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Shameless advertising

Please encourage your students to apply to the
San Diego State University Mathematics REU.

Serious projects.

http://www.sci.sdsu.edu/math-reu/index.html

This not-so-serious work had major contributions from Jackson
Autry, and minor contributions from J.T. Dimabayao and O.J.Q.

Tigas.
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The Problem to be Solved

Two weeks off for winter break, want palate cleanser.

No time for heavy reading:
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A Challenge Appears

“A note on primes of the form a2 ± ab + 2b2”, Dimabayao and
Tigas – declined

“Prime numbers p with expression p = a2 ± ab ± b2”,
Bahmanpour, Journal of Number Theory 166 (2016) 208-218.

Amazing! OK. . .
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My Entry Point

Integers represented by quadratic Form x2 + y2:

1. [Fermat 1640] Prime p is represented by x2 + y2 iff p = 2
or p ≡ 1 (mod 4).

2. [Girard 1625] Natural n is represented by x2 + y2 iff every
prime dividing n that is congruent to 3 (mod 4), appears to
an even power.

Irreducibles in (multiplicative) monoid are: “good” primes
(2,5,13, . . .), squares of “bad” primes (32,72,112, . . .).

Monoids and irreducibles make Vadim happy.
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Recent Work

1. [Bahmanpour 2016] Prime p is represented by
x2 + xy − y2 iff p ≡ 0,1,−1 (mod 5). Prime p is
represented by x2 + xy + y2 iff p ≡ 0,1 (mod 3).

2. [Nair arxiv:2004] Natural n is represented by x2 + xy + y2

iff every prime dividing n that is congruent to 2 (mod 3),
appears to an even power.

Monoids and irreducibles again...?
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My Other Background

1. [Pell’s equation] 1 is represented by x2 − ny2, provided n
is a nonsquare (Lagrange).

2. [negative Pell’s equation] −1 is represented by x2 − ny2,
provided continued fractions. . .

3. Quadratic fields. . .
4. Quadratic forms. . .

Damn the torpedoes, time to prove something (original or not).
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Outline

1. What was known going in. (complete)
2. What was proved.
3. What was learned afterward.
4. What will happen next.
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“New” Result

Given a principal binary quadratic form x2 + xy + ny2,

with τ = |1− 4n| prime,

if Condition P holds,

then a full characterization of which integers are represented is
provided.

Note 1: n = 1 gives τ = 3, n = −1 gives τ = 5.
Note 2: Condition P fairly easy to test computationally.
Note 3: Generalizes to x2 + mxy + ny2, with prime |m2 − 4n|.
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A look at τ

Given x2 + xy + ny2, set τ = |1− 4n|. Discriminant ∆ = 1− 4n.

If n > 0, then ∆ < 0 and τ ≡ 3 (mod 4). “positive definite qf”

If n < 0, then ∆ > 0 and τ ≡ 1 (mod 4). “indefinite qf”

In both cases, ∆ ≡ 1 (mod 4), since τ is assumed prime.
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Where’s the monoid?

Set Kn = {x2 + xy + ny2 : x , y ∈ Z} ⊆ Z.

(a2 + ab + nb2)(c2 + cd + nd2) =
(ac − nbd︸ ︷︷ ︸

e

)2 + (ac − nbd︸ ︷︷ ︸
e

)(bc + ad + bd︸ ︷︷ ︸
f

) + n(bc + ad + bd︸ ︷︷ ︸
f

)2

1 = 12 + 1 · 0 + n(0)2 Monoid!

Set K ′n = {x2 + xy + ny2 : x , y ∈ Z,gcd(x , y) = 1} ⊆ Kn

Note that if p ∈ Kn is prime, then in fact p ∈ K ′n.



Background Introduction Main results Connections Future Work? Bibliography

Where’s the monoid?

Set Kn = {x2 + xy + ny2 : x , y ∈ Z} ⊆ Z.

(a2 + ab + nb2)(c2 + cd + nd2) =
(ac − nbd︸ ︷︷ ︸

e

)2 + (ac − nbd︸ ︷︷ ︸
e

)(bc + ad + bd︸ ︷︷ ︸
f

) + n(bc + ad + bd︸ ︷︷ ︸
f

)2

1 = 12 + 1 · 0 + n(0)2 Monoid!

Set K ′n = {x2 + xy + ny2 : x , y ∈ Z,gcd(x , y) = 1} ⊆ Kn

Note that if p ∈ Kn is prime, then in fact p ∈ K ′n.



Background Introduction Main results Connections Future Work? Bibliography

Where’s the monoid?

