Membership and Elasticity in Certain Affine Monoids

Jackson Autry* Vadim Ponomarenko[†]

August 27, 2019

Abstract

For affine monoids of dimension 2 with embedding dimension 2 and 3, we study the problem of determining when a vector is an element of the monoid, and the problem of determining the elasticity of a monoid element.

1 Introduction

Let \mathbb{N} denote the set of positive integers, \mathbb{N}_0 denote the set of nonnegative integers, and \mathbb{Q}^* denote the set of nonnegative rational numbers adjoined with $+\infty$. An affine monoid, S, is a finitely generated submonoid of \mathbb{N}_0^r , with operation +, for some positive integer r. They are of substantial interest (see, e.g., [4, 8, 13]). In the remainder, we restrict to the case r = 2. Any affine monoid is cancellative $(\mathbf{a} + \mathbf{b} = \mathbf{a} + \mathbf{c}$ implies $\mathbf{b} = \mathbf{c}$), reduced (its only unit is 0, the identity element), and torsion free $(k\mathbf{a} = k\mathbf{b})$ for $k \in \mathbb{N}$ implies $\mathbf{a} = \mathbf{b}$). Let S be an affine monoid minimally generated by $\mathcal{A} := \{\mathbf{a}_1, \dots, \mathbf{a}_p\} \subset \mathbb{N}_0^r$, that is to say $S = \langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_p \rangle := \mathbb{N}_0 \mathbf{a}_1 + \dots + \mathbb{N}_0 \mathbf{a}_p$ and no proper subset of \mathcal{A} generates S. We say the embedding dimension of S is p. For a general introduction to monoids and their invariants, see [5].

The monoid map

$$\pi_{\mathcal{A}}: \mathbb{N}_0^p \longrightarrow S; \mathbf{u} = (u_1, \dots, u_p) \longmapsto \sum_{i=1}^p u_i \mathbf{a}_i$$

is sometimes known as the factorization homomorphism associated to \mathcal{A} , and if $\pi_{\mathcal{A}}(\mathbf{u}) = s$, \mathbf{u} is called a factorization of s. For every $s \in S$, the set $\mathsf{Z}(s) := \pi_{\mathcal{A}}^{-1}(s)$ is called the set of factorizations of s. Given $s \in S$, for $\mathbf{u} = (u_1, \ldots, u_p) \in \mathsf{Z}(s)$, define the length of the factorization \mathbf{u} , to be $|\mathbf{u}| = u_1 + \cdots + u_p$, and define the set of lengths of s as $\mathsf{L}(s) = \{|\mathbf{u}| : \mathbf{u} \in \mathsf{Z}(\mathbf{a})\}$. Define the elasticity of $s \in S$

^{*}San Diego State University

[†]San Diego State University, corresponding author

as $\rho(s) = \frac{\max(\mathsf{L}(s))}{\min(\mathsf{L}(s))}$, and the elasticity of S to be $\rho(S) = \sup\{\rho(s) : s \in S \setminus \{0\}\}$. The elasticity is a very important monoid invariant (see, e.g., [2, 3, 6, 7]). It measures, in some sense, how close the monoid is to unique factorization. If $\rho(S)$ is small, then nonunique factorization doesn't get too extreme. At the opposite extreme are bifurcus monoids, where every element has a factorization into two atoms. Here the monoid elasticity is infinite.

The monoid elasticity $\rho(S)$ for affine monoids can be computed via the following (see, e.g., [9]). Considering the relations among the generators as vectors of coefficients, these form a monoid. Restricting to atoms in this relation monoid gives a finite set of elements in the original monoid S. The maximum elasticity in this finite set of elements gives $\rho(S)$.

Our focus is more fine-grained, on the elasticity of individual monoid elements. We will compute these, and also provide membership tests for arbitrary elements of \mathbb{N}_0^2 .

In this note, our main tool will be the function $\phi: \mathbb{Z}^2 \to \mathbb{Q}^*$ given by $\phi: \begin{bmatrix} a \\ b \end{bmatrix} \mapsto \frac{a}{b}$, with $\frac{a}{0}$ conventionally taken to be $+\infty$. Our main focus will be $S \subseteq \mathbb{N}_0^2$, with embedding dimension 2 and 3. We will show that for a given $s \in \mathbb{N}_0^2$, membership in S and $\rho(s)$ are largely determined by $\phi(s)$.

