Membership and Elasticity in Certain Affine Monoids

Vadim Ponomarenko

Department of Mathematics and Statistics
San Diego State University
AMS Sectional Meeting March 22, 2019
http://vadim.sdsu.edu/2019-Hawaii-talk.pdf

Shameless advertising

Please encourage your students to apply to the San Diego State University Mathematics REU (for next summer).

Projects in Nonunique Factorization; summer 2019 projects in numerical semigroups.
http://www.sci.sdsu.edu/math-reu/index.html
This work was done jointly with Jackson Autry.

Affine Monoids: definition

For us, an affine monoid is a set S, satisfying:

- $\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\} \subseteq S \subseteq \mathbb{N}_{0}^{2}$
- S is closed under +

We further assume that S has embedding dimension 2 or 3, to be defined next.

Affine Monoids: definition

For us, an affine monoid is a set S, satisfying:

- $\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\} \subseteq S \subseteq \mathbb{N}_{0}^{2}$
- S is closed under +

Given $\left\{t_{1}, t_{2}, \ldots, t_{k}\right\} \subseteq S$, we define submonoid $\left\langle t_{1}, t_{2}, \ldots, t_{k}\right\rangle=\left\{\sum_{i=1}^{k} \alpha_{i} t_{i}: \alpha_{i} \in \mathbb{N}_{0}\right\} \subseteq S$

We further assume that S has embedding dimension 2 or 3 , to be defined next.

Affine Monoids: definition

For us, an affine monoid is a set S, satisfying:

- $\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\} \subseteq S \subseteq \mathbb{N}_{0}^{2}$
- S is closed under +

Given $\left\{t_{1}, t_{2}, \ldots, t_{k}\right\} \subseteq S$, we define submonoid
$\left\langle t_{1}, t_{2}, \ldots, t_{k}\right\rangle=\left\{\sum_{i=1}^{k} \alpha_{i} t_{i}: \alpha_{i} \in \mathbb{N}_{0}\right\} \subseteq S$

We further assume that S has embedding dimension 2 or 3 , to be defined next.

Affine Monoids: irreducibles, embedding dimension

A nonzero element $t \in S$ is irreducible if: there are no nonzero $t_{1}, t_{2} \in S$ with $t=t_{1}+t_{2}$

There is a unique set of irreducibles $\{u, v, \ldots, w\}$ with $S=\langle u, v, \ldots, w\rangle$
We call $|\{u, v, \ldots, w\}|$ the embedding dimension of S.

We assume that the embedding dimension is 2 or 3 ;
i.e. $S=\langle u, v\rangle$ or $S=\langle u, v, w\rangle$

Affine Monoids: irreducibles, embedding dimension

A nonzero element $t \in S$ is irreducible if:
there are no nonzero $t_{1}, t_{2} \in S$ with $t=t_{1}+t_{2}$

There is a unique set of irreducibles $\{u, v, \ldots, w\}$ with

$$
S=\langle u, v, \ldots, w\rangle .
$$

We call $|\{u, v, \ldots, w\}|$ the embedding dimension of S.

We assume that the embedding dimension is 2 or 3;

Affine Monoids: irreducibles, embedding dimension

A nonzero element $t \in S$ is irreducible if:
there are no nonzero $t_{1}, t_{2} \in S$ with $t=t_{1}+t_{2}$

There is a unique set of irreducibles $\{u, v, \ldots, w\}$ with

$$
S=\langle u, v, \ldots, w\rangle .
$$

We call $|\{u, v, \ldots, w\}|$ the embedding dimension of S.

We assume that the embedding dimension is 2 or 3;
i.e. $S=\langle u, v\rangle$ or $S=\langle u, v, w\rangle$

Affine Monoids, factorization

Set $S=\langle u, v, w\rangle$ and consider the map:

- $\pi: \mathbb{N}_{0}^{3} \rightarrow S$ given by $\pi:(\alpha, \beta, \gamma) \mapsto \alpha u+\beta v+\gamma \boldsymbol{w}$

If $\pi(\alpha, \beta, \gamma)=s$, we call (α, β, γ) a factorization of s. We call π the factorization homomorphism of S.

For $s \in S$, set $Z(s)$ to be the set of all factorizations of s :

- $Z(s)=\pi^{-1}(S)$.

Affine Monoids, factorization

Set $S=\langle u, v, w\rangle$ and consider the map:

- $\pi: \mathbb{N}_{0}^{3} \rightarrow \boldsymbol{S}$ given by $\pi:(\alpha, \beta, \gamma) \mapsto \alpha \boldsymbol{u}+\beta \boldsymbol{v}+\gamma \boldsymbol{w}$

If $\pi(\alpha, \beta, \gamma)=\boldsymbol{s}$, we call (α, β, γ) a factorization of \boldsymbol{s}. We call π the factorization homomorphism of S.

