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Abstract

Consider the problem of determining maximal vectors g such that the Diophan-
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1 Introduction

Letm,x be column vectors from the non-negative integers N0. Georg Frobenius

focused attention on determining the maximal integer g such that the linear

Diophantine equation mTx = g has no solutions. This problem has attracted

substantial attention in the last 100 years; for a survey see [1]. In this paper, we

consider the problem of determining maximal vectors g such that the system

of linear Diophantine equations Mx = g has no solutions.

For any real matrix X and any S ⊆ R, we write XS for {Xs : s ∈ Sk}, where

k denotes the number of columns of X. We write X1 for the vector in X{1}. We

fix M ∈ Zn×(n+m), and write M = [A|B], where A is n× n. We call AR≥0 the

cone, and MN0 the monoid. |A| denotes henceforth the absolute value of detA,

if A is a square matrix; but still the cardinality of A, if A is a set. If |A| 6= 0,

then we follow [2] and call the cone volume. If each column of B lies in the

volume cone, then we call M simplicial. Unless otherwise noted, we assume

henceforth that M is simplicial. Note that if n ≤ 2 and there is some halfspace

containing all the columns of M , then we may always rearrange columns to

make M simplicial. For x ∈ Rn, we call x + MR≥0 = x + AR≥0 the cone at x,

writing cone(x).

Let u, v ∈ Rn. If u − v ∈ AZ, then we write u ≡ v and say that u, v are

equivalent mod A. If u− v ∈ AR≥0 , then we write u ≥ v. If u− v ∈ AR>0 , then

we write u � v. Note that u � v implies u ≥ v, and u � v ≥ w implies u � w;

however, u 
 v does not necessarily imply that u � v. For v ∈ Rn, we write

(v)i for the ith coordinate of v, and [� v] = {u ∈ Zn : u � v}. We say that

v is complete if [� v] ⊆ MN0 . We set G, more precisely G(M), to be the set

of all ≥-minimal complete vectors. We call elements of G Frobenius vectors ;

they are the vector analogue of g that we will investigate.
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Set Q = (1/|A|)Z ⊆ Q. Although G is defined in Rn, in fact it is a subset of

Qn, by the following result. Furthermore, the columns of B are in AQ≥0 ; hence

MQ≥0 = AQ≥0 and without loss we work over Q rather than over R.

Proposition 1 Let v ∈ Rn. There exists v? ∈ Qn with [� v] = [�Av?] and

v ≥ Av?.

PROOF. We choose v? ∈ Qn such that A−1v − v? = ε = (ε1, ε2, . . . , εn) with

0 ≤ εi < 1/|A|. Multiplying by A we get v − Av? = Aε; hence v ≥ Av?. We

will now show that for u ∈ Zn, u � v if and only if u � Av?. If u � v, then

u � Av? because u � v ≥ Av?. On the other hand, suppose that u � Av?

and u � v. Hence u − Av? ∈ AR>0 and u − v ∈ AR \ AR>0 . Multiplying

by A−1 we get A−1u − v? ∈ IR>0 and A−1u − A−1v ∈ IR \ IR>0 . Therefore,

there is some coordinate i with (A−1u − v?)i > 0 and (A−1u − A−1v)i ≤ 0.

Because u ∈ Zn and A is an integer matrix, we have A−1u ∈ Qn; hence in fact

(A−1u−v?)i ≥ 1/|A|. Now, 0 ≥ (A−1u−A−1v)i = (A−1u−v?−(A−1v−v?))i =

(A−1u− v?)i − εi ≥ 1/|A| − εi. However, this contradicts εi < 1/|A|. 2

Let x, y ∈MQ≥0 . We write x = Ax′, y = Ay′, with x′, y′ ∈
(
Q≥0

)n
, define z′ via

(z′)i = max((x′)i, (y
′)i), and set lub(x, y) = Az′. We have lub(x, y) ∈ MQ≥0 ,

although in general lub(x, y) /∈ MN0 (even if x, y ∈ MN0) because A−1B need

not have integer entries.

For u ∈MQ, we set V (u) =
(
u+ AQ∩(0,1]

)
∩Zn. It was known to Dedekind [3]

that |V (u)| = |A|, and that V (u) is a complete set of coset representatives mod

A (as restricted to Zn). Note that u is complete if and only if V (u) ⊆MN0 .

