Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Membership and Elasticity in Certain Affine Monoids

Vadim Ponomarenko

Department of Mathematics and Statistics San Diego State University

AMS Sectional Meeting March 22, 2019

http://vadim.sdsu.edu/2019-Hawaii-talk.pdf

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Shameless advertising

Please encourage your students to apply to the San Diego State University Mathematics REU (for next summer).

Projects in Nonunique Factorization; summer 2019 projects in numerical semigroups.

http://www.sci.sdsu.edu/math-reu/index.html

This work was done jointly with Jackson Autry.

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Affine Monoids: definition

For us, an affine monoid is a set *S*, satisfying:

- $\left\{ \begin{bmatrix} 0\\0 \end{bmatrix} \right\} \subseteq S \subseteq \mathbb{N}_0^2$
- S is closed under +

Given $\{t_1, t_2, \ldots, t_k\} \subseteq S$, we define submonoid $\langle t_1, t_2, \ldots, t_k \rangle = \{\sum_{i=1}^k \alpha_i t_i : \alpha_i \in \mathbb{N}_0\} \subseteq S$

We further assume that *S* has embedding dimension 2 or 3, to be defined next.

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Affine Monoids: definition

For us, an affine monoid is a set *S*, satisfying:

- $\left\{ \begin{bmatrix} 0\\0 \end{bmatrix} \right\} \subseteq S \subseteq \mathbb{N}_0^2$
- S is closed under +

Given $\{t_1, t_2, \ldots, t_k\} \subseteq S$, we define submonoid $\langle t_1, t_2, \ldots, t_k \rangle = \{\sum_{i=1}^k \alpha_i t_i : \alpha_i \in \mathbb{N}_0\} \subseteq S$

We further assume that *S* has embedding dimension 2 or 3, to be defined next.

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Affine Monoids: definition

For us, an affine monoid is a set *S*, satisfying:

- $\left\{ \begin{bmatrix} 0\\0 \end{bmatrix} \right\} \subseteq S \subseteq \mathbb{N}_0^2$
- S is closed under +

Given $\{t_1, t_2, \ldots, t_k\} \subseteq S$, we define submonoid $\langle t_1, t_2, \ldots, t_k \rangle = \{\sum_{i=1}^k \alpha_i t_i : \alpha_i \in \mathbb{N}_0\} \subseteq S$

We further assume that S has embedding dimension 2 or 3, to be defined next.

Affine Monoids: irreducibles, embedding dimension

A nonzero element $t \in S$ is irreducible if: there are no nonzero $t_1, t_2 \in S$ with $t = t_1 + t_2$

There is a unique set of irreducibles $\{u, v, ..., w\}$ with $S = \langle u, v, ..., w \rangle$. We call $|\{u, v, ..., w\}|$ the embedding dimension of *S*.

We assume that the embedding dimension is 2 or 3; i.e. $S = \langle u, v \rangle$ or $S = \langle u, v, w \rangle$

Membership Problem

Elasticity Problem

Affine Monoids: irreducibles, embedding dimension

A nonzero element $t \in S$ is irreducible if: there are no nonzero $t_1, t_2 \in S$ with $t = t_1 + t_2$

There is a unique set of irreducibles $\{u, v, ..., w\}$ with $S = \langle u, v, ..., w \rangle$. We call $|\{u, v, ..., w\}|$ the embedding dimension of *S*.

We assume that the embedding dimension is 2 or 3; i.e. $S = \langle u, v \rangle$ or $S = \langle u, v, w \rangle$

Affine Monoids: irreducibles, embedding dimension

A nonzero element $t \in S$ is irreducible if: there are no nonzero $t_1, t_2 \in S$ with $t = t_1 + t_2$

There is a unique set of irreducibles $\{u, v, ..., w\}$ with $S = \langle u, v, ..., w \rangle$. We call $|\{u, v, ..., w\}|$ the embedding dimension of *S*.

We assume that the embedding dimension is 2 or 3; i.e. $S = \langle u, v \rangle$ or $S = \langle u, v, w \rangle$

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Affine Monoids, factorization

Set $S = \langle u, v, w \rangle$ and consider the map:

• $\pi: \mathbb{N}_0^3 \to S$ given by $\pi: (\alpha, \beta, \gamma) \mapsto \alpha u + \beta v + \gamma w$

If $\pi(\alpha, \beta, \gamma) = s$, we call (α, β, γ) a factorization of *s*. We call π the factorization homomorphism of *S*.

For $s \in S$, set Z(s) to be the set of all factorizations of s:

•
$$Z(s) = \pi^{-1}(S).$$

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Affine Monoids, factorization

Set
$$S = \langle u, v, w \rangle$$
 and consider the map:

• $\pi: \mathbb{N}_0^3 \to S$ given by $\pi: (\alpha, \beta, \gamma) \mapsto \alpha u + \beta v + \gamma w$

If $\pi(\alpha, \beta, \gamma) = s$, we call (α, β, γ) a factorization of *s*. We call π the factorization homomorphism of *S*.

For $s \in S$, set Z(s) to be the set of all factorizations of s: • $Z(s) = \pi^{-1}(S)$.