2 Preliminaries

We begin with the observation that \mathbb{Q}^* is ordered, and the semigroup operation (commonly known as the mediant) preserves this order. This property is well-known (see, e.g., [12]); its proof is included for completeness.

Lemma 1. Let $a, b, c, d \in \mathbb{N}_0$ with $\phi(\begin{bmatrix} a \\ b \end{bmatrix}) < \phi(\begin{bmatrix} c \\ d \end{bmatrix})$. Then

$$\phi(\begin{bmatrix} a \\ b \end{bmatrix}) < \phi(\begin{bmatrix} a+c \\ b+d \end{bmatrix}) < \phi(\begin{bmatrix} c \\ d \end{bmatrix}).$$

PROOF: We prove only the nontrivial case $bd \neq 0$. Then ad < bc by hypothesis. If we add ab to both sides and divide by b(b+d), we conclude $\frac{a}{b} < \frac{a+c}{b+d}$ which gives the first inequality. If we instead add cd to both sides and divide by d(b+d), we get the second inequality. QED

Corollary 2. Let $u, v \in \mathbb{N}_0^2$ with $\phi(u) < \phi(v)$. Let $s \in \langle u, v \rangle$. Then $\phi(u) \le \phi(s) \le \phi(v)$.

PROOF: Strict inequality is lost if s = u + u or similar. QED

Let GL(2) denote the set of 2×2 unimodular matrices (i.e. with determinant ± 1), with entries from \mathbb{Z} . Let $\begin{bmatrix} u & v \end{bmatrix}$ denote the 2×2 matrix whose first column is u, and whose second column is v. Let $[\mathcal{A}]$ denote a similar matrix whose columns are the monoid generators.

Corollary 3. Let $u, v \in \mathbb{N}_0^2$ with $\phi(u) < \phi(v)$. Let $s \in \langle u, v \rangle$. Let $A \in GL(2)$. Suppose that $Au, Av \in \mathbb{N}_0^2$. Then $As \in \langle Au, Av \rangle$, and either $\phi(Au) \leq \phi(As) \leq \phi(Av)$ or $\phi(Av) \leq \phi(As) \leq \phi(Au)$.

PROOF: Since $s \in \langle u, v \rangle$, there is some vector w with $\begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} w \end{bmatrix} = \begin{bmatrix} s \end{bmatrix}$. Then $A \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} w \end{bmatrix} = A \begin{bmatrix} s \end{bmatrix}$, hence $\begin{bmatrix} Au & Av \end{bmatrix} \begin{bmatrix} w \end{bmatrix} = \begin{bmatrix} As \end{bmatrix}$. Hence $As \in \langle Au, Av \rangle$. We apply Corollary 2 in one of two ways, depending on whether $\phi(Au) \leq \phi(Av)$ or $\phi(Au) \geq \phi(Av)$.

Given some $u=\left[\begin{smallmatrix} a \\ b \end{smallmatrix} \right] \in \mathbb{N}_0^2$, we say that it is ϕ -minimal if $\gcd(a,b)=1$; otherwise we could take a smaller $u'=\left[\begin{smallmatrix} a/\gcd(a,b) \\ b/\gcd(a,b) \end{smallmatrix} \right]$ with $\phi(u)=\phi(u')$. Henceforth we assume that all of our monoid generators are ϕ -minimal.

Lemma 4. Let $u = \begin{bmatrix} a \\ b \end{bmatrix}, v = \begin{bmatrix} c \\ d \end{bmatrix} \in \mathbb{N}_0^2$. Suppose that both are ϕ -minimal and $\phi(u) = \phi(v)$. Then u = v.

PROOF: If bd=0, then b=d=0 and a=c=1; hence, u=v. Otherwise ad=bc. Since $\gcd(a,b)=1,\ a|c$. Since $\gcd(c,d)=1,\ c|a$. Since $a,c\in\mathbb{N}_0,\ a=c$. Similarly, b=d.