The following equivalent conditions on M generalize the one-dimensional no-

tion of relatively prime generators. Portions of the following have been repeat-
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edly rediscovered [4,5,2,6,7]. We assume henceforth, unless otherwise noted,

that M possesses these properties. We call such M dense.

Theorem 2 The following are equivalent:

(1) G is nonempty.

(2) MZ = Zn.

(3) For all unit vectors ei (1 ≤ i ≤ n), ei ∈MZ.

(4) There is some v ∈MN0 with v + ei ∈MN0 for all unit vectors ei.

(5) The GCD of all the n× n minors of M has absolute value 1.

(6) The elementary divisors of M are all 1.

PROOF. The proof follows the plan (1)↔ (4)↔ (3)↔ (2)↔ (6)↔ (5).

(1)↔(4): Let g ∈ G. Choose v ∈ [�g] far enough from the boundaries of the

cone so that that v + ei is also in [� g] for all unit vectors ei. Because g is

complete, v and v + ei are all in MN0 . The other direction is proved in [2]

(Proposition 5).

(4)↔(3): For one direction, write ei = Mfi. Set k = maxi ||fi||∞. Set v = Mkn.

We see that v+ei = M(kn +fi) ⊆MN0 . For the other direction, let 1 ≤ i ≤ n.

Write v = Mw, v+ei = Mw′, where w,w′ ∈ Nn
0 . Hence, ei = M(w′−w) ⊆MZ.

(3)↔(2): Let v ∈ Zn; write v = (v1, v2, . . . , vn). Write ei = Mfi, for fi ∈ Zn.

Then v = M
∑
vifi, as desired. The other direction is trivial.

(2)↔(6): We place M in Smith normal form: write M = LNR, where N is a

diagonal matrix of the same dimensions as M , and L,R are square matrices,

invertible over the integers. The diagonal entries of N are the elementary

divisors of M . We therefore have that (2)↔ N = [I|0]↔ (6).

(6)↔(5): The product of the elementary divisors is known (see, for example,

[8]) to be the absolute value of the GCD of all n× n minors of M . If they are

each one, then their product is one. Conversely, if their product is one, then
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they must each be one since they are all nonnegative integers. 2

Classically, there is a second type of Frobenius number f , maximal so that

mTx = f has no solutions with x from N (rather than N0). This does not alter

the situation; in [9] it was shown that f = g +mT1. A similar situation holds

in the vector context.

Call v f-complete if [�v] ⊆MN.

Proposition 3 Let F be the set of all ≥-minimal f-complete vectors. Then

F = G+M1.

PROOF. It suffices to show that v ∈ Qn is complete if and only if v + M1

is f-complete. Note that the following conditions are equivalent for an integral

vector u: (1) u ∈ [� v + M1], (2) u � v + M1, (3) (u−M1) − v ∈ MR≥0 , (4)

(u−M1) � v, (5) (u−M1) ∈ [� v]. Now, suppose that v is complete. Let

u ∈ [� v + M1]; hence (u−M1) ∈ [� v] ⊆ MN0 and therefore u ∈ MN. So

v + M1 is f-complete. On the other hand, suppose that v + M1 is f-complete.

Let (u−M1) ∈ [�v]; hence u ∈ [�v+M1] ⊆MN. Hence u−M1 ⊆MN−M1 =

MN0 , and v is complete. 2

Having established the notation and basic groundwork for the problem, we

now present two useful techniques: the method of critical elements, and the

MIN method. Each will be shown to characterize the set G.
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2 The Method of Critical Elements

For a vector u and i ∈ [1, n], let Ci(u) = {v : v ∈ Zn \MN0 , v = u+Aw, (w)i =

0, (w)j ∈ (0, 1] for j 6= i}. This set captures all lattice points missing from

the monoid, in the ith face of the cone at u, that are minimal mod A. Let

C(u) =
⋃

i∈[1,n]C
i(u), which is a disjoint union of finite sets. We call elements

of C(u) critical. Note that if v ∈ Ci(u), then v+Aei ∈ V (u). Critical elements

characterize G, as shown by the following theorem.