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Affine Monoids, factorization

Set
$$S = \langle u, v, w \rangle$$
 and consider the map:

• $\pi: \mathbb{N}_0^3 \to S$ given by $\pi: (\alpha, \beta, \gamma) \mapsto \alpha u + \beta v + \gamma w$

If $\pi(\alpha, \beta, \gamma) = s$, we call (α, β, γ) a factorization of *s*. We call π the factorization homomorphism of *S*.

For $s \in S$, set Z(s) to be the set of all factorizations of s:

•
$$Z(s) = \pi^{-1}(S)$$
.

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Affine Monoids, factorization lengths

For $s \in S$ and for $u = (\alpha, \beta, \gamma) \in Z(s)$, define the length of u as:

• $|\mathbf{U}| = \alpha + \beta + \gamma.$

For $s \in S$, define the set of lengths of *s* as:

• $L(s) = \{ |u| : u \in Z(s) \}.$

For $s \in S$, define the elasticity of s as:

• $\rho(s) = \frac{\max L(s)}{\min L(s)}$

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Affine Monoids, factorization lengths

For $s \in S$ and for $u = (\alpha, \beta, \gamma) \in Z(s)$, define the length of u as:

• $|\mathbf{U}| = \alpha + \beta + \gamma.$

For $s \in S$, define the set of lengths of s as:

• $L(s) = \{ |u| : u \in Z(s) \}.$

For s ∈ S, define the elasticity of s as:
ρ(s) = max L(s)/min L(s)

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Affine Monoids, factorization lengths

For $s \in S$ and for $u = (\alpha, \beta, \gamma) \in Z(s)$, define the length of u as:

• $|\mathbf{U}| = \alpha + \beta + \gamma.$

For $s \in S$, define the set of lengths of s as:

•
$$L(s) = \{ |u| : u \in Z(s) \}$$
.

For $s \in S$, define the elasticity of s as:

•
$$\rho(s) = \frac{\max L(s)}{\min L(s)}$$

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

What's This Talk All About?

Our results are addressing two questions (each for embedding dimension 2, 3):

Membership Problem: Given affine monoid *S* and $x \in \mathbb{N}_0^2$, is $x \in S$?

Elasticity Problem: Given affine monoid *S* and $x \in S$, what is $\rho(x)$?

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

What's This Talk All About?

Our results are addressing two questions (each for embedding dimension 2, 3):

Membership Problem: Given affine monoid *S* and $x \in \mathbb{N}_0^2$, is $x \in S$?

Elasticity Problem:

Given affine monoid *S* and $x \in S$, what is $\rho(x)$?

Classical Tool 1: SNF and Determinantal Divisors

• Smith Normal Form:

Given 2×3 matrix *M*, with integer entries.

There must exist square unimodular matrices U, V, with: $UMV = \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_1d_2 & 0 \end{bmatrix}$

 d_i called determinantal divisors of M. d_i is the gcd of all the $i \times i$ minors of M. In particular, $d_1 = \gcd(M)$.

Membership Problem

Elasticity Problem

Classical Tool 1: SNF and Determinantal Divisors

• Smith Normal Form:

Given 2×3 matrix *M*, with integer entries.

There must exist square unimodular matrices U, V, with:

$$UMV = \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_1d_2 & 0 \end{bmatrix}$$

 d_i called determinantal divisors of M. d_i is the gcd of all the $i \times i$ minors of M. In particular, $d_1 = \text{gcd}(M)$.

Classical Tool 1: Determinantal Divisor Properties

Smith Normal Form:

Given 2×3 matrix *M*, with integer entries.

There must exist integers d_1 , d_2 , called determinantal divisors of M.

 d_i is the gcd of all the $i \times i$ minors of M.

• Determinantal Divisor Properties:

Multiplying M on either side by a unimodular matrix, leaves determinantal divisors unchanged.

Set u = Mv, for any $v \in \mathbb{Z}^2$. The determinantal divisors of [M|u] are the same as that for M.

Classical Tool 1: Determinantal Divisor Properties

Smith Normal Form:

Given 2×3 matrix *M*, with integer entries.

There must exist integers d_1 , d_2 , called determinantal divisors of M.

 d_i is the gcd of all the $i \times i$ minors of M.

• Determinantal Divisor Properties:

Multiplying M on either side by a unimodular matrix, leaves determinantal divisors unchanged.

Set u = Mv, for any $v \in \mathbb{Z}^2$. The determinantal divisors of [M|u] are the same as that for M.

Classical Tool 1: Determinantal Divisor Properties

Smith Normal Form:

Given 2×3 matrix *M*, with integer entries.

There must exist integers d_1 , d_2 , called determinantal divisors of M.

 d_i is the gcd of all the $i \times i$ minors of M.

• Determinantal Divisor Properties:

Multiplying M on either side by a unimodular matrix, leaves determinantal divisors unchanged.

Set u = Mv, for any $v \in \mathbb{Z}^2$. The determinantal divisors of [M|u] are the same as that for *M*.