Set Kn = {x2 + xy + ny2 : x , y ∈ Z} ⊆ Z.

(a2 + ab + nb2)(c2 + cd + nd2) =
(ac − nbd︸ ︷︷ ︸

e

)2 + (ac − nbd︸ ︷︷ ︸
e

)(bc + ad + bd︸ ︷︷ ︸
f

) + n(bc + ad + bd︸ ︷︷ ︸
f

)2

1 = 12 + 1 · 0 + n(0)2 Monoid!

Set K ′n = {x2 + xy + ny2 : x , y ∈ Z,gcd(x , y) = 1} ⊆ Kn

Note that if p ∈ Kn is prime, then in fact p ∈ K ′n.



Background Introduction Main results Connections Future Work? Bibliography

Where’s the monoid?

Set Kn = {x2 + xy + ny2 : x , y ∈ Z} ⊆ Z.

(a2 + ab + nb2)(c2 + cd + nd2) =
(ac − nbd︸ ︷︷ ︸

e

)2 + (ac − nbd︸ ︷︷ ︸
e

)(bc + ad + bd︸ ︷︷ ︸
f

) + n(bc + ad + bd︸ ︷︷ ︸
f

)2

1 = 12 + 1 · 0 + n(0)2 Monoid!

Set K ′n = {x2 + xy + ny2 : x , y ∈ Z,gcd(x , y) = 1} ⊆ Kn

Note that if p ∈ Kn is prime, then in fact p ∈ K ′n.



Background Introduction Main results Connections Future Work? Bibliography

Kn for n < 0

Recall: x2 + xy + ny2. If n < 0 then τ = |1− 4n| = 1− 4n.

Lemma: Let n < 0. Then −1 ∈ Kn.
Proof: τ ≡ 1 (mod 4) is prime, so negative Pell equation
x2 − τy2 = −1 has a solution. We see that
(−x − y)2 + (−x − y)(2y) + n(2y)2 = x2 − (1− 4n)y2 = −1.

Corollary: Kn = −Kn
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Kn for n > 0

Recall: x2 + xy + ny2. If n > 0 then τ = |1− 4n| = 4n − 1 > 0.

Lemma: Let n > 0. Then Kn ⊆ N0.
Proof: Let a,b ∈ Z. Set s = n−1/2,b′ = bn1/2. Note: b = sb′.
a2 + ab + nb2 = a2 + sab′+ (b′)2 = 2+s

4 (a + b′)2 + 2−s
4 (a− b′)2.

Now |s| < 2, so 2±s
4 > 0. Hence a2 + ab + nb2 ≥ 0, with

equality iff a = b = 0.
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Representing τ and squares

Recall: x2 + xy + ny2. τ = |1− 4n| is assumed prime.

Lemma: τ ∈ Kn.
Proof: (−1)2 + (−1)(2) + n(2)2 = −1 + 4n. For n > 0, this is τ .
For n < 0, this is −τ , but Kn = −Kn.

Lemma: For any x ∈ N, x2 ∈ Kn.
Proof: x2 + x(0) + n(0)2.
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Representing nonresidues

Recall: x2 + xy + ny2. τ = |1− 4n| is assumed prime.

Lemma: If t 6= τ is a quadratic nonresidue mod τ , then t /∈ Kn.
Proof: ABWOC, t = a2 + ab + nb2. Working mod τ ,
4t ≡ 4a2 + 4ab + 4nb2 ≡ (2a + b)2 + b2(4n − 1) ≡ (2a + b)2.
Hence 1 =

(4t
τ

)
=
( t
τ

)(2
τ

)2
=
( t
τ

)
= −1, a contradiction.

Prime τ : yes
Nonresidues: no
Residues: ?
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Quadratic Reciprocity

Recall: x2 + xy + ny2. τ = |1− 4n| is assumed prime.

Lemma: Let p 6= τ be an odd prime. Then
(p
τ

)
=
(1−4n

p

)
.

Proof: If n < 0, then τ = 1− 4n and τ ≡ 1 (mod 4), so by
quadratic reciprocity

(p
τ

)
=
(
τ
p

)
=
(1−4n

p

)
.

If n > 0, then τ = 4n − 1 and τ ≡ 3 (mod 4), so by QR
(−1)(p−1)/2 =

(p
τ

)(
τ
p

)
=
(p
τ

)(1−4n
p

)(−1
p

)
=
(p
τ

)(1−4n
p

)
(−1)(p−1)/2.
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Key Lemma

Recall: K ′n = {x2 + xy + ny2 : x , y ∈ Z,gcd(x , y) = 1} ⊆ Kn

Key Lemma: Let p 6= τ be an odd, prime, quadratic residue.
Then pt ∈ K ′n for some t ∈ Z. If p >

√
τ
3 , then also 0 < |t | < p.