Theorem 4 Let x be complete. The following statemements are equivalent.

(1) x ∈ G

(2) Each face of cone(x) contains at least one lattice point not in the monoid.

(3) Ci(x) 6= ∅, ∀i ∈ [1, n].

PROOF. We write x = Ax′. For each i ∈ [1, n], set xi = x − (1/|A|)Aei

and Si = [� xi] \ [� x]. Observe that Si = {Au ∈ Zn : (u)j > (x′)j (for j 6=

i), (u)i = (x′)i}; the Si are the lattice points in the ith face of cone(x).

(1)→ (2) If Si ⊆MN0 , then xi is complete, which is violative of x ∈ G.

(2)→ (3) Pick any minimal y ∈ Si \MN0 . Suppose that (A−1(y − x))j /∈ (0, 1]

for j 6= i; in this case, y−Aej would also be in Si\MN0 , violating the minimality

of y. Hence y ∈ Ci(x), and thus Ci(x) 6= ∅.

(3)→ (1) If x? < x, then x? ≤ xi for some i. But no xi is complete; hence x?

is not complete. Thus x is ≥-minimal and complete and thus x ∈ G. 2

Critical elements can also be used to test for uniqueness of Frobenius vectors.

Set ei = 1− ei = (1, 1, . . . , 1, 0, 1, 1, . . . , 1).

Theorem 5 Let g ∈ G. Then |G| = 1 if and only if for each i ∈ [1, n] there
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is some ci ∈ Ci(g) with ci + kAei /∈MN0 for all k ∈ N0.

PROOF. Suppose that for each i ∈ [1, n] there is some ci ∈ Ci(g) with

ci + kAei /∈ MN0 for all k. Let g′ ∈ G. If g′ 6= g, then for some i we must

have (A−1g′)i < (A−1g)i. As k →∞, (A−1ci + kei)j →∞ (for j 6= i), but also

(A−1ci+kei)i = (A−1g)i for all k. Therefore, for some k we have ci+kAei � g′.

Hence g′ is not complete, which is violative of our assumption. Hence |G| = 1.

Now, let g ∈ G be unique, let i ∈ [1, n] be such that each ci ∈ Ci(g) has some

k(i) with ci+k(i)Aei ∈MN0 . If ci+kAei ∈MN0 , then ci+k′Aei ∈MN0 for any

k′ ≥ k; hence because |Ci(g)| <∞ there is some K ∈ N0 with ci+KAei ∈MN0

for all ci ∈ Ci(g). Now, set g? = g + (K + 1)Aei − (1/|A|)Aei and S = [�

g?] \ [�g] ⊆ {u ∈ Zn : (A−1(u− g))i = 0, (A−1(u− g))j ≥ K + 1 (j 6= i)}.

We now show that S \MN0 is empty; otherwise, choose u therein. Set u′ =

u − Aa, where (a)i = 0 and (a)j =


b(A−1(u− g))jc (A−1(u− g))j /∈ Z

(A−1(u− g))j − 1 (A−1(u− g))j ∈ Z
(for j 6= i). We must have u′ ∈ Zn \MN0 , since otherwise u ∈ MN0 . We also

have (A−1(u′ − g))i = 0, (A−1(u′ − g))j ∈ (0, 1] for j 6= i; hence u′ ∈ Ci(g).

But then u′ +KAei ∈ MN0 and hence u ∈ MN0 since u− (u′ +KAei) ∈ AN0 .

Hence S ⊆ MN0 and g? is complete. Now take g′ ∈ G with g′ ≤ g?. We have

(A−1g′)i ≤ (A−1g?)i < (A−1g)i and hence g′ 6= g, which is violative of our

hypothesis. 2

Our next result generalizes a one-dimensional reduction result in [10] which

is very important because it allows the assumption that the generators are

pairwise relatively prime. The vector generalization unfortunately does not

permit us an analogous assumption in general.
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Theorem 6 Let d ∈ N and let M = [A|B] be simplicial. Suppose that N =

[A|dB] is dense. Then M is dense, and G(N) = dG(M) + (d− 1)A1.