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Classical Tool 2: MHNF

 Modified Hermite Normal Form Given 2 × 3 matrix M = [u|v|w], with integer entries. There must exist unimodular matrix U, with: UM = ⁰/_{gcd(u) * *}
 (with each * ∈ ℕ₀)

We assume that gcd(u) = 1, so in fact $UM = \begin{bmatrix} 0 & \star \\ 1 & \star \end{bmatrix}$

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Classical Tool 2: MHNF

 Modified Hermite Normal Form Given 2 × 3 matrix M = [u|v|w], with integer entries. There must exist unimodular matrix U, with: UM = ⁰/_{gcd(u) * *}
 (with each * ∈ ℕ₀)

We assume that gcd(u) = 1, so in fact $UM = \begin{bmatrix} 0 & \star \\ 1 & \star \end{bmatrix}$

New lool:
$$\phi$$

Set
$$\mathbb{Q}^* = \mathbb{Q}^{\geq 0} \cup \{\infty\}$$
.
Define $\phi : \mathbb{N}_0^2 \to \mathbb{Q}^*$ via $\phi : \begin{bmatrix} a \\ b \end{bmatrix} \mapsto \frac{a}{b} \quad (\infty \text{ if } b = 0)$

 ϕ will largely answer our questions. Note: \mathbb{Q}^* is totally ordered, while \mathbb{N}^2_0 is not.

Set
$$\mathbb{Q}^* = \mathbb{Q}^{\geq 0} \cup \{\infty\}$$
.
Define $\phi : \mathbb{N}_0^2 \to \mathbb{Q}^*$ via $\phi : \begin{bmatrix} a \\ b \end{bmatrix} \mapsto \frac{a}{b} \pmod{\infty} \pmod{b} = 0$

 ϕ will largely answer our questions. Note: \mathbb{Q}^* is totally ordered, while \mathbb{N}_0^2 is not.

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Properties of ϕ

Thm: Let $u, v \in \mathbb{N}_0^2$. Then $\phi(u + v) \in [\phi(u), \phi(v)]$. Note: This interval is understood to be $[\phi(v), \phi(u)]$ if $\phi(v) < \phi(u)$.

Cor: Let $u, v \in \mathbb{N}_0^2$, and $s \in \langle u, v \rangle$. Then $\phi(s) \in [\phi(u), \phi(v)]$.

Cor: Let $u, v \in \mathbb{N}_0^2$, and $s \in \langle u, v \rangle$. Let U be unimodular 2×2 . Then $Us \in \langle Uu, Uv \rangle$ and $\phi(Us) \in [\phi(Uu), \phi(Uv)]$.

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Properties of ϕ

Thm: Let $u, v \in \mathbb{N}_0^2$. Then $\phi(u + v) \in [\phi(u), \phi(v)]$. Note: This interval is understood to be $[\phi(v), \phi(u)]$ if $\phi(v) < \phi(u)$.

Cor: Let $u, v \in \mathbb{N}_0^2$, and $s \in \langle u, v \rangle$. Then $\phi(s) \in [\phi(u), \phi(v)]$.

Cor: Let $u, v \in \mathbb{N}_0^2$, and $s \in \langle u, v \rangle$. Let U be unimodular 2×2 . Then $Us \in \langle Uu, Uv \rangle$ and $\phi(Us) \in [\phi(Uu), \phi(Uv)]$.

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Properties of ϕ

Thm: Let $u, v \in \mathbb{N}_0^2$. Then $\phi(u + v) \in [\phi(u), \phi(v)]$. Note: This interval is understood to be $[\phi(v), \phi(u)]$ if $\phi(v) < \phi(u)$.

Cor: Let
$$u, v \in \mathbb{N}_0^2$$
, and $s \in \langle u, v \rangle$. Then $\phi(s) \in [\phi(u), \phi(v)]$.

Cor: Let $u, v \in \mathbb{N}_0^2$, and $s \in \langle u, v \rangle$. Let U be unimodular 2×2 . Then $Us \in \langle Uu, Uv \rangle$ and $\phi(Us) \in [\phi(Uu), \phi(Uv)]$.

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Properties of ϕ

Thm: Let $u, v \in \mathbb{N}_0^2$. Then $\phi(u + v) \in [\phi(u), \phi(v)]$. Note: This interval is understood to be $[\phi(v), \phi(u)]$ if $\phi(v) < \phi(u)$.

Cor: Let
$$u, v \in \mathbb{N}_0^2$$
, and $s \in \langle u, v \rangle$. Then $\phi(s) \in [\phi(u), \phi(v)]$.

Cor: Let $u, v \in \mathbb{N}_0^2$, and $s \in \langle u, v \rangle$. Let U be unimodular 2×2 . Then $Us \in \langle Uu, Uv \rangle$ and $\phi(Us) \in [\phi(Uu), \phi(Uv)]$.

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Determinantal Divisor

Thm: Set $S = \langle u, v, w \rangle$, and $s \in \mathbb{N}_0^2$. If $s \in S$, then [u|v|w] and [u|v|w|s] have the same determinantal divisors.

Note: This holds for any embedding dimension.