For $s \in S$, set $Z(s)$ to be the set of all factorizations of s :
$Z(s)=\pi^{-1}(S)$.

Affine Monoids, factorization

Set $S=\langle u, v, w\rangle$ and consider the map:

- $\pi: \mathbb{N}_{0}^{3} \rightarrow \boldsymbol{S}$ given by $\pi:(\alpha, \beta, \gamma) \mapsto \alpha \boldsymbol{u}+\beta \boldsymbol{v}+\gamma \boldsymbol{w}$

If $\pi(\alpha, \beta, \gamma)=\boldsymbol{s}$, we call (α, β, γ) a factorization of \boldsymbol{s}. We call π the factorization homomorphism of S.

For $s \in S$, set $Z(s)$ to be the set of all factorizations of s :

- $Z(s)=\pi^{-1}(S)$.

Affine Monoids, factorization lengths

For $s \in S$ and for $u=(\alpha, \beta, \gamma) \in Z(s)$, define the length of u as:

- $|\boldsymbol{u}|=\alpha+\beta+\gamma$.

For $s \in S$, define the set of lengths of s as:
$L(s)=\{|u|: u \in Z(s)\}$.

For $s \in S$, define the elasticity of s as:
$\rho(s)=\frac{\max L(s)}{\min L(s)}$

Affine Monoids, factorization lengths

For $s \in S$ and for $u=(\alpha, \beta, \gamma) \in Z(s)$, define the length of u as:

- $|u|=\alpha+\beta+\gamma$.

For $s \in S$, define the set of lengths of s as:

- $L(s)=\{|u|: u \in Z(s)\}$.

For $s \in S$, define the elasticity of s as:

- $\rho(s)=\frac{\max L(s)}{\min L(s)}$

Affine Monoids, factorization lengths

For $s \in S$ and for $u=(\alpha, \beta, \gamma) \in Z(s)$, define the length of u as:

- $|u|=\alpha+\beta+\gamma$.

For $s \in S$, define the set of lengths of s as:

- $L(s)=\{|u|: u \in Z(s)\}$.

For $s \in S$, define the elasticity of s as:

- $\rho(s)=\frac{\max L(s)}{\min L(s)}$

What's This Talk All About?

Our results are addressing two questions (each for embedding dimension 2, 3):

Membership Problem:
Given affine monoid S and $x \in \mathbb{N}_{0}^{2}$, is $x \in S$?

Elasticity Problem:
Given affine monoid S and $x \in S$, what is $\rho(x) ?$

What's This Talk All About?

Our results are addressing two questions (each for embedding dimension 2, 3):

Membership Problem:
Given affine monoid S and $x \in \mathbb{N}_{0}^{2}$, is $x \in S$?

Elasticity Problem:
Given affine monoid S and $x \in S$, what is $\rho(x)$?

Classical Tool 1: SNF and Determinantal Divisors

- Smith Normal Form:

Given 2×3 matrix M, with integer entries.
There must exist square unimodular matrices U, V, with:
$U M V=\left[\begin{array}{ccc}d_{1} & 0 & 0 \\ 0 & d_{1} d_{2} & 0\end{array}\right]$
d_{i} called determinantal divisors of M.
d_{i} is the gcd of all the $i \times i$ minors of M.
In particular, $d_{1}=\operatorname{gcd}(M)$.

Classical Tool 1: SNF and Determinantal Divisors

- Smith Normal Form:

Given 2×3 matrix M, with integer entries.
There must exist square unimodular matrices U, V, with:
$U M V=\left[\begin{array}{ccc}d_{1} & 0 & 0 \\ 0 & d_{1} d_{2} & 0\end{array}\right]$
d_{i} called determinantal divisors of M.
d_{i} is the gcd of all the $i \times i$ minors of M.
In particular, $d_{1}=\operatorname{gcd}(M)$.

Classical Tool 1: Determinantal Divisor Properties

Smith Normal Form:
Given 2×3 matrix M, with integer entries.
There must exist integers d_{1}, d_{2}, called determinantal divisors of M.
d_{i} is the gcd of all the $i \times i$ minors of M.

- Determinantal Divisor Properties:

Multiplying M on either side by a unimodular matrix, leaves
determinantal divisors unchanged.

Set $u=M v$, for any $v \in \mathbb{Z}^{2}$. The determinantal divisors of $[M \mid u]$ are the same as that for M.