PROOF. Each n × n minor of M divides a corresponding minor of N , and

hence M is dense. Further, d divides all minors of N apart from |A|, and

hence gcd(|A|, d) = 1 = gcd(|A|2, d). We can therefore pick d? ∈ N with

d?d ∈ 1 + |A|2N0. For any v ∈ Qn, we observe that d?dv − v ∈ N0|A|2Qn =

N0|A|Zn ⊆ AZ; hence d?dv ≡ v. Set θ(x) = dx + (d − 1)A1n. We will show

for any x ∈ Qn that x ∈ MN0 if and only if θ(x) ∈ NN0 (in particular, if

θ(x) ∈ NN0 , then x ∈ Zn). One direction is trivial; for the other, assume

θ(x) ∈ NN0 . We have dx+ dA1n = A(y + 1n) + dBz, for y ∈ Nn
0 , and z ∈ Nm

0 .

We observe that x + A1n = A(1/d)(y + 1n) + Bz, so x + A1n ≥ Bz. Also,

d?d(x + A1n) = Ad?(y + 1n) + d?dBz, and hence x + A1n ≡ Bz. Therefore

x + A1n − Bz = Aw for some w ∈ Nn
0 . Further, w = (1/d)(y + 1n) so in fact

w ∈ Nn. Hence, x = A(w − 1n) +Bz ∈MN0 .

Next, we show that x is M -complete if and only if θ(x) is N -complete. First

suppose that θ(x) is N -complete. Let u ∈ [� x]; we have θ(u) ∈ [� θ(x)] ⊆

NN0 . Hence u ∈MN0 so x is M -complete. Now suppose that x is M -complete.

Let u ∈ V (θ(x)). Set u′ ∈ V (x) with du′ ≡ u. We have u = θ(x) + Aε, u′ =

x + Aε′, where ε, ε′ ∈ (0, 1]n. We compute u − du′ = Aω, where ω = d(1n −

ε′) + (ε− 1n). Because u ≡ du′ we also have u− du′ = Aα with α ∈ Zn. Since

|A| 6= 0, we have ω = α ∈ Zn. Further, since ε, ε′ ∈ (0, 1]n, each coordinate of

d(1n − ε′) + (ε − 1n) is strictly greater than −1 and hence ω ∈ Nn
0 . We have

u′ ∈MN0 since x is M -complete. But then du′ ∈ NN0 , and thus u = du′+Aω ∈

NN0 . Hence V (θ(x)) ⊆ NN0 and thus θ(x) is N -complete.

Let g ∈ G(M). We will show that θ(g) ∈ G(N). Let i ∈ [1, n]. By Theorem 4,

there is u ∈ [0, 1]n with ui = 0, uj > 0 (for j 6= i), such that g+Au ∈ Zn\MN0 .
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We have θ(g+Au) ∈ Zn\NN0 . We write θ(g+Au) = d(g+Au)+(d−1)A1n =

θ(g) + Adu. Write du = u′ + u′′ where (u′)i = 0, (u′)j ∈ (0, 1], and u′′ ∈ Nn
0 .

We have θ(g) + Au′ ∈ Ci(θ(g)); considering all i gives θ(g) ∈ G(N). Now, let

g ∈ G(N). We will show that θ−1(g) = (1/d)(g − (d − 1)A1n) ∈ G(M). We

again apply Theorem 4 to get an appropriate u with g+Au ∈ Zn \NN0 . Note

that g+A(u+d1n) ∈ NN0 hence θ−1(g+A(u+d1n)) = (1/d)(g+Au+dA1n−

(d − 1)A1n) = θ−1(g) + (1/d)Au + A1n ∈ MN0 ⊆ Zn. Thus, θ−1(g + Au) =

(1/d)(g + Au − (d − 1)A1n) = θ−1(g) + (1/d)Au ∈ Zn. We therefore have

θ−1(g + Au) ∈ Ci(θ−1(g)); considering all i gives θ−1(g) ∈ G(M). 2

3 The MIN Method

Let MIN = {x : x ∈MN0 ; for all y ∈MN0 , if y ≡ x then y ≥ x}. Provided M

is dense, MIN will have at least one representative of each of the |A| equivalence

classes mod A. MIN is a generalization of a one-dimensional method in [9];

the following result shows that it characterizes the set G.

