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Affine Monoids: definition

For us, an affine monoid is a set S, satisfying:
•
{[

0
0

]}
⊆ S ⊆ N2

0
• S is closed under +

Given {t1, t2, . . . , tk} ⊆ S, we define submonoid
〈t1, t2, . . . , tk 〉 = {

∑k
i=1 αi ti : αi ∈ N0} ⊆ S

We further assume that S has embedding dimension 2 or
3, to be defined next.
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Affine Monoids: irreducibles, embedding dimension

A nonzero element t ∈ S is irreducible if:
there are no nonzero t1, t2 ∈ S with t = t1 + t2

There is a unique set of irreducibles {u, v , . . . ,w} with
S = 〈u, v , . . . ,w〉.

We call |{u, v , . . . ,w}| the embedding dimension of S.

We assume that the embedding dimension is 2 or 3;
i.e. S = 〈u, v〉 or S = 〈u, v ,w〉
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Affine Monoids, factorization

Set S = 〈u, v ,w〉 and consider the map:
• π : N3

0 → S given by π : (α, β, γ) 7→ αu + βv + γw

If π(α, β, γ) = s, we call (α, β, γ) a factorization of s. We
call π the factorization homomorphism of S.

For s ∈ S, set Z (s) to be the set of all factorizations of s:
• Z (s) = π−1(S).
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Affine Monoids, factorization lengths

For s ∈ S and for u = (α, β, γ) ∈ Z (s), define the length of
u as:
• |u| = α+ β + γ.

For s ∈ S, define the set of lengths of s as:
• L(s) = {|u| : u ∈ Z (s)}.

For s ∈ S, define the elasticity of s as:
• ρ(s) = max L(s)

min L(s)
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What’s This Talk All About?

Our results are addressing two questions
(each for embedding dimension 2,3):

Membership Problem:
Given affine monoid S and x ∈ N2

0, is x ∈ S?

Elasticity Problem:
Given affine monoid S and x ∈ S, what is ρ(x)?
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Classical Tool 1: SNF and Determinantal Divisors

• Smith Normal Form:
Given 2× 3 matrix M, with integer entries.
There must exist square unimodular matrices U,V , with:

UMV =
[

d1 0 0
0 d1d2 0

]
di called determinantal divisors of M.
di is the gcd of all the i × i minors of M.
In particular, d1 = gcd(M).
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Classical Tool 1: Determinantal Divisor Properties

Smith Normal Form:
Given 2× 3 matrix M, with integer entries.
There must exist integers d1,d2, called determinantal
divisors of M.
di is the gcd of all the i × i minors of M.

• Determinantal Divisor Properties:
Multiplying M on either side by a unimodular matrix, leaves
determinantal divisors unchanged.

Set u = Mv , for any v ∈ Z2. The determinantal divisors of
[M|u] are the same as that for M.
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Classical Tool 2: MHNF

• Modified Hermite Normal Form
Given 2× 3 matrix M = [u|v |w ], with integer entries.
There must exist unimodular matrix U, with:

UM =
[

0 ? ?
gcd(u) ? ?

]
(with each ? ∈ N0)

We assume that gcd(u) = 1, so in fact UM =
[

0 ? ?
1 ? ?

]



Introduction Tools Used Membership Problem Elasticity Problem Bibliography

Classical Tool 2: MHNF

• Modified Hermite Normal Form
Given 2× 3 matrix M = [u|v |w ], with integer entries.
There must exist unimodular matrix U, with:

UM =
[

0 ? ?
gcd(u) ? ?

]
(with each ? ∈ N0)

We assume that gcd(u) = 1, so in fact UM =
[

0 ? ?
1 ? ?

]



Introduction Tools Used Membership Problem Elasticity Problem Bibliography

New Tool: φ

Set Q? = Q≥0 ∪ {∞}.
Define φ : N2

0 → Q? via φ : [ a
b ] 7→ a

b (∞ if b = 0)

φ will largely answer our questions.
Note: Q? is totally ordered, while N2

0 is not.
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Properties of φ

Thm: Let u, v ∈ N2
0. Then φ(u + v) ∈ [φ(u), φ(v)].

Note: This interval is understood to be [φ(v), φ(u)] if
φ(v) < φ(u).

Cor: Let u, v ∈ N2
0, and s ∈ 〈u, v〉. Then

φ(s) ∈ [φ(u), φ(v)].

Cor: Let u, v ∈ N2
0, and s ∈ 〈u, v〉. Let U be unimodular

2× 2. Then Us ∈ 〈Uu,Uv〉 and φ(Us) ∈ [φ(Uu), φ(Uv)].

Hence, by MHNF and gcd(u) = 1, we may assume without
loss of generality that u = [ 0

1 ].
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Determinantal Divisor

Thm: Set S = 〈u, v ,w〉, and s ∈ N2
0.

If s ∈ S, then [u|v |w ] and [u|v |w |s] have the same
determinantal divisors.

Note: This holds for any embedding dimension.
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Embedding Dimension 2

Set S = 〈[ 0
1 ], [

a
b ]〉, and s = [ x

y ].

Note that d2([
0 a
1 b ]) = a.