Since all monoid generators are distinct, by Lemma 4, they must also have distinct ϕ -values. Henceforth, we may assume, without loss of generality, that our monoid generators are given in strictly increasing ϕ order.

We now recall Hermite Normal Form, an analog of row echelon form for matrices over non-fields like \mathbb{Z} . For every rectangular matrix M with integer entries, there is an associated square unimodular matrix U such that UM is (a) upper triangular; and (b) the pivot in each nonzero row is strictly to the right of the previous row; and (c) all entries of M are nonnegative integers. For an introduction to these and other properties of HNF, see [1].

Now, for $M = \begin{bmatrix} u & v \end{bmatrix}$, applying HNF we have the first column of UM as $\begin{bmatrix} g \\ 0 \end{bmatrix}$, where g is the gcd of the entries of u. Since u is ϕ -minimal, g = 1. Hence, we have $UM = \begin{bmatrix} 1 & b \\ 0 & a \end{bmatrix}$, with $a, b \in \mathbb{N}_0$. We now consider a row-swapped HNF, defined as $U' = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} U$, so $U'M = \begin{bmatrix} 0 & a \\ 1 & b \end{bmatrix}$. Note that $U'u, U'v \in \mathbb{N}_0^2$, so by Corollary 3, if $s \in \langle u, v \rangle$ then $\phi(U'u) \leq \phi(U's) \leq \phi(U'v)$. Further, note that $0 = \phi(U'u)$ and $\phi(U'v) > 0$. Henceforth we will assume without loss of generality that our first generator is $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

We now recall Smith Normal Form, a non-field analog of the linear algebra theorem giving invertible U, V with $UMV = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}$, a block matrix. For any rectangular matrix M with integer entries, there are associated square unimodular matrices U, V such that $UMV = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}$, where $D = diag(d_1, d_1d_2, \ldots, d_1d_2 \cdots d_k)$. Of particular interest to us are the d_i , the so-called determinantal divisors of M, which satisfy that d_i is the gcd of all the $i \times i$ minors of M. For example, $d_1(M)$ is the gcd of all the entries of M.

The determinantal divisors of M are not disturbed upon multiplication (on either side) by any unimodular matrix. Further, they are not disturbed by appending a column that is a \mathbb{Z} -linear combination of the other columns. For an introduction to these and other properties of SNF, see [10] or [1].

Given a single generator u, because we have assumed it is ϕ -minimal, the determinantal divisor $d_1([u]) = 1$. Consequently, for any invertible U', we must

have $d_1([U'u]) = 1$. In particular, applying our row-swapped HNF preserves ϕ -minimality.

We provide our first membership test for our affine monoid, of arbitrary embedding dimension.

Lemma 5. Let $S = \langle A \rangle$, and let $v \in \mathbb{N}_0^2$. Set M = [A] and M' = [Av]. If $d_2(M) \neq d_2(M')$, then $v \notin S$.

PROOF: If $v \in S$, then removing the last column of M' (which gives M) will not change the determinantal divisors. QED

3 Embedding Dimension 2

In this section, we fix the case of $S = \langle u, v \rangle$, with $u = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $v = \begin{bmatrix} a \\ b \end{bmatrix}$, and $\gcd(a,b) = 1$. This is a simple case, as this monoid has unique factorization. However, we solve it in order to demonstrate our methods.

Note that $d_2([u\ v]) = a$. Consider some $s = [\frac{x}{y}] \in \mathbb{N}_0^2$. We have proved that if $s \in S$, then $0 \le \phi(s) \le \frac{a}{b}$, and that $d_2([u\ v\ s]) = d_2([u\ v]) = a$. It turns out that these two necessary conditions for membership are sufficient.

Theorem 6. With notation as above, $s \in S$ if and only if both of the following hold:

1.
$$0 \le \frac{x}{y} \le \frac{a}{b}$$
; and

 $2. \ a|x.$

Further, if $s \in S$, then $\rho(s) = 1$.