Theorem 7 Let g ∈ G. Then g = lub(N)−A1 for some complete set of coset

representatives N ⊆ MIN. Further, if n < |A| then there is some N ′ ⊆ N with

|N ′| = n and lub(N) = lub(N ′).

PROOF. Observe that V (g) ⊆ [� g], and hence V (g) ⊆ MN0 since g is

complete. Let MIN′ = {u ∈ MIN : ∃v ∈ V (g), u ≡ v, u ≤ v}. Now, for

v ∈ Ci(g), we have v + Aei ∈ V (g). Let vMIN ∈ MIN′ with vMIN ≡ v + Aei

and vMIN ≤ v + Aei. We must have (A−1vMIN)i ≥ (A−1v)i + 1 = (A−1g)i + 1

because otherwise v ∈ vMIN +AN0 and therefore v ∈MN0 , which is violative of

v ∈ Ci(g). Set N ′ = {vMIN : i ∈ [1, n]}. We have lub(N ′) ≥ g+A1, but also we

have g + A1 = lub(V (g)) ≥ lub(MIN′) ≥ lub(N ′). Hence all the inequalities
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are equalities, and in fact lub(N ′) = lub(N) for any N with N ′ ⊆ N ⊆ MIN′.

Finally, we note that |N ′| ≤ n but also we may insist that |N ′| ≤ |A| because

|V (g)| = |A|. 2

Elements of MIN have a particularly nice form. This is quite useful in compu-

tations.

Theorem 8 MIN ⊆ {Bx : x ∈ Nm
0 , ||x||1 ≤ |A| − 1}.

PROOF. Let v ∈ MIN ⊆ MN0 . Write v = Mv′, where v′ ∈ Nn+m
0 . Suppose

that (v′)i > 0, for 1 ≤ i ≤ n. Set w′ = v′ − ei, and w = Mw′. We see

that w ≡ v, w ≤ v, and w ∈ MN0 ; this contradicts that v ∈ MIN. Hence

MIN ⊆ BN0 . Let z = Bx ∈ MIN. Suppose that ||x||1 ≥ |A|. Start with 0 and

increment one coordinate at a time, building a sequence B0 = Bv0 � Bv1 �

Bv2 � · · · � Bv||x||1 = z where each vi ∈ Nm
0 . We may do this since M is

simplicial. Because there are at least |A|+ 1 terms, two (say Bva � Bvb) are

congruent mod A. We have z−Bvb ∈MN0 and so y = z− (Bvb−Bva) ∈MN0 ,

but y � z and y ≡ z. This violates that z ∈ MIN. 2

Corollary 9 |G| is finite.

The following result, proved first in [11] and rediscovered in [12], generalizes

the classical one-dimensional result on two generators that g(a1, a2) = a1a2 −

a1−a2. Note that in the special case where m = 1, we must have that |G| = 1

and G ⊆ Zn. Neither of these necessarily holds for m > 1.

Corollary 10 If m = 1 then G = {|A|B − A1 −B}.

PROOF. By Theorem 8, we have MIN = {0, B, 2B, . . . , (|A| − 1)B}, a com-

plete set of coset representatives. By Theorem 7, any g ∈ G must have
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g + A1 = lub(MIN) = (|A| − 1)B. 2

Corollary 10 can be extended to the case where the column space of B is

one dimensional, using as an oracle function the (one-dimensional) Frobenius

number. In this special case we again have |G| = 1 and G ⊆ Zn.

Theorem 11 Consider a dense M = [A|B] with B a column (n× 1) vector,

i.e. the special case m = 1. Let C = [c1, c2, . . . , cm] ∈ Nm. Suppose that

P = [ |A| | C ] is dense. Then N = [A|BC] is dense, and G(N) = {G(P )B +

|A|B − A1}.