Classical Tool 1: Determinantal Divisor Properties

Smith Normal Form:
Given 2×3 matrix M, with integer entries.
There must exist integers d_{1}, d_{2}, called determinantal divisors of M.
d_{i} is the gcd of all the $i \times i$ minors of M.

- Determinantal Divisor Properties: Multiplying M on either side by a unimodular matrix, leaves determinantal divisors unchanged.

Set $u=M v$, for any $v \in \mathbb{Z}^{2}$. The determinantal divisors of $[M \mid u]$ are the same as that for M.

Classical Tool 1: Determinantal Divisor Properties

Smith Normal Form:
Given 2×3 matrix M, with integer entries.
There must exist integers d_{1}, d_{2}, called determinantal divisors of M.
d_{i} is the gcd of all the $i \times i$ minors of M.

- Determinantal Divisor Properties: Multiplying M on either side by a unimodular matrix, leaves determinantal divisors unchanged.

Set $u=M v$, for any $v \in \mathbb{Z}^{2}$. The determinantal divisors of $[M \mid u]$ are the same as that for M.

Classical Tool 2: MHNF

- Modified Hermite Normal Form Given 2×3 matrix $M=[u|v| w]$, with integer entries. There must exist unimodular matrix U, with:
$U M=\left[\begin{array}{c}0 \\ \operatorname{gcd}(u) \\ \star \star \\ *\end{array}\right]$
(with each $\star \in \mathbb{N}_{0}$)

We assume that $\operatorname{gcd}(u)=1$, so in fact $U M=\left[\begin{array}{cc}0 & \star \\ 1 & \star \\ \star & \star\end{array}\right]$

Classical Tool 2: MHNF

- Modified Hermite Normal Form

Given 2×3 matrix $M=[u|v| w]$, with integer entries.
There must exist unimodular matrix U, with:
$U M=\left[\begin{array}{c}0 \\ \operatorname{gcd}(u) \\ \star \star \\ *\end{array}\right]$
(with each $\star \in \mathbb{N}_{0}$)

We assume that $\operatorname{gcd}(u)=1$, so in fact $U M=\left[\begin{array}{ll}0 & \star \\ 1 & \star \\ \star\end{array}\right]$

New Tool: ϕ

Set $\mathbb{Q}^{\star}=\mathbb{Q}^{\geq 0} \cup\{\infty\}$.
Define $\phi: \mathbb{N}_{0}^{2} \rightarrow \mathbb{Q}^{\star}$ via $\phi:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto \frac{a}{b} \quad(\infty$ if $b=0)$

ϕ will largely answer our questions.

Note: \mathbb{T}^{*} is totally ordered, while \mathbb{N}^{2} is not.

New Tool: ϕ

Set $\mathbb{Q}^{\star}=\mathbb{Q}^{\geq 0} \cup\{\infty\}$.
Define $\phi: \mathbb{N}_{0}^{2} \rightarrow \mathbb{Q}^{\star}$ via $\phi:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto \frac{\partial}{b} \quad(\infty$ if $b=0)$
ϕ will largely answer our questions.
Note: \mathbb{Q}^{\star} is totally ordered, while \mathbb{N}_{0}^{2} is not.

Properties of ϕ

Thm: Let $u, v \in \mathbb{N}_{0}^{2}$. Then $\phi(u+v) \in[\phi(u), \phi(v)]$.
Note: This interval is understood to be $[\phi(v), \phi(u)]$ if $\phi(v)<\phi(u)$.

Cor: Let $u, v \in \mathbb{N}_{0}^{2}$, and $s \in\langle u, v\rangle$. Then
$\phi(s) \in[\phi(u), \phi(v)]$.

Cor: Let $u, v \in \mathbb{N}_{0}^{2}$, and $s \in\langle u, v\rangle$. Let U be unimodular 2×2. Then $U s \in\langle U u, U v\rangle$ and $\phi(U s) \in[\phi(U u), \phi(U v)]$.

Hence, by MHNF and $\operatorname{gcd}(u)=1$, we may assume without
loss of generality that $u=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.

Properties of ϕ

Thm: Let $u, v \in \mathbb{N}_{0}^{2}$. Then $\phi(u+v) \in[\phi(u), \phi(v)]$.
Note: This interval is understood to be $[\phi(v), \phi(u)]$ if $\phi(v)<\phi(u)$.

Cor: Let $u, v \in \mathbb{N}_{0}^{2}$, and $s \in\langle u, v\rangle$. Then $\phi(s) \in[\phi(u), \phi(v)]$.

Cor: Let $u, v \in \mathbb{N}_{0}^{2}$, and $s \in\langle u, v\rangle$. Let U be unimodular 2×2. Then $U s \in\langle U u, U v\rangle$ and $\phi(U s) \in[\phi(U u), \phi(U v)]$.