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Determinantal Divisor

Thm: Set $S = \langle u, v, w \rangle$, and $s \in \mathbb{N}_0^2$. If $s \in S$, then [u|v|w] and [u|v|w|s] have the same determinantal divisors.

Note: This holds for any embedding dimension.

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Embedding Dimension 2

Set $S = \langle [\begin{smallmatrix} 0\\1 \end{bmatrix}, [\begin{smallmatrix} a\\b \end{bmatrix} \rangle$, and $s = [\begin{smallmatrix} x\\y \end{bmatrix}$.

Note that $d_2(\begin{bmatrix} 0 & a \\ 1 & b \end{bmatrix}) = a$.

If $s \in S$, then both:

- $\phi(s) \in [\phi([\begin{smallmatrix} 0\\1 \end{smallmatrix}]), \phi([\begin{smallmatrix} a\\b \end{smallmatrix}])] = [0, \begin{smallmatrix} a\\b \end{smallmatrix}];$ and
- $d_2(\begin{bmatrix} 0 & a \\ 1 & b \end{bmatrix}) = d_2(\begin{bmatrix} 0 & a & x \\ 1 & b & y \end{bmatrix})$. (i.e. a|x.)

Thm: These necessary conditions are also sufficient.

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Embedding Dimension 2

Set
$$S = \langle \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} a \\ b \end{bmatrix} \rangle$$
, and $s = \begin{bmatrix} x \\ y \end{bmatrix}$.

Note that $d_2(\begin{bmatrix} 0 & a \\ 1 & b \end{bmatrix}) = a$.

If $s \in S$, then both:

- $\phi(s) \in [\phi([\begin{smallmatrix} 0\\1 \end{smallmatrix}]), \phi([\begin{smallmatrix} a\\b \end{smallmatrix}])] = [0, \begin{smallmatrix} a\\b \end{smallmatrix}];$ and
- $d_2(\begin{bmatrix} 0 & a \\ 1 & b \end{bmatrix}) = d_2(\begin{bmatrix} 0 & a & x \\ 1 & b & y \end{bmatrix})$. (i.e. a|x.)

Thm: These necessary conditions are also sufficient.

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Embedding Dimension 2

Set
$$S = \langle [\begin{smallmatrix} 0\\1 \end{smallmatrix}], [\begin{smallmatrix} a\\b \end{smallmatrix}] \rangle$$
, and $s = [\begin{smallmatrix} x\\y \end{smallmatrix}]$.

Note that $d_2(\begin{bmatrix} 0 & a \\ 1 & b \end{bmatrix}) = a$.

If $s \in S$, then both:

- $\phi(s) \in [\phi([\begin{smallmatrix} 0\\1 \end{smallmatrix}]), \phi([\begin{smallmatrix} a\\b \end{smallmatrix}])] = [0, \begin{smallmatrix} a\\b \end{smallmatrix}];$ and
- $d_2(\begin{bmatrix} 0 & a \\ 1 & b \end{bmatrix}) = d_2(\begin{bmatrix} 0 & a & x \\ 1 & b & y \end{bmatrix})$. (i.e. a|x.)

Thm: These necessary conditions are also sufficient.

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Embedding Dimension 2

Set
$$S = \langle \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} a \\ b \end{bmatrix} \rangle$$
, and $s = \begin{bmatrix} x \\ y \end{bmatrix}$.

Note that $d_2(\begin{bmatrix} 0 & a \\ 1 & b \end{bmatrix}) = a$.

If $s \in S$, then both:

- $\phi(s) \in [\phi([\begin{smallmatrix} 0\\1 \end{smallmatrix}]), \phi([\begin{smallmatrix} a\\b \end{smallmatrix}])] = [0, \begin{smallmatrix} a\\b \end{smallmatrix}];$ and
- $d_2(\begin{bmatrix} 0 & a \\ 1 & b \end{bmatrix}) = d_2(\begin{bmatrix} 0 & a & x \\ 1 & b & y \end{bmatrix})$. (i.e. a|x.)

Thm: These necessary conditions are also sufficient.

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Embedding Dimension 3

Set $S = \langle [\begin{smallmatrix} 0\\1 \end{bmatrix}, [\begin{smallmatrix} a\\b \end{bmatrix}, [\begin{smallmatrix} c\\d \end{bmatrix} \rangle$, and $s = [\begin{smallmatrix} x\\y \end{bmatrix}$, where we assume that $\phi([\begin{smallmatrix} 0\\1 \end{bmatrix}) < \phi([\begin{smallmatrix} a\\b \end{bmatrix}) < \phi([\begin{smallmatrix} c\\d \end{bmatrix})$.

Note that $d_2([\begin{smallmatrix} 0 & a & c \\ 1 & b & d \end{smallmatrix}]) = \gcd(a, c, bc - ad) = \gcd(a, c).$

If $s \in S$, then both:

- $\phi(s) \in [\phi([\begin{smallmatrix} 0\\1 \end{smallmatrix}]), \phi([\begin{smallmatrix} c\\d \end{smallmatrix}])] = [0, \begin{smallmatrix} c\\d \end{smallmatrix}];$ and
- $d_2(\begin{bmatrix} 0 & a & c \\ 1 & b & d \end{bmatrix}) = d_2(\begin{bmatrix} 0 & a & c & x \\ 1 & b & d & y \end{bmatrix})$. (i.e. gcd(a, c)|x)

Not enough for sufficiency!