PROOF: Suppose first that $s \in \langle u, v \rangle$. By Corollary 2, $\phi(u) \leq \phi(s) \leq \phi(v)$. Note that $d_2(\begin{bmatrix} 0 & a \\ 1 & b \end{bmatrix}) = a$, as the 2×2 minor is -a. Note also that one of the 2×2 minors of $[\mathcal{A} \ s]$ has determinant -x, so we must have a|x.

Suppose now that the two conditions hold, i.e. there is some $k \in \mathbb{N}_0$ with x = ka. If k = 0, then $s = y \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. No other factorization is possible, as even one copy of v will disturb the 0.

Otherwise, since $\frac{x}{y} \leq \frac{ka}{kb} = \frac{x}{kb}$, we must have $y \geq kb$. Hence we may write $\begin{bmatrix} x \\ y \end{bmatrix} = k \begin{bmatrix} a \\ b \end{bmatrix} + (y - kb) \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, which proves $s \in \langle u, v \rangle$. No other factorization is possible, by a back-substitution-type argument: u does not affect the first coordinate, so we must have k copies of v and hence v - kb copies of v. QED

4 Embedding Dimension 3

We turn now to the case of embedding dimension 3. Henceforth, we fix the case of $S = \langle u, v, w \rangle$, with $u = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, v = \begin{bmatrix} a \\ b \end{bmatrix}, w = \begin{bmatrix} c \\ d \end{bmatrix}, \phi(u) < \phi(v) < \phi(w)$, and $\gcd(a, b) = 1 = \gcd(c, d)$. Set $M = \begin{bmatrix} 0 & a & c \\ 1 & b & d \end{bmatrix}$. We will also fix $s = \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{N}_0^2$.

We first offer a simple way to compute the determinantal divisor d_2 below.

Lemma 7. With notation as above, $d_2(M) = \gcd(a, c)$.

PROOF: Since $\gcd(a,c)$ divides each entry of the first row of each 2×2 submatrix, it divides each minor. Hence $\gcd(a,c)|d_2(M)$. Considering the submatrices $\left[\begin{smallmatrix} 0 & a \\ 1 & b \end{smallmatrix}\right]$ and $\left[\begin{smallmatrix} 0 & c \\ 1 & d \end{smallmatrix}\right]$, we find that $d_2(M)$ divides each of a,c. Hence $d_2(M)|\gcd(a,c)$. QED

Similarly to the embedding dimension 2 case, if $s \in S$, we must have $0 \le \phi(s) \le \frac{c}{d}$, and $d_2([M s]) = d_2([M]) = \gcd(a, c)$. Further, we must have $x \in \langle a, c \rangle$, since only v, w have nonzero first coordinates to contribute to x. Unfortunately, in general these necessary conditions are not sufficient, as the following example demonstrates.

Example 8. Consider $u = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, v = \begin{bmatrix} 11 \\ 10 \end{bmatrix}, w = \begin{bmatrix} 10 \\ 3 \end{bmatrix}, s = \begin{bmatrix} 199 \\ 119 \end{bmatrix}$. Note that $\phi(s) < 2 < \phi(w)$, and that $d_2([M s]) = d_2([M]) = 1$. 199 can be factored (uniquely) in $\langle 11, 10 \rangle$ as $199 = 9 \cdot 11 + 10 \cdot 10$. However, $9v + 10w = \begin{bmatrix} 199 \\ 120 \end{bmatrix}$. Including u's will not help, so $s \notin S$.

If $x \in \langle a, c \rangle$, then we can impose a restriction on its representation, as follows. This may be viewed through the lens of Apéry sets (see, e.g., Lemma 2.6 in [11]), as unique representation of x as the sum of an Apéry set element and an arbitrary multiple of a.

Proposition 9. Let $a, c \in \mathbb{N}$ with gcd(a, c) = 1. If $x \in \langle a, c \rangle$, then there are $\alpha, \beta \in \mathbb{N}_0$ with $x = \alpha a + \beta c$ and $0 \le \alpha < c$.