Hence, by MHNF and $\operatorname{gcd}(u)=1$, we may assume without
loss of generality that $u=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.

Properties of ϕ

Thm: Let $u, v \in \mathbb{N}_{0}^{2}$. Then $\phi(u+v) \in[\phi(u), \phi(v)]$.
Note: This interval is understood to be $[\phi(v), \phi(u)]$ if $\phi(v)<\phi(u)$.

Cor: Let $u, v \in \mathbb{N}_{0}^{2}$, and $s \in\langle u, v\rangle$. Then $\phi(s) \in[\phi(u), \phi(v)]$.

Cor: Let $u, v \in \mathbb{N}_{0}^{2}$, and $s \in\langle u, v\rangle$. Let U be unimodular 2×2. Then $U s \in\langle U u, U v\rangle$ and $\phi(U s) \in[\phi(U u), \phi(U v)]$.

Properties of ϕ

Thm: Let $u, v \in \mathbb{N}_{0}^{2}$. Then $\phi(u+v) \in[\phi(u), \phi(v)]$.
Note: This interval is understood to be $[\phi(v), \phi(u)]$ if $\phi(v)<\phi(u)$.

Cor: Let $u, v \in \mathbb{N}_{0}^{2}$, and $s \in\langle u, v\rangle$. Then $\phi(s) \in[\phi(u), \phi(v)]$.

Cor: Let $u, v \in \mathbb{N}_{0}^{2}$, and $s \in\langle u, v\rangle$. Let U be unimodular 2×2. Then $U s \in\langle U u, U v\rangle$ and $\phi(U s) \in[\phi(U u), \phi(U v)]$.

Hence, by MHNF and $\operatorname{gcd}(u)=1$, we may assume without loss of generality that $u=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.

Determinantal Divisor

Thm: Set $S=\langle u, v, w\rangle$, and $s \in \mathbb{N}_{0}^{2}$.
If $s \in S$, then $[u|v| w]$ and $[u|v| w \mid s]$ have the same determinantal divisors.

Note: This holds for any embedding dimension.

Determinantal Divisor

Thm: Set $S=\langle u, v, w\rangle$, and $s \in \mathbb{N}_{0}^{2}$.
If $s \in S$, then $[u|v| w]$ and $[u|v| w \mid s]$ have the same determinantal divisors.

Note: This holds for any embedding dimension.

Embedding Dimension 2

Set $S=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right]\right\rangle$, and $s=\left[\begin{array}{l}x \\ y\end{array}\right]$.
Note that $d_{2}\left(\left[\begin{array}{ll}0 & a \\ 1 & b\end{array}\right]\right)=a$.

If $s \in S$, then both:
$\phi(s) \in\left[\phi\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right), \phi\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)\right]=\left[0, \frac{a}{b}\right]$; and
$d_{2}\left(\left[\begin{array}{lll}0 & a \\ 1 & b\end{array}\right]\right)=d_{2}\left(\left[\begin{array}{lll}0 & a & x \\ 1 & b & y\end{array}\right]\right)$. (i.e. $\left.a \mid x.\right)$

Thm: These necessary conditions are also sufficient.

Also, $\rho(s)=1$, new proof.

Embedding Dimension 2

Set $S=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}\left.\left[\begin{array}{l}a \\ b\end{array}\right]\right\rangle \text {, and } s=\left[\begin{array}{l}x \\ y\end{array}\right] \text {. } ~\end{array}\right.\right.$
Note that $d_{2}\left(\left[\begin{array}{ll}0 & a \\ 1 & b\end{array}\right]\right)=a$.
If $s \in S$, then both:

- $\phi(s) \in\left[\phi\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right), \phi\left(\left[\begin{array}{l}\text { a } \\ b\end{array}\right]\right)\right]=\left[0, \frac{a}{b}\right] ;$ and
- $d_{2}\left(\left[\begin{array}{lll}0 & a \\ 1 & b\end{array}\right]\right)=d_{2}\left(\left[\begin{array}{lll}0 & a & x \\ 1 & b\end{array}\right]\right)$. (i.e. $\left.a \mid x.\right)$

Thm: These necessary conditions are also sufficient.

Also, $\rho(s)=1$, new proof.