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Embedding Dimension 3

Set $S = \langle [\begin{smallmatrix} 0\\1 \end{bmatrix}, [\begin{smallmatrix} a\\b \end{bmatrix}, [\begin{smallmatrix} c\\d \end{bmatrix} \rangle$, and $s = [\begin{smallmatrix} x\\y \end{bmatrix}$, where we assume that $\phi([\begin{smallmatrix} 0\\1 \end{bmatrix}) < \phi([\begin{smallmatrix} a\\b \end{bmatrix}) < \phi([\begin{smallmatrix} c\\d \end{bmatrix})$.

Note that $d_2([\begin{smallmatrix} 0 & a & c \\ 1 & b & d \end{smallmatrix}]) = \gcd(a, c, bc - ad) = \gcd(a, c).$

If $s \in S$, then both:

- $\phi(s) \in [\phi([\begin{smallmatrix} 0\\1 \end{smallmatrix}]), \phi([\begin{smallmatrix} c\\d \end{smallmatrix}])] = [0, \begin{smallmatrix} c\\d \end{smallmatrix}];$ and
- $d_2(\begin{bmatrix} 0 & a & c \\ 1 & b & d \end{bmatrix}) = d_2(\begin{bmatrix} 0 & a & c & x \\ 1 & b & d & y \end{bmatrix})$. (i.e. gcd(a, c)|x)

Not enough for sufficiency!

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Embedding Dimension 3

Set $S = \langle [\begin{smallmatrix} 0\\1 \end{bmatrix}, [\begin{smallmatrix} a\\b \end{bmatrix}, [\begin{smallmatrix} c\\d \end{bmatrix} \rangle$, and $s = [\begin{smallmatrix} x\\y \end{bmatrix}$, where we assume that $\phi([\begin{smallmatrix} 0\\1 \end{bmatrix}) < \phi([\begin{smallmatrix} a\\b \end{bmatrix}) < \phi([\begin{smallmatrix} c\\d \end{bmatrix})$.

Note that $d_2([\begin{smallmatrix} 0 & a & c \\ 1 & b & d \end{smallmatrix}]) = \gcd(a, c, bc - ad) = \gcd(a, c).$

If $s \in S$, then both:

- $\phi(s) \in [\phi([\begin{smallmatrix} 0\\1 \end{smallmatrix}]), \phi([\begin{smallmatrix} c\\d \end{smallmatrix}])] = [0, \begin{smallmatrix} c\\d \end{smallmatrix}];$ and
- $d_2(\begin{bmatrix} 0 & a & c \\ 1 & b & d \end{bmatrix}) = d_2(\begin{bmatrix} 0 & a & c & x \\ 1 & b & d & y \end{bmatrix})$. (i.e. gcd(a, c)|x)

Not enough for sufficiency!

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Embedding Dimension 3, part 2

Set $S = \langle [\begin{smallmatrix} 0\\1 \end{bmatrix}, [\begin{smallmatrix} a\\b \end{bmatrix}, [\begin{smallmatrix} c\\d \end{bmatrix} \rangle$, and $s = [\begin{smallmatrix} x\\y \end{bmatrix}$, where we assume that $\phi([\begin{smallmatrix} 0\\1 \end{bmatrix}) < \phi([\begin{smallmatrix} a\\b \end{bmatrix}) < \phi([\begin{smallmatrix} c\\d \end{bmatrix})$. Note that $d_2([\begin{smallmatrix} 0&a&c\\1&b&d \end{bmatrix}) = \gcd(a,c)$.

If $s \in S$, then:

- $\phi(s) \in [\phi([\begin{smallmatrix} 0\\1 \end{smallmatrix}]), \phi([\begin{smallmatrix} c\\d \end{smallmatrix}])] = [0, \begin{smallmatrix} c\\d \end{smallmatrix}];$ and
- $d_2(\begin{bmatrix} 0 & a & c \\ 1 & b & d \end{bmatrix}) = d_2(\begin{bmatrix} 0 & a & c & x \\ 1 & b & d & y \end{bmatrix})$. (i.e. gcd(a, c)|x)
- $x \in \langle a, c \rangle$ Note: implies second condition.

Still not enough for sufficiency!

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Embedding Dimension 3, part 2

Set $S = \langle [\begin{smallmatrix} 0\\ 1 \end{bmatrix}, [\begin{smallmatrix} a\\ b \end{bmatrix}, [\begin{smallmatrix} c\\ d \end{bmatrix} \rangle$, and $s = [\begin{smallmatrix} x\\ y \end{bmatrix}$, where we assume that $\phi([\begin{smallmatrix} 0\\ 1 \end{bmatrix}) < \phi([\begin{smallmatrix} a\\ b \end{bmatrix}) < \phi([\begin{smallmatrix} c\\ d \end{bmatrix})$. Note that $d_2([\begin{smallmatrix} 0& a& c\\ 1& b& d \end{bmatrix}) = \gcd(a, c)$.