If s ∈ S, then both:
• φ(s) ∈ [φ([ 0

1 ]), φ([
a
b ])] = [0, a

b ]; and
• d2([

0 a
1 b ]) = d2([

0 a x
1 b y ]). (i.e. a|x .)

Thm: These necessary conditions are also sufficient.

Also, ρ(s) = 1, new proof.
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Embedding Dimension 3

Set S = 〈[ 0
1 ], [

a
b ], [

c
d ]〉, and s = [ x

y ], where we assume that
φ([ 0

1 ]) < φ([ a
b ]) < φ([ c

d ]).

Note that d2([
0 a c
1 b d ]) = gcd(a, c,bc − ad) = gcd(a, c).

If s ∈ S, then both:
• φ(s) ∈ [φ([ 0

1 ]), φ([
c
d ])] = [0, c

d ]; and
• d2([

0 a c
1 b d ]) = d2([

0 a c x
1 b d y ]). (i.e. gcd(a, c)|x)

Not enough for sufficiency!
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Embedding Dimension 3, part 2

Set S = 〈[ 0
1 ], [

a
b ], [

c
d ]〉, and s = [ x

y ], where we assume that
φ([ 0

1 ]) < φ([ a
b ]) < φ([ c

d ]). Note that d2([
0 a c
1 b d ]) = gcd(a, c).

If s ∈ S, then:
• φ(s) ∈ [φ([ 0

1 ]), φ([
c
d ])] = [0, c

d ]; and
• d2([

0 a c
1 b d ]) = d2([

0 a c x
1 b d y ]). (i.e. gcd(a, c)|x)

• x ∈ 〈a, c〉 Note: implies second condition.

Still not enough for sufficiency!
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Embedding Dimension 3, intermezzo

Example: S = 〈[ 0
1 ], [

11
10 ], [

10
3 ]〉, s = [ 199

119 ].

φ(s) ∈ [0, 10
3 ]

199 ∈ 〈11,10〉 (uniquely)
d2([

0 11 10
1 10 3 ]) = d2([

0 11 10 199
1 10 3 119 ]) = 1

But still s /∈ S.
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Embedding Dimension 3, conclusion

Set S = 〈[ 0
1 ], [

a
b ], [

c
d ]〉, and s = [ x

y ], where we assume that
φ([ 0

1 ]) < φ([ a
b ]) < φ([ c

d ]). Assume bc − ad = 1.

If s ∈ S, then:
• φ(s) ∈ [φ([ 0

1 ]), φ([
c
d ])] = [0, c

d ]; and
• x ∈ 〈a, c〉

Thm: These necessary conditions are also sufficient.

If ad − bc 6= 1, all still open.
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Defining p,q, r

Set S = 〈[ 0
1 ], [

a
b ], [

c
d ]〉, and s = [ x

y ], where we assume that
bc − ad = 1. (implies a

b <
c
d )

Suppose that x ∈ 〈a, c〉. There are unique choices of
q, r ∈ N0 such that x = qa + rc and 0 ≤ q < c.

Suppose that s ∈ S. Then there is a unique choice of
p ∈ N0 such that y = p + qb + rd , i.e.
s = [ x

y ] = p[ 0
1 ] + q[ a

b ] + r [ c
d ].
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Elasticity in Embedding Dimension 3

Set S = 〈[ 0
1 ], [

a
b ], [

c
d ]〉, and s = [ x

y ], with bc − ad = 1. Let
p,q, r ∈ N0 satisfy s = p[ 0

1 ] + q[ a
b ] + r [ c

d ] with 0 ≤ q < c.

Thm 1: If x
y ≤

a
b , then the min/max factorizations of s have

lengths p + q + r and p + q + r + b r
ac(c − a− 1).

Note: c − a− 1 could be positive, zero, negative.

Thm 2: If x
y ≥

a
b , then the min/max factorizations of s have

lengths p + q + r and p + q + r + p(c − a− 1).
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b ], [

c
d ]〉, and s = [ x

y ], with bc − ad = 1. Let
p,q, r ∈ N0 satisfy s = p[ 0

1 ] + q[ a
b ] + r [ c

d ] with 0 ≤ q < c.

Thm 1: If x
y ≤

a
b , then the min/max factorizations of s have

lengths p + q + r and p + q + r + b r
ac(c − a− 1).

Note: c − a− 1 could be positive, zero, negative.

Thm 2: If x
y ≥

a
b , then the min/max factorizations of s have

lengths p + q + r and p + q + r + p(c − a− 1).
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Elasticity Limits

Set S = 〈[ 0
1 ], [

a
b ], [

c
d ]〉, and s = [ x

y ] ∈ S, with bc − ad = 1.

We expect φ(s) largely determines elasticity.
φ(ks) = φ(s) for all k ∈ N.

Thm: Set τ = sign(c − a− 1). Then

lim
k→∞

ρ(ks) =


(

c
a

a− x
y (b−1)

c− x
y (d−1)

)τ
x
y ≤

a
b(

c
(c−a)− x

y (d−b)
c− x

y (d−1)

)τ
x
y ≥

a
b
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For Further Reading

Membership and Elasticity in Certain affine Monoids
https://vadim.sdsu.edu/ap3.pdf
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