PROOF. By Theorem 8, we have MIN(M) = {0, B, . . . , (|A| − 1)B}. Hence

Zn/AZn is cyclic, and B is a generator. Let S denote the set of all n × n

minors of M , apart from |A|. Using the denseness of M and P , we have

gcd(|A|, {cis : 1 ≤ i ≤ m, s ∈ S}) = gcd(|A|, gcd(c1, c2, . . . , cm) gcd(S)) =

gcd(|A|, gcd(S)) = 1, and hence N is dense. Again by Theorem 8, we have

MIN(N) ⊆ BN0 . We now show that G(P )B /∈ MN0 . Suppose otherwise. We

then write G(P )B = Ax+BCy and hence Ax = Bq for q = (G(P )−Cy). We

conclude that qB ≡ 0 mod A and hence q = k|A| for some k ∈ N (k > 0 since

M is simplicial) since B generates Zn/AZn. We now have BG(P ) = Bk|A|+

BCy, and henceG(P ) = k|A|+Cy. But nowG(P )−1 is complete (with respect

to P ), which violates the definition of G(P ). Therefore G(P )B /∈MN0 . On the

other hand, if α ∈ Z and α > G(P ) we have α = k|A|+Cy, for some k, y ∈ N0.

Therefore, we have Bα = k|A|B +BCy = A (k|A|A−1B) +BCy ∈MN0 (note

that A−1B ∈ Q≥0 since M is simplicial). Hence, T = {G(P )B + kB : k ∈

[1, |A|]} ⊆ MN0 , with lub(T ) = G(P )B + |A|B = β. Let g ∈ G(N), and let

M be chosen as in Theorem 7 with |M | = |A|. Since T is a complete set of

coset representatives and both T and MIN(N) lie on BR, we have lub(M) ≤
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lub(MIN(N)) ≤ lub(T ) = G(P )B + |A|B = β. However, the coset of β is

precisely {G(P )B + k|A|B : k ∈ Z}. Therefore, β is the unique representative

of its equivalence class in MIN, and thus β ∈ M and lub(M) = β. Hence

g + A1 = β for all g ∈ G, as desired. 2

Example 12 Consider N = ( 5 0 84 105
0 4 84 105 ). We have N = [A|BC], for A =

( 5 0
0 4 ), B = ( 3

3 ), and C = (28, 35). Following Theorem 11, we have P =

(20, 28, 35). gcd(20, 28, 35) = 1 so P is dense; we now calculate G(P ) = 197

using our one-dimensional oracle. Therefore N is dense and G(N) = {( 646
647 )}.

We give three more results using this method. First, we present a ≤-bound

for G. This generalizes a one dimensional bound, attributed to Schur in [13]:

g(a1, a2, . . . , ak) ≤ a1ak − a1 − ak (where a1 < a2 < · · · < ak). Note that

Corollary 10 shows that equality is sometimes achieved.

Theorem 13 For all g ∈ G, g ≤ lub ({|A|b− A1 − b : b a column of B}).

PROOF. Let x ∈ MIN, fix 1 ≤ i ≤ n, and write (A−1x)i = (A−1Bx′)i =

(
∑

b(x
′)bA

−1b)i, where b ranges over all the columns of B. Set b? to be a

column of B with (A−1b?)i maximal. By Theorem 8, we have that (A−1x)i ≤

(A−1b?)i||x′||1 ≤ (A−1b?)i(|A| − 1). By the choice of b?, and by varying i, we

have shown that x ≤ lub({(|A|−1)b}) and hence lub(MIN) ≤ lub({(|A|−1)b}).

For any g ∈ G, we apply Theorem 7 and have g+A1 ≤ lub(MIN) ≤ lub({(|A|−

1)b}). 2

Next, we characterize possible G in our context for the special case m = 1. This

generalizes a one-dimensional construction found in [14]. If we allow m = 2,

then it is an open problem to determine whether all G are possible.
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Theorem 14 Let g ∈ Zn. There exists a simplicial, dense, M with m = 1

and G = {g} if and only if (1/2)g /∈ Zn.

PROOF. Suppose (1/2)g /∈ Zn. By applying an invertible change of basis,

if necessary, we assume without loss that g ∈ Nn and that (1/2)(g)1 /∈ Z.