If $s \in S$, then:

- $\phi(s) \in [\phi([\begin{smallmatrix} 0\\1 \end{smallmatrix}]), \phi([\begin{smallmatrix} c\\d \end{smallmatrix}])] = [0, \begin{smallmatrix} c\\d \end{smallmatrix}];$ and
- $d_2(\begin{bmatrix} 0 & a & c \\ 1 & b & d \end{bmatrix}) = d_2(\begin{bmatrix} 0 & a & c & x \\ 1 & b & d & y \end{bmatrix})$. (i.e. gcd(a, c)|x)
- $x \in \langle a, c \rangle$ Note: implies second condition.

Still not enough for sufficiency!

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Embedding Dimension 3, part 2

Set $S = \langle [\begin{smallmatrix} 0\\1 \end{bmatrix}, [\begin{smallmatrix} a\\b \end{bmatrix}, [\begin{smallmatrix} c\\d \end{bmatrix} \rangle$, and $s = [\begin{smallmatrix} x\\y \end{bmatrix}$, where we assume that $\phi([\begin{smallmatrix} 0\\1 \end{bmatrix}) < \phi([\begin{smallmatrix} a\\b \end{bmatrix}) < \phi([\begin{smallmatrix} c\\d \end{bmatrix})$. Note that $d_2([\begin{smallmatrix} 0&a&c\\1&b&d \end{bmatrix}) = \gcd(a,c)$.

If $\boldsymbol{s} \in \boldsymbol{S}$, then:

- $\phi(s) \in [\phi([\begin{smallmatrix} 0\\1 \end{smallmatrix}]), \phi([\begin{smallmatrix} c\\d \end{smallmatrix}])] = [0, \begin{smallmatrix} c\\d \end{smallmatrix}];$ and
- $d_2(\begin{bmatrix} 0 & a & c \\ 1 & b & d \end{bmatrix}) = d_2(\begin{bmatrix} 0 & a & c & x \\ 1 & b & d & y \end{bmatrix})$. (i.e. gcd(a, c)|x)
- $x \in \langle a, c \rangle$ Note: implies second condition.

Still not enough for sufficiency!

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Embedding Dimension 3, intermezzo

Example: $S = \langle [\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}], [\begin{smallmatrix} 10 \\ 10 \end{smallmatrix}], [\begin{smallmatrix} 10 \\ 3 \end{smallmatrix}] \rangle, s = [\begin{smallmatrix} 199 \\ 119 \end{smallmatrix}].$

$$egin{aligned} \phi(s) \in [0, rac{10}{3}] \ 199 \in \langle 11, 10
angle & (uniquely) \ d_2([\begin{smallmatrix} 0 & 11 & 10 \\ 1 & 10 & 3 \end{bmatrix}) = d_2([\begin{smallmatrix} 0 & 11 & 10 & 199 \\ 1 & 10 & 3 & 119 \end{bmatrix}) = 1 \end{aligned}$$

But still $s \notin S$.

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Embedding Dimension 3, conclusion

Set $S = \langle [\begin{smallmatrix} 0\\1 \end{bmatrix}, [\begin{smallmatrix} a\\b \end{bmatrix}, [\begin{smallmatrix} c\\d \end{bmatrix} \rangle$, and $s = [\begin{smallmatrix} x\\y \end{bmatrix}$, where we assume that $\phi([\begin{smallmatrix} 0\\1 \end{bmatrix}) < \phi([\begin{smallmatrix} a\\b \end{bmatrix}) < \phi([\begin{smallmatrix} c\\d \end{bmatrix})$. Assume bc - ad = 1.

If $s \in S$, then:

- $\phi(s) \in [\phi([\begin{smallmatrix} 0\\1 \end{smallmatrix}]), \phi([\begin{smallmatrix} c\\d \end{smallmatrix}])] = [0, \begin{smallmatrix} c\\d \end{smallmatrix}];$ and
- *x* ∈ ⟨*a*, *c*⟩

Thm: These necessary conditions are also sufficient.

If $ad - bc \neq 1$, all still open.

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Embedding Dimension 3, conclusion

Set $S = \langle [\begin{smallmatrix} 0\\1 \end{bmatrix}, [\begin{smallmatrix} a\\b \end{bmatrix}, [\begin{smallmatrix} c\\d \end{bmatrix} \rangle$, and $s = [\begin{smallmatrix} x\\y \end{bmatrix}$, where we assume that $\phi([\begin{smallmatrix} 0\\1 \end{bmatrix}) < \phi([\begin{smallmatrix} a\\b \end{bmatrix}) < \phi([\begin{smallmatrix} c\\d \end{bmatrix})$. Assume bc - ad = 1.

If $s \in S$, then:

- $\phi(s) \in [\phi([\begin{smallmatrix} 0\\1 \end{smallmatrix}]), \phi([\begin{smallmatrix} c\\d \end{smallmatrix}])] = [0, \begin{smallmatrix} c\\d \end{smallmatrix}];$ and
- *x* ∈ ⟨*a*, *c*⟩

Thm: These necessary conditions are also sufficient.