PROOF: Since $x \in \langle a, c \rangle$, there are some $\alpha', \beta' \in \mathbb{N}_0$ with $x = \alpha' a + \beta' b$. But also $x = (\alpha' - tc)a + (\beta' + ta)c$ for all integer t. Choose $t \geq 0$ maximal with $\alpha' - tc \geq 0$, set $\alpha = \alpha' - tc$, $\beta = \beta' + ta$, and observe that $0 \leq \alpha < c$. QED

We will frequently use the canonical factorization of x in $\langle a, c \rangle$ from Proposition 9, which we call $\alpha(x), \beta(x)$.

Despite the setback of Example 8, with an additional restriction, we can solve the membership problem. Henceforth, we add the following standing hypothesis.

$$bc - ad = 1 \tag{*}$$

Note that (\star) implies that $1 = \gcd(a, b) = \gcd(a, c) = \gcd(b, d) = \gcd(c, d) = 1$. Hence, condition (\star) alone implies ϕ -minimality on v, w, and also $d_2(M) = 1$.

Theorem 10. With notation as above, $s \in S$ if and only if both

1.
$$0 \le \frac{x}{y} \le \frac{c}{d}$$
; and

2.
$$x \in \langle a, c \rangle$$
.

PROOF: If $s \in S$, both conditions are easily seen to hold.

Suppose now that the two conditions hold. Take α, β as in Proposition 9. We now prove that $y \ge \alpha b + \beta d$. Supposing otherwise, we have $y \le \alpha b + \beta d - 1$.

Since $\alpha < c$, $-\alpha > -c$, and hence $(ad - bc)\alpha > -c$. Adding βcd to both sides, with a bit of algebra we get $\alpha ad + \beta cd > \alpha bc + \beta cd - c$, or $\frac{\alpha a + \beta c}{\alpha b + \beta d - 1} > \frac{c}{d}$. But then $\frac{x}{y} > \frac{c}{d}$, which contradicts hypothesis. Hence $y \ge \alpha b + \beta d$. Then we write $s = (y - \alpha b - \beta d) \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right] + \alpha \left[\begin{smallmatrix} c \\ b \end{smallmatrix} \right] + \beta \left[\begin{smallmatrix} c \\ d \end{smallmatrix} \right]$, and hence $s \in S$.

We turn now to the elasticity problem. The different factorizations of s in S all come from different factorizations of x in $\langle a, c \rangle$, by the following.

Lemma 11. With notation as above, given $\alpha', \beta' \in \mathbb{N}_0$ with $x = \alpha' a + \beta' c$, there is exactly one $\delta = \delta(\alpha', \beta') \in \mathbb{Z}$ with $s = \delta u + \alpha' v + \beta' w$.

PROOF: If $s = \delta u + \alpha' v + \beta' w$, then $y = \delta + \alpha' b + \beta' d$. We solve for δ uniquely. If $\delta \geq 0$, then $s = \delta u + \alpha' v + \beta' w$ is a factorization of s in S. QED

Henceforth, we define function $\delta(\alpha, \beta)$, applying Lemma 11 to the factorization from Proposition 9.

We call a factorization of s extreme if it is either of minimal or maximal length. The extreme factorizations are given in the following theorem; there are two cases based on whether $\frac{x}{y}$ is in $(0, \frac{a}{b}]$ or $[\frac{a}{b}, \frac{c}{d})$. Recall that $\lfloor z \rfloor$ denotes the greatest integer that is less than or equal to z.

Theorem 12. With notation as above, the extreme factorizations of s are

$$s = (\delta - t)u + (\alpha + ct)v + (\beta - at)w$$

for t = 0 and for

$$t = \begin{cases} \left\lfloor \frac{\beta}{a} \right\rfloor & \frac{x}{y} \le \frac{a}{b} \\ \delta & \frac{x}{y} \ge \frac{a}{b} \end{cases}.$$

These extreme factorizations have lengths $\delta + \alpha + \beta$ and

$$\begin{cases} \delta + \alpha + \beta + \lfloor \frac{\beta}{a} \rfloor (c - a - 1) & \frac{x}{y} \leq \frac{a}{b} \\ \delta + \alpha + \beta + \delta (c - a - 1) & \frac{x}{y} \geq \frac{a}{b} \end{cases},$$

respectively.