Set A = diag(2, 1, 1, . . . , 1), and set B = A1 + g. For i ∈ [1, n], define Ai to

be A with the ith column replaced by B. Note that detA = 2 and detA1 =

2 + (g)1 (which is odd), and hence M is dense. We now apply Corollary 10

to get G = {g}, as desired. Suppose now that we have a simplicial dense M ,

with G = {g} and (1/2)g ∈ Zn. Applying Corollary 10 again, we get that

g + A1 = (|A| − 1)B. Suppose that |A| were odd. Then each coordinate of

(|A| − 1)B is even, as is each coordinate of g, and hence so is each coordinate

of A1. Considering the integers mod 2, we have |A| = 1 but A1 = 0n, a

contradiction. Therefore we must have that |A| is even. We now consider the

system A(x1, x2, . . . , xn)T = B. We may apply Cramer’s rule since |A| 6= 0 and

B 6= 0n; we find that, uniquely, detAi = xi|A|. We now consider the system

reduced mod 2 (working in Q/2Q) and find that 1n solves the reduced system,

as B = |A|B − g − A1 ≡ −A1n ≡ A1n (mod 2). Hence, each xi is in fact an

odd integer, and thus detAi is an even integer. Consequently, all n×n minors

of M are even, which is violative of the denseness of M . 2

Our last result combines the two methods presented. It generalizes the one-

dimensional theorem g(a, a+ c, a+ 2c, . . . , a+ kc) = ad(a− 1)/ke+ac−a− c,

as proved in [15]. The following determines G, for M of a similarly special

type.

Theorem 15 Fix A and a vector c ≥ 0. Set C = c(1n)T , a square matrix,

and fix k ∈ N. Set M = [A|A + C|A + 2C| · · · |A + kC]. Suppose that M is

13



dense. Then G(M) = {Ax+ |A|c− A1 − c : x ∈ Nn
0 , ‖x‖1 = d(|A| − 1)/ke}.

PROOF. We have

MN0 = {
k∑

i=0

(A+ iC)xi : xi ∈ Nn
0}

= {A
k∑

i=0

xi + C
k∑

i=0

ixi : xi ∈ Nn
0}

= {A
k∑

i=0

xi + c
k∑

i=0

i||xi||1 : xi ∈ Nn
0}

= {Ax+ c
k∑

i=0

i||xi||1 : xi ∈ Nn
0 ;x =

k∑
i=0

xi}.

Now, for a fixed x ∈ Nn
0 , as we vary the decomposition x =

∑k
i=0 x

i (for

xi ∈ Nn
0 ), we find that

∑k
i=0 i||xi||1 takes on all values from 0 to k||x||1. Hence

MN0 = {Ax+ cγ : x ∈ Nn
0 , γ ∈ N0, γ ≤ k‖x‖1}.

Choose any x ∈ Nn
0 satisfying ‖x‖1 = d(|A| − 1)/ke. Set T = {Ax + cγ ∈

MN0 : 0 ≤ γ ≤ |A| − 1}. By construction, we have T ⊆ MN0 . Further, the

elements of T must be inequivalent mod A, since c is a generator of the cyclic

group Zn/AZ. Set h = lub(T ) − A1 = Ax + (|A| − 1)c − A1. Note that each

t ∈ T either has t ∈ V (h) or t ≤ t′ (and t ≡ t′) for some t′ ∈ V (h); hence

V (h) ⊆ MN0 and h is complete. For any i ∈ [1, n], |A| − 1 > k||x − ei||1, so

A(x − ei) + (|A| − 1)c ∈ Ci(h), and thus h ∈ G(M). Now, let g ∈ G(M).

By Theorem 7, we have g ≥ Ax + (|A| − 1)c − A1, for some x ∈ Nn
0 with

|A| − 1 ≤ k‖x‖1. By our earlier observation, Ax+ (|A| − 1)c−A1 ∈ G(M), so

we have equality by the minimality of g. 2

Example 16 Consider M = ( 5 0 7 2 9 4 11 6 13 8 15 10 17 12 19 14
0 4 1 5 2 6 3 7 4 8 5 9 6 10 7 11 ). We see that

M = [A|A+C|A+ 2C|A+ 3C|A+ 4C|A+ 5C|A+ 6C|A+ 7C] for A = ( 5 0
0 4 )

and C = ( 2 2
1 1 ). M is dense since |A| = 20, |A + C| = 33 and gcd(20, 33) =

14



1. Applying Theorem 15, we get G(M) = {Ax + ( 33
15 ) : x, ‖x‖1 = 3} =

{( 48
15 ) , ( 43

19 ) , ( 38
23 ) , ( 33

27 )}.
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