If $ad - bc \neq 1$, all still open.

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Embedding Dimension 3, conclusion

Set $S = \langle [\begin{smallmatrix} 0\\1 \end{bmatrix}, [\begin{smallmatrix} a\\b \end{bmatrix}, [\begin{smallmatrix} c\\d \end{bmatrix} \rangle$, and $s = [\begin{smallmatrix} x\\y \end{bmatrix}$, where we assume that $\phi([\begin{smallmatrix} 0\\1 \end{bmatrix}) < \phi([\begin{smallmatrix} a\\b \end{bmatrix}) < \phi([\begin{smallmatrix} c\\d \end{bmatrix})$. Assume bc - ad = 1.

If $s \in S$, then:

- $\phi(s) \in [\phi([\begin{smallmatrix} 0\\1 \end{smallmatrix}]), \phi([\begin{smallmatrix} c\\d \end{smallmatrix}])] = [0, \begin{smallmatrix} c\\d \end{smallmatrix}];$ and
- *x* ∈ ⟨*a*, *c*⟩

Thm: These necessary conditions are also sufficient.

If $ad - bc \neq 1$, all still open.

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Defining *p*, *q*, *r*

Set $S = \langle [\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}], [\begin{smallmatrix} a \\ b \end{smallmatrix}], [\begin{smallmatrix} c \\ d \end{smallmatrix}] \rangle$, and $s = [\begin{smallmatrix} x \\ y \end{smallmatrix}]$, where we assume that bc - ad = 1. (implies $\frac{a}{b} < \frac{c}{d}$)

Suppose that $x \in \langle a, c \rangle$. There are unique choices of $q, r \in \mathbb{N}_0$ such that x = qa + rc and $0 \le q < c$.

Suppose that $s \in S$. Then there is a unique choice of $p \in \mathbb{N}_0$ such that y = p + qb + rd, i.e. $s = \begin{bmatrix} x \\ y \end{bmatrix} = p \begin{bmatrix} 0 \\ 1 \end{bmatrix} + q \begin{bmatrix} a \\ b \end{bmatrix} + r \begin{bmatrix} c \\ d \end{bmatrix}$.

Tools Used

Membership Problem

Elasticity Problem

Bibliography o

Defining *p*, *q*, *r*

Set $S = \langle \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} c \\ d \end{bmatrix} \rangle$, and $s = \begin{bmatrix} x \\ y \end{bmatrix}$, where we assume that bc - ad = 1. (implies $\frac{a}{b} < \frac{c}{d}$)

Suppose that $x \in \langle a, c \rangle$. There are unique choices of $q, r \in \mathbb{N}_0$ such that x = qa + rc and $0 \le q < c$.

Suppose that $s \in S$. Then there is a unique choice of $p \in \mathbb{N}_0$ such that y = p + qb + rd, i.e. $s = \begin{bmatrix} x \\ y \end{bmatrix} = p \begin{bmatrix} 0 \\ 1 \end{bmatrix} + q \begin{bmatrix} a \\ b \end{bmatrix} + r \begin{bmatrix} c \\ d \end{bmatrix}$.

Elasticity Problem

Bibliography o

Elasticity in Embedding Dimension 3

Set $S = \langle \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} c \\ d \end{bmatrix} \rangle$, and $s = \begin{bmatrix} x \\ y \end{bmatrix}$, with bc - ad = 1. Let $p, q, r \in \mathbb{N}_0$ satisfy $s = p\begin{bmatrix} 0 \\ 1 \end{bmatrix} + q\begin{bmatrix} a \\ b \end{bmatrix} + r\begin{bmatrix} c \\ d \end{bmatrix}$ with $0 \le q < c$.

Thm 1: If $\frac{x}{y} \leq \frac{a}{b}$, then the min/max factorizations of *s* have lengths p + q + r and $p + q + r + \lfloor \frac{r}{a} \rfloor (c - a - 1)$.

Note: c - a - 1 could be positive, zero, negative.

Elasticity Problem

Bibliography o

Elasticity in Embedding Dimension 3

Set $S = \langle [\begin{smallmatrix} 0\\1 \end{bmatrix}, [\begin{smallmatrix} a\\b \end{bmatrix}, [\begin{smallmatrix} c\\d \end{bmatrix} \rangle$, and $s = [\begin{smallmatrix} x\\y \end{bmatrix}$, with bc - ad = 1. Let $p, q, r \in \mathbb{N}_0$ satisfy $s = p[\begin{smallmatrix} 0\\1 \end{bmatrix} + q[\begin{smallmatrix} a\\b \end{bmatrix} + r[\begin{smallmatrix} c\\d \end{bmatrix}$ with $0 \le q < c$.

Thm 1: If $\frac{x}{y} \leq \frac{a}{b}$, then the min/max factorizations of *s* have lengths p + q + r and $p + q + r + \lfloor \frac{r}{a} \rfloor (c - a - 1)$.

Note: c - a - 1 could be positive, zero, negative.