Embedding Dimension 2

Set $S=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right]\right\rangle$, and $s=\left[\begin{array}{l}x \\ y\end{array}\right]$.
Note that $d_{2}\left(\left[\begin{array}{ll}0 & a \\ 1 & b\end{array}\right]\right)=a$.
If $s \in S$, then both:

- $\phi(s) \in\left[\phi\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right), \phi\left(\left[\begin{array}{l}\text { a } \\ b\end{array}\right]\right)\right]=\left[0, \frac{a}{b}\right]$; and
- $d_{2}\left(\left[\begin{array}{lll}0 & a \\ 1 & b\end{array}\right]\right)=d_{2}\left(\left[\begin{array}{lll}0 & a & x \\ 1 & b\end{array}\right]\right)$. (i.e. $\left.a \mid x.\right)$

Thm: These necessary conditions are also sufficient.

Also, $\rho(s)=1$, new proof.

Embedding Dimension 2

Set $S=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right]\right\rangle$, and $s=\left[\begin{array}{l}x \\ y\end{array}\right]$.
Note that $d_{2}\left(\left[\begin{array}{ll}0 & a \\ 1 & b\end{array}\right]\right)=a$.
If $s \in S$, then both:

- $\phi(s) \in\left[\phi\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right), \phi\left(\left[\begin{array}{l}\left.{ }_{b}^{2}\right] \\ b\end{array}\right)\right]=\left[0, \frac{a}{b}\right]\right.$; and
- $d_{2}\left(\left[\begin{array}{lll}0 & a \\ 1 & b\end{array}\right]\right)=d_{2}\left(\left[\begin{array}{lll}0 & a & x \\ 1 & b\end{array}\right]\right)$. (i.e. $\left.a \mid x.\right)$

Thm: These necessary conditions are also sufficient.

Also, $\rho(s)=1$, new proof.

Embedding Dimension 3

Set $S=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right\rangle$, and $s=\left[\begin{array}{l}x \\ y\end{array}\right]$, where we assume that $\phi\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)<\phi\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)<\phi\left(\left[\begin{array}{c}c \\ d\end{array}\right]\right)$.

Note that $d_{2}\left(\left[\begin{array}{lll}0 & a & c \\ 1 & b & d\end{array}\right]\right)=\operatorname{gcd}(a, c, b c-a d)=\operatorname{gcd}(a, c)$.

If $s \in S$, then both:
$\phi(s) \in\left[\phi\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right), \phi\left(\left[\begin{array}{l}c \\ d\end{array}\right]\right)\right]=\left[0, \frac{c}{d}\right]$; and

- $d_{2}\left(\left[\begin{array}{llll}0 & a & c \\ 1 & b & d\end{array}\right]\right)=d_{2}\left(\left[\begin{array}{llll}0 & a & c & x \\ 1 & b & d & d\end{array}\right]\right) . \quad(i . e . \operatorname{gcd}(a, c) \mid x)$

Not enough for sufficiency!

Embedding Dimension 3

Set $S=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right\rangle$, and $s=\left[\begin{array}{l}x \\ y\end{array}\right]$, where we assume that $\phi\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)<\phi\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)<\phi\left(\left[\begin{array}{c}c \\ d\end{array}\right]\right)$.

Note that $d_{2}\left(\left[\begin{array}{lll}0 & a & c \\ 1 & b & d\end{array}\right]\right)=\operatorname{gcd}(a, c, b c-a d)=\operatorname{gcd}(a, c)$.

If $s \in S$, then both:

- $\phi(s) \in\left[\phi\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right), \phi\left(\left[\begin{array}{c}c \\ d\end{array}\right]\right)\right]=\left[0, \frac{c}{d}\right]$; and
- $d_{2}\left(\left[\begin{array}{lll}0 & a & c \\ 1 & b & d\end{array}\right]\right)=d_{2}\left(\left[\begin{array}{llll}0 & a & x \\ 1 & b & d & y\end{array}\right]\right)$. (i.e. $\left.\operatorname{gcd}(a, c) \mid x\right)$

Not enough for sufficiency!

Embedding Dimension 3

Set $S=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right\rangle$, and $s=\left[\begin{array}{l}x \\ y\end{array}\right]$, where we assume that $\phi\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)<\phi\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)<\phi\left(\left[\begin{array}{c}c \\ d\end{array}\right]\right)$.

Note that $d_{2}\left(\left[\begin{array}{lll}0 & a & c \\ 1 & b & d\end{array}\right]\right)=\operatorname{gcd}(a, c, b c-a d)=\operatorname{gcd}(a, c)$.

If $s \in S$, then both:

- $\phi(s) \in\left[\phi\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right), \phi\left(\left[\begin{array}{c}c \\ d\end{array}\right]\right)\right]=\left[0, \frac{c}{d}\right]$; and
- $d_{2}\left(\left[\begin{array}{lll}0 & a & c \\ 1 & b & d\end{array}\right]\right)=d_{2}\left(\left[\begin{array}{llll}0 & a & x \\ 1 & b & d & y\end{array}\right]\right)$. (i.e. $\left.\operatorname{gcd}(a, c) \mid x\right)$

Not enough for sufficiency!

