above. Writing

A = {(a, b) ∈ Z2 : gcd(a, b) = 1}
and N0 = 2n1n2 − n1 − n2, Proposition 5.6(a) yields a lower bound on L of

L ≥ lim
N→∞

# (λ, µ) ∈ A ∩ [N0, N ]2 with λ > µ and λ > n2

n1
µ+ n2(n2 − n1)

# (λ, µ) ∈ A ∩ [2, N ]2 with λ > µ

= lim
N→∞

# (λ, µ) ∈ [2, N ]2 with λ > µ and λ > n2

n1
µ+ n2(n2 − n1)

# (λ, µ) ∈ [2, N ]2 with λ > µ

= lim
N→∞

# (λ, µ) ∈ [2, N ]2 with n1

n2
λ > µ

# (λ, µ) ∈ [2, N ]2 with λ > µ
=
n1

n2

where the first equality follows from [16, Chapter IV, Theorem 1]. Proposition 5.6(b)
yields an identical upper bound for L, so we conclude L = n1/n2. �
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[11] M. Delgado, P. Garćıa-Sánchez, and J. Morais, NumericalSgps, A package for numerical semi-
groups, Version 1.1.10 (2018), (Refereed GAP package), https://gap-packages.github.io/

numericalsgps/.
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[15] E. Kunz, Über die Klassifikation numerischer Halbgruppen, Regensburger Mathematische

Schriften 11, 1987.
[16] D. Lehmer, Asymptotic evaluation of certain totient sums, American Journal of Mathematics 22

(1900), 293–335.
[17] C. O’Neill, On factorization invariants and Hilbert functions, Journal of Pure and Applied Alge-

bra 221 (2017), no. 12, 3069–3088.
[18] C. O’Neill and R. Pelayo, Factorization invariants in numerical monoids, Contemporary Math-

ematics 685 (2017), 231–249.
[19] J. Rosales and P. Garćıa-Sánchez, Numerical Semigroups, Developments in Mathematics, Vol.

20, Springer-Verlag, New York, 2009.

Mathematics Department, San Diego State University, San Diego, CA 92182
Email address: cole.brower@gmail.com

Department of Mathematics and Statistics, Sam Houston State University, Huntsville,
TX 77341

Email address: scott.chapman@shsu.edu

Mathematics Department, University of California Los Angeles, Los Angeles, CA
90095

Email address: volcanek47@gmail.com

Mathematics Department, San Diego State University, San Diego, CA 92182
Email address: joe.mcdonough@live.com

Mathematics Department, San Diego State University, San Diego, CA 92182
Email address: cdoneill@sdsu.edu

Mathematics Department, San Diego State University, San Diego, CA 92182
Email address: vody.pa@gmail.com

Mathematics Department, San Diego State University, San Diego, CA 92182
Email address: vponomarenko@sdsu.edu

https://gap-packages.github.io/numericalsgps/
https://gap-packages.github.io/numericalsgps/

	1. Introduction
	2. Background
	3. Asymptotics and computation
	4. Families of numerical semigroups
	4.1. Supersymmetric numerical semigroups
	4.2. Embedding dimension 3 numerical semigroups
	4.3. Maximal embedding dimension numerical semigroups

	5. Tasty and bland gluings of numerical semigroups
	References