Elasticity Problem

Bibliography o

Elasticity in Embedding Dimension 3

Set $S = \langle [\begin{smallmatrix} 0\\1 \end{bmatrix}, [\begin{smallmatrix} a\\b \end{bmatrix}, [\begin{smallmatrix} c\\d \end{bmatrix} \rangle$, and $s = [\begin{smallmatrix} x\\y \end{bmatrix}$, with bc - ad = 1. Let $p, q, r \in \mathbb{N}_0$ satisfy $s = p[\begin{smallmatrix} 0\\1 \end{bmatrix} + q[\begin{smallmatrix} a\\b \end{bmatrix} + r[\begin{smallmatrix} c\\d \end{bmatrix}$ with $0 \le q < c$.

Thm 1: If $\frac{x}{y} \leq \frac{a}{b}$, then the min/max factorizations of *s* have lengths p + q + r and $p + q + r + \lfloor \frac{r}{a} \rfloor (c - a - 1)$.

Note: c - a - 1 could be positive, zero, negative.

Elasticity Problem

Bibliography o

Elasticity in Embedding Dimension 3

Set $S = \langle [\begin{smallmatrix} 0\\1 \end{bmatrix}, [\begin{smallmatrix} a\\b \end{bmatrix}, [\begin{smallmatrix} c\\d \end{bmatrix} \rangle$, and $s = [\begin{smallmatrix} x\\y \end{bmatrix}$, with bc - ad = 1. Let $p, q, r \in \mathbb{N}_0$ satisfy $s = p[\begin{smallmatrix} 0\\1 \end{bmatrix} + q[\begin{smallmatrix} a\\b \end{bmatrix} + r[\begin{smallmatrix} c\\d \end{bmatrix}$ with $0 \le q < c$.

Thm 1: If $\frac{x}{y} \leq \frac{a}{b}$, then the min/max factorizations of *s* have lengths p + q + r and $p + q + r + \lfloor \frac{r}{a} \rfloor (c - a - 1)$.

Note: c - a - 1 could be positive, zero, negative.

Tools Use

Membership Problem

Elasticity Problem

Bibliography o

Elasticity Limits

Set $S = \langle \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} c \\ d \end{bmatrix} \rangle$, and $s = \begin{bmatrix} x \\ y \end{bmatrix} \in S$, with bc - ad = 1.

We expect $\phi(s)$ largely determines elasticity. $\phi(ks) = \phi(s)$ for all $k \in \mathbb{N}$.

Thm: Set $\tau = \operatorname{sign}(c - a - 1)$. Then

$$\lim_{k \to \infty} \rho(ks) = \begin{cases} \left(\frac{c}{a} \frac{a - \frac{x}{y}(b-1)}{a - \frac{x}{y}(d-1)}\right)^{\tau} & \frac{x}{y} \leq \frac{a}{b} \\ \left(c \frac{(c-a) - \frac{x}{y}(d-b)}{c - \frac{x}{y}(d-1)}\right)^{\tau} & \frac{x}{y} \geq \frac{a}{b} \end{cases}$$

Tools Use

Membership Problem

Elasticity Problem

Bibliography o

Elasticity Limits

Set
$$S = \langle \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} c \\ d \end{bmatrix} \rangle$$
, and $s = \begin{bmatrix} x \\ y \end{bmatrix} \in S$, with $bc - ad = 1$.

We expect $\phi(s)$ largely determines elasticity. $\phi(ks) = \phi(s)$ for all $k \in \mathbb{N}$.

Thm: Set $\tau = \operatorname{sign}(c - a - 1)$. Then

$$\lim_{k \to \infty} \rho(ks) = \begin{cases} \left(\frac{c}{a} \frac{a - \frac{x}{y}(b-1)}{a - \frac{x}{y}(d-1)}\right)^{\tau} & \frac{x}{y} \le \frac{a}{b} \\ \left(c \frac{(c-a) - \frac{x}{y}(d-b)}{c - \frac{x}{y}(d-1)}\right)^{\tau} & \frac{x}{y} \ge \frac{a}{b} \end{cases}$$

Tools Use

Membership Problem

Elasticity Problem

Bibliography o

Elasticity Limits

Set
$$S = \langle \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} c \\ d \end{bmatrix} \rangle$$
, and $s = \begin{bmatrix} x \\ y \end{bmatrix} \in S$, with $bc - ad = 1$.

We expect $\phi(s)$ largely determines elasticity. $\phi(ks) = \phi(s)$ for all $k \in \mathbb{N}$.

Thm: Set $\tau = \operatorname{sign}(c - a - 1)$. Then

$$\lim_{k \to \infty} \rho(ks) = \begin{cases} \left(\frac{c}{a} \frac{a - \frac{x}{y}(b-1)}{c - \frac{x}{y}(d-1)}\right)^{\tau} & \frac{x}{y} \leq \frac{a}{b} \\ \left(c \frac{(c-a) - \frac{x}{y}(d-b)}{c - \frac{x}{y}(d-1)}\right)^{\tau} & \frac{x}{y} \geq \frac{a}{b} \end{cases}$$

Tools Used

Membership Problem

Elasticity Problem

Bibliography

For Further Reading

Membership and Elasticity in Certain affine Monoids https://vadim.sdsu.edu/ap3.pdf