Embedding Dimension 3, part 2

Set $S=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right\rangle$, and $s=\left[\begin{array}{l}x \\ y\end{array}\right]$, where we assume that $\phi\left(\left[\begin{array}{ll}0 \\ 1\end{array}\right]\right)<\phi\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)<\phi\left(\left[\begin{array}{c}c \\ d\end{array}\right]\right)$. Note that $d_{2}\left(\left[\begin{array}{lll}0 & a & c \\ 1 & b & d\end{array}\right]\right)=\operatorname{gcd}(a, c)$.

If $s \in S$, then:

- $\phi(s) \in\left[\phi\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right), \phi\left(\left[\begin{array}{c}c \\ d\end{array}\right]\right)\right]=\left[0, \frac{c}{d}\right]$; and
- $d_{2}\left(\left[\begin{array}{lll}0 & a & c \\ 1 & b & d\end{array}\right]\right)=d_{2}\left(\left[\begin{array}{llll}0 & a & x \\ 1 & b & d & y\end{array}\right]\right)$. (i.e. $\left.\operatorname{gcd}(a, c) \mid x\right)$

Still not enough for sufficiency!

Embedding Dimension 3, part 2

Set $S=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right\rangle$, and $s=\left[\begin{array}{l}x \\ y\end{array}\right]$, where we assume that $\phi\left(\left[\begin{array}{ll}0 \\ 1\end{array}\right]\right)<\phi\left(\left[\begin{array}{ll}a \\ b\end{array}\right]\right)<\phi\left(\left[\begin{array}{c}c \\ d\end{array}\right]\right)$. Note that $d_{2}\left(\left[\begin{array}{lll}0 & a & c \\ 1 & b & d\end{array}\right]\right)=\operatorname{gcd}(a, c)$.

If $s \in S$, then:

- $\phi(s) \in\left[\phi\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right), \phi\left(\left[\begin{array}{l}c \\ d\end{array}\right]\right)\right]=\left[0, \frac{c}{d}\right]$; and
- $d_{2}\left(\left[\begin{array}{lll}0 & a & c \\ 1 & b & d\end{array}\right]\right)=d_{2}\left(\left[\begin{array}{llll}0 & a & x \\ 1 & b & d & y\end{array}\right]\right)$. (i.e. $\left.\operatorname{gcd}(a, c) \mid x\right)$
- $x \in\langle a, c\rangle$ Note: implies second condition.

Still not enough for sufficiency!

Embedding Dimension 3, part 2

Set $S=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right\rangle$, and $s=\left[\begin{array}{l}x \\ y\end{array}\right]$, where we assume that $\phi\left(\left[\begin{array}{ll}0 \\ 1\end{array}\right]\right)<\phi\left(\left[\begin{array}{ll}a \\ b\end{array}\right]\right)<\phi\left(\left[\begin{array}{ll}c \\ d\end{array}\right]\right)$. Note that $d_{2}\left(\left[\begin{array}{lll}0 & a & c \\ 1 & b & d\end{array}\right]\right)=\operatorname{gcd}(a, c)$.

If $s \in S$, then:

- $\phi(s) \in\left[\phi\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right), \phi\left(\left[\begin{array}{l}c \\ d\end{array}\right]\right)\right]=\left[0, \frac{c}{d}\right]$; and
- $d_{2}\left(\left[\begin{array}{lll}0 & a & c \\ 1 & b & d\end{array}\right]\right)=d_{2}\left(\left[\begin{array}{llll}0 & a & x \\ 1 & b & d & y\end{array}\right]\right)$. (i.e. $\left.\operatorname{gcd}(a, c) \mid x\right)$
- $x \in\langle a, c\rangle$ Note: implies second condition.

Still not enough for sufficiency!

Embedding Dimension 3, intermezzo

Example: $S=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{c}11 \\ 10\end{array}\right],\left[\begin{array}{c}10 \\ 3\end{array}\right]\right\rangle, s=\left[\begin{array}{c}199 \\ 119\end{array}\right]$.
$\phi(s) \in\left[0, \frac{10}{3}\right]$
$199 \in\langle 11,10\rangle \quad$ (uniquely)
$d_{2}\left(\left[\begin{array}{lll}0 & 11 & 10 \\ 1 & 10 & 3\end{array}\right]\right)=d_{2}\left(\left[\begin{array}{llll}0 & 11 & 10 & 109 \\ 1 & 10 & 3 & 19\end{array}\right]\right)=1$

But still $s \notin S$.

