Asymptotic Formula for $(1+1 / x)^{x}$, Revisited

Vadim Ponomarenko

In a recent note [1] appearing in this Monthly, Chen and Choi calculated a_{j} in

$$
\begin{equation*}
\left(1+\frac{1}{x}\right)^{x}=e \sum_{j=0}^{\infty} \frac{a_{j}}{x^{j}} \tag{1}
\end{equation*}
$$

We offer a briefer calculation of these same coefficients. Applying the change of variables $y=\frac{1}{x}$, and the two functions $f(y)=e^{y}, g(y)=\frac{\ln (1+y)}{y}$, we rewrite (1) as

$$
f(g(y))=\sum_{j=0}^{\infty}\left(e a_{j}\right) y^{j}
$$

We take derivatives of this formal power series j times, and substitute $y=0$, to get

$$
\begin{equation*}
\left.\frac{d^{j}}{d y^{j}} f(g(y))\right|_{y=0}=e(j!) a_{j} \tag{2}
\end{equation*}
$$

The left side of (2) may be calculated with Faà di Bruno's famous formula, which gives

$$
\frac{d^{j}}{d y^{j}} f(g(y))=\sum \frac{j!}{k_{1}!\cdots k_{j}!} f^{\left(k_{1}+\cdots+k_{j}\right)}(g(y))\left(\frac{g^{(1)}(y)}{1!}\right)^{k_{1}} \cdots\left(\frac{g^{(j)}(y)}{j!}\right)^{k_{j}}
$$

where the sum is taken over all solutions to $k_{1}+2 k_{2}+\cdots+j k_{j}=j$. Because $g(y)=1-\frac{y}{2}+\frac{y^{2}}{3}-\frac{y^{3}}{4}+\cdots$, we have $\left.g^{(t)}(y)\right|_{y=0}=(-1)^{t} \frac{t!}{t+1}$. We also have $\lim _{y \rightarrow 0} f^{\left(k_{1}+\cdots+k_{j}\right)}(g(y))=\lim _{y \rightarrow 0} f(g(y))=e$. Combining, we get

$$
e(j!) \sum \frac{1}{k_{1}!\cdots k_{j}!}\left(\frac{1}{2}\right)^{k_{1}} \cdots\left(\frac{1}{j+1}\right)^{k_{j}}(-1)^{k_{1}+2 k_{2}+\cdots+j k_{j}}=e(j!) a_{j}
$$

We now cancel $e(j!)$ from both sides, and use the $k_{1}+2 k_{2}+\cdots+j k_{j}=j$ restriction, to get the main result from [1]:

$$
(-1)^{j} \sum \frac{1}{k_{1}!\cdots k_{j}!}\left(\frac{1}{2}\right)^{k_{1}} \cdots\left(\frac{1}{j+1}\right)^{k_{j}}=a_{j}
$$

REFERENCES

1. C.-P. Chen and J. Choi, An Asymptotic Formula for $(1+1 / x)^{x}$ Based on the Partition Function, Amer. Math. Monthly 121 (2014) 338-343.