Proof: By QR lemma, there is r ∈ Z with r2 ≡ 1− 4n (mod p).
Take s with 2s + 1 ≡ r (mod p). 4s2 + 4s + 4n ≡ 0 (mod p),
so s2 + s + n ≡ 0 (mod p). Hence there is t ′ with t ′p ∈ K ′n.

Take g(x) = (s + xp)2 + (s + xp) + n. If x ∈ Z, then p|g(x).
Vertex is k ′ = −2s+1

2p . g(k ′) = 4n−1
4 , g(k ′ ± 1

2) = 4n−1
4 + p2

4 .
Take integer k ∈ [k ′ − 1

2 , k
′ + 1

2 ]. So p|g(k), and

g(k) ∈ [4n−1
4 , 4n−1

4 + p2

4 ]. |g(k)| ≤ τ
4 + p2

4 < 3p2

4 + p2

4 = p2. So
g(k) = pt with |t | < p. |t | > 0 since 0 /∈ K ′n (IOU).
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Main Result Sketch

Key Lemma: Let p 6= τ be an odd, prime, quadratic residue.
Then pt ∈ K ′n for some t ∈ Z. If p >

√
τ
3 , then also 0 < |t | < p.

Thm: Assume Condition P. If p prime with
(p
τ

)
= 1, then p ∈ Kn.

Proof: ABWOC, p minimal prime with
(p
τ

)
= 1 and p /∈ Kn.

Condition P implies p >
√

τ
3 . Applying Key Lemma, choose |t |

minimal with 0 < |t | < p and pt ∈ K ′n.

|t | = 1 impossible. So write |t | = p1p2 · · · pk , with each pi prime
and pi < p. By (IOU), each pi /∈ Kn. By (IOU), each pi must be
2, and by (IOU), k ≤ 1. Finally, t = 2, but then pt = 2p, a
nonresidue, so pt /∈ Kn.
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Condition P

In the theorem, we need
(p
τ

)
= 1 and p /∈ Kn to imply p >

√
τ
3 .

Set Pτ =
{

p prime :
(p
τ

)
= 1,p ≤

√
τ
3

}
.

Condition P is just: Pτ ⊆ Kn

For n = ±1, P3 = P5 = ∅, so Condition P holds vacuously.
For n = −4, P17 = {2}; we verify condition P via
2 = 22 + 2(1) + (−4)(1)2.

Lots of computational data available.
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Paying IOUs

Lemma: Let p 6= τ be odd prime with
(p
τ

)
= −1, and t ∈ Z.

Then pt /∈ K ′n.

Proof: ABWOC, pt = a2 + ab + nb2 with gcd(a,b) = 1. If p|b,
then p|a, contradiction. Hence pick c with bc ≡ 1 (mod p).

Modulo p, a2 + ab + nb2 ≡ b2((ac)2 + (ac) + n) ≡ 0 ≡
4((ac)2 + (ac) + n) ≡ (2ac + 1)2 + 4n − 1. Hence

(1−4n
p

)
= 1.

By Lemma,
(p
τ

)
= 1, contradiction.

Corollary: 0 /∈ K ′n [Pays IOU in Key Lemma]
Proof: Choose p an odd quadratic nonresidue by Dirichlet’s
theorem, and t = 0.

What about p = 2 with
(p
τ

)
= −1?
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Paying IOUs, cont.

Lemma: Let p = 2 with
(p
τ

)
= −1, and t ∈ Z. Then 4t /∈ K ′n.

Proof: By QR, |1− 4n| = τ ≡ ±3 (mod 8), so n odd.
ABWOC: 4t = a2 + ab + nb2 with gcd(a,b) = 1.

Working mod 2, we have 0 ≡ a2 + ab + b2 (mod 2). Looking at
cases, must have a ≡ b ≡ 0 (mod 2). But then gcd(a,b) 6= 1, a
contradiction.
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Paying the last IOU

Lemma: Let p, t ∈ N with p prime. If tp,p ∈ Kn, then t ∈ Kn.

Proof: Write tp = a2 + ab + nb2, p = c2 + cd + nd2. We
calculate b2p − d2tp = (bc − ad)(bd + bc + ad).