Embedding Dimension 3, conclusion

Set $S=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right\rangle$, and $s=\left[\begin{array}{l}x \\ y\end{array}\right]$, where we assume that $\phi\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)<\phi\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)<\phi\left(\left[\begin{array}{l}c \\ d\end{array}\right]\right)$. Assume $b c-a d=1$.

If $s \in S$, then:

- $\phi(s) \in\left[\phi\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right), \phi\left(\left[\begin{array}{c}c \\ d\end{array}\right]\right)\right]=\left[0, \frac{c}{d}\right]$; and
- $x \in\langle a, c\rangle$

Thm: These necessary conditions are also sufficient.

If $a d-b c \neq 1$, all still open.

Embedding Dimension 3, conclusion

Set $S=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right\rangle$, and $s=\left[\begin{array}{l}x \\ y\end{array}\right]$, where we assume that $\phi\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)<\phi\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)<\phi\left(\left[\begin{array}{l}c \\ d\end{array}\right]\right)$. Assume $b c-a d=1$.

If $s \in S$, then:

- $\phi(s) \in\left[\phi\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right), \phi\left(\left[\begin{array}{c}c \\ d\end{array}\right]\right)\right]=\left[0, \frac{c}{d}\right]$; and
- $x \in\langle a, c\rangle$

Thm: These necessary conditions are also sufficient.

If $a d-b c \neq 1$, all still open.

Embedding Dimension 3, conclusion

Set $S=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right\rangle$, and $s=\left[\begin{array}{l}x \\ y\end{array}\right]$, where we assume that $\phi\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)<\phi\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)<\phi\left(\left[\begin{array}{l}c \\ d\end{array}\right]\right)$. Assume $b c-a d=1$.

If $s \in S$, then:

- $\phi(s) \in\left[\phi\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right), \phi\left(\left[\begin{array}{c}c \\ d\end{array}\right]\right)\right]=\left[0, \frac{c}{d}\right]$; and
- $x \in\langle a, c\rangle$

Thm: These necessary conditions are also sufficient.

If $a d-b c \neq 1$, all still open.

Defining p, q, r

Set $S=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right\rangle$, and $s=\left[\begin{array}{l}x \\ y\end{array}\right]$, where we assume that $b c-a d=1$. (implies $\frac{a}{b}<\frac{c}{d}$)

Suppose that $x \in\langle a, c\rangle$. There are unique choices of $q, r \in \mathbb{N}_{0}$ such that $x=q a+r c$ and $0 \leq q<c$.

Suppose that $s \in S$. Then there is a unique choice of $p \in \mathbb{N}_{0}$ such that $y=p+q b+r d$, i.e.

Defining p, q, r

Set $S=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right\rangle$, and $s=\left[\begin{array}{l}x \\ y\end{array}\right]$, where we assume that $b c-a d=1$. (implies $\frac{a}{b}<\frac{c}{d}$)

Suppose that $x \in\langle a, c\rangle$. There are unique choices of $q, r \in \mathbb{N}_{0}$ such that $x=q a+r c$ and $0 \leq q<c$.

Suppose that $s \in S$. Then there is a unique choice of $p \in \mathbb{N}_{0}$ such that $y=p+q b+r d$, i.e.
$s=\left[\begin{array}{l}x \\ y\end{array}\right]=p\left[\begin{array}{l}0 \\ 1\end{array}\right]+q\left[\begin{array}{l}a \\ b\end{array}\right]+r\left[\begin{array}{l}c \\ d\end{array}\right]$.

Elasticity in Embedding Dimension 3

Set $S=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right\rangle$, and $s=\left[\begin{array}{l}x \\ y\end{array}\right]$, with $b c-a d=1$. Let $p, q, r \in \mathbb{N}_{0}$ satisfy $s=p\left[\begin{array}{l}0 \\ 1\end{array}\right]+q\left[{ }_{b}^{a}\right]+r\left[\begin{array}{c}c \\ d\end{array}\right]$ with $0 \leq q<c$.

> Thm 1: If $\frac{x}{y} \leq \frac{a}{b}$, then the min/max factorizations of s have lengths $p+q+r$ and $p+q+r+\left\lfloor\frac{r}{a}\right\rfloor(c-a-1)$.

Note: $c-a-1$ could be positive, zero, negative.

Thm 2: If $\frac{x}{y} \geq \frac{a}{b}$, then the min/max factorizations of s have lengths $p+q+r$ and $p+q+r+p(c-a-1)$.