PROOF: Note that, since $\gcd(a,c)=1$, all factorizations of x in $\langle a,c\rangle$ are given by $x=(\alpha+ct)a+(\beta-at)c$, for various integer t. Note that $\alpha+ct\geq 0$ precisely when $t\geq 0$, by our choice of α .

By Lemma 11, for each choice of t there is a unique $\delta_t = \delta(\alpha + ct, \beta - at)$ with $s = \delta_t u + (\alpha + ct)v + (\beta - at)w$. Hence $y = \delta_t + (\alpha + ct)b + (\beta - at)d = \delta_t + \alpha b + \beta d + t$, so $\delta_t = y - \alpha b - \beta d - t$. The factorization length (of s in S) is $(\alpha + ct) + (\beta - at) + (y - \alpha b - \beta d - t) = (\alpha + \beta + y - \alpha b - \beta d) + t(c - a - 1)$. In particular, the length varies linearly with t; one extreme is when t = 0, and the other is when t is maximal.

There are two upper bounds on t, both of which must hold. One is that $\beta - at \ge 0$ (else the coefficient of w would not be in \mathbb{N}_0), while the other is that $0 \le \delta_t = y - \alpha b - \beta d - t = \delta - t$. Now we compare the two bounds of $\frac{\beta}{a}$ and δ .

We have $\frac{\beta}{a} \leq \delta$ exactly when $\alpha ab + \beta cb \leq \alpha ab + \beta ad + \delta a$, which holds exactly when $xb \leq ya$ or $\frac{x}{y} \leq \frac{a}{b}$. In this case, we use the $\frac{\beta}{\alpha}$ bound and get the other for free; in the other case it is the reverse.

Substituting t = 0 and $t = \lfloor \frac{\beta}{a} \rfloor$ (or $t = \delta$), we find the lengths as above. QED

Note that the sign of c - a - 1 determines which of the two extreme factorizations is minimal and which is maximal. In particular, we have the following.

Corollary 13. With notation as above, if c = a + 1, then $\rho(S) = 1$.

PROOF: By Theorem 12, each
$$s \in S$$
 has $|\mathsf{L}(\mathbf{s})| = 1$. QED

Corollary 14. With notation as above, we fix $a, b, c, d, x, \alpha, \beta$ and suppose that $\beta(x) < a$. Then, for every $y \ge \frac{bx}{a}$, $\rho(\begin{bmatrix} x \\ y \end{bmatrix}) = 1$.

PROOF: Our hypotheses force $\frac{x}{y} \leq \frac{a}{b}$ and $\lfloor \frac{\beta}{a} \rfloor = 0$. Although δ will vary based on y, all factorizations of $\begin{bmatrix} x \\ y \end{bmatrix}$ have the same length. QED

5 Multiples of $s \in S$

We now fix $s \in S$, and consider factorizations of $ks = \begin{bmatrix} kx \\ ky \end{bmatrix} \in S$ for various $k \in \mathbb{N}$. For any individual k, we can of course compute $\rho(ks)$ using Theorem 12, but we seek $\rho(ks)$, or estimates thereto, for all the various choices of k. We offer three such results, two specific and one general. For convenience, we recall the sign function given by

$$sign(z) = \begin{cases} 1 & z > 0 \\ 0 & z = 0 \\ -1 & z < 0 \end{cases}$$

Our special results determine $\rho(ks)$ exactly, independently of k, but are for periodic values of k only. There are two, based on whether or not $\frac{x}{u} \leq \frac{a}{b}$.

Theorem 15. With notation as above, set $\tau = sign(c-a-1)$. Suppose thet ac|k and $\frac{x}{y} \leq \frac{a}{b}$. Then

$$\rho(ks) = \left(\frac{c}{a} \frac{ya - x(b-1)}{yc - x(d-1)}\right)^{\tau}.$$

PROOF: Let $k' \in \mathbb{N}$ with k = k'ac. We have $\alpha(kx) = 0$ and $\beta = \beta(kx) = k'ax$. We calculate $\delta = \delta(0,\beta) = ky - \beta d = ak'(cy - dx)$. One of the extreme factorization lengths will be $\delta + \beta = ak'(cy - dx) + ak'x = ak'(cy - (d-1)x)$. The other will be $\delta + \beta + \lfloor \frac{\beta}{a} \rfloor (c-a-1) = ak'(cy - (d-1)x) + k'x(c-a-1)$. QED

We now give our second special result, for the case of k a multiple of c and $\frac{x}{y} \ge \frac{a}{b}$. Note that again the elasticity is independent of k.