Case p|(bc − ad): Write rp = bc − ad . Set y = a + rnd ,
x = b− rc. Plug in for a,b, cancel, rearrange to c(x − rd) = dy .
Since p ∈ K ′n, gcd(c,d) = 1, so c|y and we write y = cw . Plug
in for y , cancel, rearrange to x = d(w + r). Compute
(w + wr + nr2)(c + cd + nd2) = · · · = a2 + ab + nb2 = tp, so
t = w2 + wr + nr2 ∈ Kn.

Case p|(bd + bc + ad): similar.
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Remembering all the Lemmas

Key Lemma: Let p 6= τ be an odd, prime, quadratic residue.
Then pt ∈ K ′n for some t ∈ Z. If p >

√
τ
3 , then also 0 < |t | < p.

Lemma: Let p 6= τ be odd prime with
(p
τ

)
= −1, and t ∈ Z.

Then pt /∈ K ′n.

Lemma: Let p = 2 with
(p
τ

)
= −1, and t ∈ Z. Then 4t /∈ K ′n.

Lemma: Let p, t ∈ N with p prime. If tp,p ∈ Kn, then t ∈ Kn.
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Main Result, Revisited

Thm: Assume Condition P. If p prime with
(p
τ

)
= 1, then p ∈ Kn.

Proof: ABWOC, p minimal prime with
(p
τ

)
= 1 and p /∈ Kn.

Condition P implies p >
√

τ
3 .

Key Lemma: Let p 6= τ be an odd, prime, quadratic residue.
Then pt ∈ K ′n for some t ∈ Z. If p >

√
τ
3 , then also 0 < |t | < p.

Applying Key Lemma, choose |t | minimal with 0 < |t | < p and
pt ∈ K ′n.

|t | = 1 impossible. So write |t | = p1p2 · · · pk , with each pi prime
and pi < p.
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Main Result, Continued

pt ∈ K ′n, |t | = p1p2 · · · pk < p, with each pi prime and pi < p.

Lemma: Let p, t ∈ N with p prime. If tp,p ∈ Kn, then t ∈ Kn.

If pi ∈ Kn, then by Lemma p t
pi
∈ Kn. Write p t

pi
= a2 + ab + nb2,

and now p t
pi gcd(a,b)2 ∈ K ′n. Contradicts choice of t . So pi /∈ Kn.

Lemma: Let p 6= τ be odd prime with
(p
τ

)
= −1, and t ∈ Z.

Then pt /∈ K ′n.

If pi is odd and
(pi
τ

)
= 1, contradicts choice of p. If pi is odd and(pi

τ

)
= −1, by lemma, pt /∈ K ′n, a contradiction. Hence pi = 2,

i.e. |t | = 2c for some c ≥ 1.
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Main Result, Concluded

pt ∈ K ′n,
(2
τ

)
= −1, |t | = 2c for some c ≥ 1.

Lemma: Let p = 2 with
(p
τ

)
= −1, and t ∈ Z. Then 4t /∈ K ′n.

If c ≥ 2, apply Lemma to get pt /∈ K ′n, a contradiction. Hence
c = 1, i.e. |t | = 2.

Finally, we are left with 2p ∈ K ′n,
(2
τ

)
= −1. But then(2p

τ

)
=
(2
τ

)(p
τ

)
= −1, a contradiction.

Thm: Assume Condition P. If p prime with
(p
τ

)
= 1, then p ∈ Kn.
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Monoids...?

Lemma: τ ∈ Kn.

Lemma: If t 6= τ is a quadratic nonresidue mod τ , then t /∈ Kn.

Lemma: For any x ∈ N, x2 ∈ Kn.

Thm: Assume Condition P. If p prime with
(p
τ

)
= 1, then p ∈ Kn.

Monoid irreducibles: τ , residues p, nonresidues q2, others?
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No others

Theorem: Assume Condition P. The irreducibles in Kn ∩ N are:
τ , p (for prime residues p), q2 (for prime nonresidues q).

Proof: Suppose t = p1p2 · · · pk is irreducible in Kn, of no other
type. Note k ≥ 2. If any pi ∈ Kn, then t

pi
∈ Kn by Lemma,

contradicting irreducible. If any pi is odd, then by Lemma
t /∈ K ′n. Since t ∈ Kn, we have t = a2 + ab + nb2 with
r = gcd(a,b) > 1. But then r2, t

r2 ∈ Kn, contradicting
irreducible. Hence each pi = 2. If k is even, contradicts
irreducible. If k is odd, t is nonresidue.
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Representation Characterization

Theorem: Consider form x2 + xy + ny2, with τ = |1− 4n|
prime. Assume Condition P. Natural t is represented by
x2 + xy + ny2, iff every prime dividing t that is a quadratic
nonresidue modulo τ , appears to an even power.
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Generalizing

Given a principal binary quadratic form x2 + mxy + ny2,

If τ = |m2 − 4n| is prime, then m is odd, and

using substitution
[
x
y

]
→
[
1 (1−m)/2
0 1

] [
x
y

]
turns the form into x2 + xy + 1−m2+4n

4 y2.