Elasticity in Embedding Dimension 3

Set $S=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right\rangle$, and $s=\left[\begin{array}{l}x \\ y\end{array}\right]$, with $b c-a d=1$. Let $p, q, r \in \mathbb{N}_{0}$ satisfy $s=p\left[\begin{array}{l}0 \\ 1\end{array}\right]+q\left[\begin{array}{l}a \\ b\end{array}\right]+r\left[\begin{array}{l}c \\ d\end{array}\right]$ with $0 \leq q<c$.

Thm 1: If $\frac{x}{y} \leq \frac{a}{b}$, then the min/max factorizations of s have lengths $p+q+r$ and $p+q+r+\left\lfloor\frac{r}{a}\right\rfloor(c-a-1)$.

Note: $c-a-1$ could be positive, zero, negative.

Thm 2: If $\frac{x}{y} \geq \frac{a}{b}$, then the min/max factorizations of s have lengths $p+q+r$ and $p+q+r+p(c-a-1)$.

Elasticity in Embedding Dimension 3

Set $S=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right\rangle$, and $s=\left[\begin{array}{l}x \\ y\end{array}\right]$, with $b c-a d=1$. Let $p, q, r \in \mathbb{N}_{0}$ satisfy $s=p\left[\begin{array}{l}0 \\ 1\end{array}\right]+q\left[\begin{array}{l}a \\ b\end{array}\right]+r\left[\begin{array}{c}c \\ d\end{array}\right]$ with $0 \leq q<c$.

Thm 1: If $\frac{x}{y} \leq \frac{a}{b}$, then the min/max factorizations of s have lengths $p+q+r$ and $p+q+r+\left\lfloor\frac{r}{a}\right\rfloor(c-a-1)$.

Note: $c-a-1$ could be positive, zero, negative.

Thm 2: If $\frac{x}{y} \geq \frac{a}{b}$, then the min/max factorizations of s have lengths $p+q+r$ and $p+q+r+p(c-a-1)$.

Elasticity in Embedding Dimension 3

Set $S=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right\rangle$, and $s=\left[\begin{array}{l}x \\ y\end{array}\right]$, with $b c-a d=1$. Let $p, q, r \in \mathbb{N}_{0}$ satisfy $s=p\left[\begin{array}{l}0 \\ 1\end{array}\right]+q\left[\begin{array}{l}a \\ b\end{array}\right]+r\left[\begin{array}{c}c \\ d\end{array}\right]$ with $0 \leq q<c$.

Thm 1: If $\frac{x}{y} \leq \frac{a}{b}$, then the min/max factorizations of s have lengths $p+q+r$ and $p+q+r+\left\lfloor\frac{r}{a}\right\rfloor(c-a-1)$.

Note: $c-a-1$ could be positive, zero, negative.
Thm 2: If $\frac{x}{y} \geq \frac{a}{b}$, then the min/max factorizations of s have lengths $p+q+r$ and $p+q+r+p(c-a-1)$.

Elasticity Limits

Set $S=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right\rangle$, and $s=\left[\begin{array}{l}x \\ y\end{array}\right] \in S$, with $b c-a d=1$.

We expect $\phi(s)$ largely determines elasticity. $\phi(k s)=\phi(s)$ for all $k \in \mathbb{N}$.

Thm: Set $\tau=\operatorname{sign}(c-a-1)$. Then

Elasticity Limits

Set $S=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right\rangle$, and $s=\left[\begin{array}{l}x \\ y\end{array}\right] \in S$, with $b c-a d=1$.
We expect $\phi(s)$ largely determines elasticity. $\phi(k s)=\phi(s)$ for all $k \in \mathbb{N}$.

Thm: Set $\tau=\operatorname{sign}(c-a-1)$. Then

Elasticity Limits

Set $S=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right\rangle$, and $s=\left[\begin{array}{l}x \\ y\end{array}\right] \in S$, with $b c-a d=1$.

We expect $\phi(s)$ largely determines elasticity.
$\phi(k s)=\phi(s)$ for all $k \in \mathbb{N}$.

Thm: Set $\tau=\operatorname{sign}(c-a-1)$. Then

$$
\lim _{k \rightarrow \infty} \rho(k s)= \begin{cases}\left(\frac{c}{a} \frac{a-\frac{x}{y}(b-1)}{c-\frac{x}{y}(d-1)}\right)^{\tau} & \frac{x}{y} \leq \frac{a}{b} \\ \left(c \frac{(c-a)-\frac{x}{y}(d-b)}{c-\frac{x}{y}(d-1)}\right)^{\tau} & \frac{x}{y} \geq \frac{a}{b}\end{cases}
$$

For Further Reading

固 Membership and Elasticity in Certain affine Monoids https://vadim.sdsu.edu/ap3.pdf