Theorem 16. With notation as above, set $\tau = sign(c-a-1)$. Suppose that c|k and $\frac{x}{y} \ge \frac{a}{b}$. Then

$$\rho(ks) = \left(c\frac{y(c-a) - x(d-b)}{yc - x(d-1)}\right)^{\tau}.$$

PROOF: Let $k' \in \mathbb{N}$ with k = k'c. We have $\alpha(kx) = 0$ and $\beta = \beta(kx) = k'x$. We calculate $\delta = \delta(0,\beta) = ky - \beta d = k'(cy - dx)$. One of the extreme factorization lengths will be $\delta + \beta = k'(cy - dx) + k'x = k'(cy - (d-1)x)$. The other will be $\delta + \beta + \delta(c - a - 1) = k'(cy - (d - 1)x) + k'(cy - dx)(c - a - 1)$. QED

The following is a general result for all k. In particular, it implies that $\rho(ks)$ is largely predicted by $\phi(s)$, with this prediction becoming more accurate as $k \to \infty$. Note also that the limiting values agree, as expected, with the values in Theorems 15, 16.

Theorem 17. With notation as above, set $\tau = sign(c - a - 1)$. Then

$$\lim_{k \to \infty} \rho(ks) = \begin{cases} \left(\frac{c}{a} \frac{ya - x(b-1)}{yc - x(d-1)}\right)^{\tau} & \frac{x}{y} \le \frac{a}{b} \\ \left(c \frac{y(c-a) - x(d-b)}{yc - x(d-1)}\right)^{\tau} & \frac{x}{y} \ge \frac{a}{b} \end{cases}.$$

PROOF: We set $\alpha = \alpha(kx), \beta = \beta(kx)$, with $kx = \alpha a + \beta c$, and $0 \le \alpha < c$. Note that $\beta = \frac{kx - \alpha a}{c}$. We calculate $\delta = ky - \alpha b - \beta d = ky - \alpha b - (kx - \alpha a)\frac{d}{c} = k(y - x\frac{d}{c}) - \alpha(b - \frac{ad}{c}) = k(y - x\frac{d}{c}) - \frac{\alpha}{c}$. Rather than taking $\rho(ks)$ as the ratio of $\max \mathsf{L}(ks)$ to $\min \mathsf{L}(ks)$, we will

Rather than taking $\rho(ks)$ as the ratio of $\max L(ks)$ to $\min L(ks)$, we will instead take ρ as the ratio of $\frac{1}{k}\max L(ks)$ to $\frac{1}{k}\min L(ks)$. One of these will be $\frac{1}{k}(\delta+\alpha+\beta)=\frac{1}{k}\left(k(y-x\frac{d}{c})-\frac{\alpha}{c}+\alpha+\frac{kx-\alpha a}{c}\right)=y-x\frac{d-1}{c}+\frac{\alpha}{k}\frac{c-a-1}{c}$. In the limit, the last term vanishes, leaving $y-x\frac{d-1}{c}$. We consider the case of $\frac{x}{y}\leq \frac{a}{b}$. The other term we will have in our ratio limit

We consider the case of $\frac{x}{y} \leq \frac{a}{b}$. The other term we will have in our ratio limit will be $\frac{1}{k} \left(\delta + \alpha + \beta + \lfloor \frac{\beta}{a} \rfloor (c - a - 1) \right) = y - x \frac{d-1}{c} + \frac{\alpha}{k} \frac{c - a - 1}{c} + \frac{1}{k} \lfloor \frac{\beta}{a} \rfloor (c - a - 1)$ Now, $\frac{\beta}{a} = k \frac{x}{ac} - \frac{\alpha}{c}$. In the limit we will get $y - x \frac{d-1}{c} + \frac{x}{ac}(c - a - 1)$. We simplify to $y - x \frac{b-1}{a}$. This gives the first formula. Finally, we turn to the case of $\frac{x}{y} \geq \frac{a}{b}$. The other term we will have in