Note: τ = |m2 − 4n| unchanged, monoid unchanged
“Properly equivalent”
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Various Equivalences

proper equivalence:
[
x
y

]
→ A

[
x
y

]
with A ∈ SLn(Z), i.e. |A| = 1

wide equivalence:
[
x
y

]
→ A

[
x
y

]
with A ∈ GLn(Z), i.e. |A| = ±1

image equivalence: The forms share the same image in Z

(proper equiv.)→(wide equiv.)→(image equiv.)
All preserve discriminant.
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Quadratic Forms

My naive approach: Given form, find its image.

Traditional approach: Given integer in image, find form that
represents it.

For discriminant ∆:
∆ < 0: “positive definite”, h(D) = # proper equivalence classes
∆ > 0: “indefinite”, h+(D) = # proper equivalence classes

“class numbers”
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Positive Definite Forms

Lemma: Consider x2 + xy + ny2, with n > 0 and τ = 4n − 1
prime. If prime p ∈ Kn, then p ≥ τ

4 .
Proof: Suppose x2 + xy + ny2 = p. Quadratic formula gives
x = 1

2(−y ±
√
−τy2 + 4p), so −τy2 + 4p ≥ 0. y = 0

impossible, so y2 ≥ 1. Hence p ≥ τ
4 .

Theorem: Consider x2 + xy + ny2, with n > 0 and τ = 4n − 1
prime. Then Condition P holds iff Pτ = ∅.

Proof: Pτ =
{

p prime :
(p
τ

)
= 1,p ≤

√
τ
3

} ?
⊆ Kn. τ

4 ≤ p ≤
√

τ
3

Corollary: Consider x2 + xy + ny2, with n > 0 and τ = 4n − 1
prime. Then Condition P holds iff the least prime quadratic
residue modulo τ is >

√
τ
3 .
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Positive Definite Forms, cont.

Corollary: Consider x2 + xy + ny2, with n > 0 and τ = 4n − 1
prime. Then Condition P holds iff the least quadratic residue
modulo τ is >

√
τ
3 .

Theorem [Chowla Cowles Cowles 1986]: Let τ > 3 be prime
with τ ≡ 3 (mod 8). Then the least prime quadratic residue
modulo τ is: {

<
√

τ
3 h(−τ) > 1

= τ+1
4 h(−τ) = 1.

For n > 0, we have (Class number 1)↔ (Condition P)
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Positive Definite Forms Wrapup

For n > 0, we have (Class number 1)↔ (Condition P)

Theorem [Baker-Heegner-Stark]:
For ∆ < 0, the (narrow) class number of Q[

√
∆] = 1, iff

d ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}

Corollary: For n > 0 and τ prime, Condition P holds iff
τ ∈ {3,7,11,19,43,67,163}
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Indefinite Forms

For n < 0, we have (Class number 1)→ (Condition P)

If τ is prime with τ ≡ 1 (mod 4), and Q[
√
τ ] has narrow class

number 1, then Condition P holds.

Condition P holds for τ ∈ {5,13,17,29,37,41,53, . . .}.

Open problem: Are there infinitely many τ ≡ 1 (mod 4) with
Q[
√
τ ] having narrow class number 1?
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What Happens Next. . . ?

1. Paper with Dimabayao and Tigas
2. For n < 0, do we have (Class number 1)↔ (Condition P)?

(genera?)
3. For n > 0, can we disprove Condition P directly?

Elementary proof of Baker-Heegner-Stark
4. If Condition P fails, what can we salvage? Monoid?
5. τ = 23 minimal with n > 0; τ = 229 minimal with n < 0.
6. Non-principal forms, non-prime τ . . .
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The Least Prime Quadratic Residue and the Class Number
J. Number Theory 22 (1986), pp. 1-3.

K. Bahmanpour
Prime numbers p with expression p = a2 ± ab ± b2

J. Number Theory 166 (2016), pp. 208-218.

J.T. Dimabayao, VP, O.J.Q. Tigas
On Monic Binary Quadratic Forms
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