Finally, we turn to the case of $\frac{x}{y} \geq \frac{a}{b}$. The other term we will have in our ratio limit will be $\frac{1}{k} \left(\delta + \alpha + \beta + \delta(c - a - 1)\right) = y - x \frac{d-1}{c} + \frac{\alpha}{k} \frac{c - a - 1}{c} + \frac{c - a - 1}{k} \left(k(y - x\frac{d}{c}) - \frac{\alpha}{c}\right)$. In the limit we will get $y - x \frac{d-1}{c} + (c - a - 1)(y - x\frac{d}{c}) = (c - a)y - (d - b)x$. This gives the second formula. QED

We close by noting that the functions appearing in Theorems 15, 16, and 17 are quite simple, being linear fractional transformations in the variable $\frac{x}{y} = \phi(s)$. Consequently, the limit elasticity (in Theorem 17) is monotone in the intervals $[0, \frac{a}{b}]$ and $[\frac{a}{b}, \frac{c}{d}]$. Since the elasticity is 1 at $\phi(s) = 0$ and at $\phi(s) = \frac{c}{d}$, we find that it takes its maximum at $\frac{a}{b}$. This must also be $\rho(S)$, by considering the relation monoid.

Corollary 18. With notation as above, the maximum of $\lim_{k\to\infty} \rho(ks)$, over all valid s, is $\max(\frac{c}{a+1}, \frac{a+1}{c})$.

6 Acknowledgements

The authors would like to gratefully acknowledge an anonymous referee, whose suggestions significantly improved this work.

References

- [1] W. A. Adkins and S. H. Weintraub. *Algebra*, volume 136 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1992. An approach via module theory.
- [2] T. Barron, C. O'Neill, and R. Pelayo. On the set of elasticities in numerical monoids. *Semigroup Forum*, 94(1):37–50, 2017.
- [3] L. Crawford, V. Ponomarenko, J. Steinberg, and M. Williams. Accepted elasticity in local arithmetic congruence monoids. *Results Math.*, 66(1-2):227–245, 2014.
- [4] J. I. García-García, M. A. Moreno-Frías, and A. Vigneron-Tenorio. Proportionally modular affine semigroups. J. Algebra Appl., 17(1):1850017, 17, 2018.
- [5] P. A. García-Sánchez. An overview of the computational aspects of nonunique factorization invariants. Springer Proceedings in Mathematics & Statistics & Multiplicative Ideal Theory and Factorization Theory, pages 159–181, 2016.
- [6] M. Jenssen, D. Montealegre, and V. Ponomarenko. Irreducible factorization lengths and the elasticity problem within N. Amer. Math. Monthly, 120(4):322–328, 2013.
- [7] C. Kiers, C. O'Neill, and V. Ponomarenko. Numerical semigroups on compound sequences. *Comm. Algebra*, 44(9):3842–3852, 2016.
- [8] A. Mahdavi and F. Rahmati. On the Frobenius vector of some simplicial affine semigroups. *Bull. Belg. Math. Soc. Simon Stevin*, 23(4):573–582, 2016.
- [9] A. Philipp. A characterization of arithmetical invariants by the monoid of relations. *Semigroup Forum*, 81(3), 2010.
- [10] J. C. Rosales and P. A. García-Sánchez. Finitely generated commutative monoids. Nova Science Publishers, Inc., Commack, NY, 1999.
- [11] J. C. Rosales and P. A. García-Sánchez. *Numerical semigroups*, volume 20 of *Developments in Mathematics*. Springer, New York, 2009.
- [12] J. C. Rosales, P. A. García-Sánchez, and J. I. García-García. Atomic commutative monoids and their elasticity. *Semigroup Forum*, 68(1):64–86, 2004.

[13] P. A. G. Sánchez, I. Ojeda, and J. C. Rosales. Affine semigroups having a unique betti element. *Journal of Algebra and Its Applications*, 12(03):1250177, 2013.