1) Let A be a 6×6 matrix with characteristic equation

$$\lambda^2(\lambda+1)(\lambda-7)^3 = 0.$$ What are the possible dimensions for eigenspaces of A?

By definition, if λ_0 is an eigenvalue of an $n \times n$ matrix A, then the dimension of the eigenspace corresponding to λ_0, and the number of times that $\lambda - \lambda_0$ appears as a factor in the characteristic polynomial of A is called the algebraic multiplicity of λ_0.

We know that, if A is a square matrix, then for every eigenvalue of A, the geometric multiplicity is less than or equal to the algebraic multiplicity.

Let us denote the dimension of the eigenspace as D. We also know each eigenvalue corresponds to at least one eigenvector. Thus, in our case we have:

- For $\lambda = 0$: $D \leq 2$
- For $\lambda = 1$: $D = 1$
- For $\lambda = 7$: $D \leq 3$

2) Let

$$A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{bmatrix}$$

(a) Find the eigenvalues of A.

The characteristic polynomial of A is:

$$\det(\lambda I - A) = \det \begin{bmatrix} \lambda - 4 & 0 & -1 \\ -2 & \lambda - 3 & -2 \\ -1 & 0 & \lambda - 4 \end{bmatrix}$$

$$= (\lambda - 3)(\lambda - 5)$$

So, for eigenvalues, $\det(\lambda I - A) = 0$.

$$\det(\lambda I - A) = 0$$
(b) For each eigenvalue λ, find the rank of the matrix $\lambda I - A$.

For $\lambda = 3$

\[
(3I - A) = \begin{bmatrix}
3 & 0 & -1 \\
-2 & 0 & -2 \\
1 & 0 & -1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 1 \\
0 & 0 & 0 \\
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

Similarly, for $\lambda = 5$.

For $\lambda = 3$:

\[
\lambda I - A = \begin{bmatrix}
-1 & 0 & -1 \\
-2 & 0 & -2 \\
1 & 0 & -1 \\
\end{bmatrix} : \text{rank of matrix: 1}
\]

For $\lambda = 5$:

\[
\lambda I - A = \begin{bmatrix}
1 & 0 & -1 \\
-2 & 0 & -2 \\
1 & 0 & 1 \\
\end{bmatrix} : \text{rank of matrix: 2}
\]

For $\lambda = 3, 5$: matrix is not diagonalizable.

(c) Is A diagonalizable? Justify your conclusion.

Yes, because the matrix A has m distinct eigenvalues.

Therefore, A is diagonalizable.
8) Find a matrix \(P \) that diagonalizes \(A \), and determine \(P^{-1}AP \).

\[
A = \begin{bmatrix}
-14 & 12 \\
-20 & 17
\end{bmatrix}
\]

\[
\text{det}(P - A) = \begin{vmatrix}
\lambda + 14 & -12 \\
620 & \lambda - 17
\end{vmatrix}
\]

\[
= (\lambda + 14)(\lambda - 17) + 240
\]

\[
= \lambda^2 - 3\lambda + 2
\]

Solving \(\lambda^2 - 3\lambda + 2 = 0 \)

\[
\Rightarrow \lambda^2 - 2\lambda - \lambda + 2 = 0
\]

\[
\Rightarrow (\lambda - 2)(\lambda - 1) = 0
\]

Yields the following eigenvalues and corresponding eigenvectors:

\(\lambda = 1 \):
\[p_1 = \begin{bmatrix} 4 \\ 5 \end{bmatrix} \]

\(\lambda = 2 \):
\[p_2 = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \]

There are two basis vectors in total, so matrix \(A \) is diagonalizable and

\[
P = \begin{bmatrix}
4 & 3 \\
5 & 4
\end{bmatrix}
\]

diagonalizes \(A \).

We know that in this case the matrix \(P^{-1}AP \) will be diagonal with \(\lambda_1, \lambda_2, \ldots, \lambda_n \) as its successive diagonal entries, where \(\lambda_n \) is the eigenvalue corresponding to \(p_i \), for \(i = 1, 2, \ldots, n \). Thus

\[
P^{-1}AP = \begin{bmatrix}
1 & 0 \\
0 & 2
\end{bmatrix}
\]

\[
P^{-1}AP = \begin{bmatrix}
1 & 0 \\
0 & 2
\end{bmatrix}
\]

10) Find a matrix \(P \) that diagonalizes \(A \), and determine \(P^{-1}AP \).
Let us find the eigenvalues of the given matrix first. The characteristic polynomial of A is
\[
\det (M - A) = \det \begin{bmatrix}
\lambda - 1 & 0 & 0 \\
0 & \lambda - 1 & 1 \\
0 & 1 & \lambda - 1
\end{bmatrix} = (\lambda - 1)(\lambda^2 - 2\lambda) = 0
\]
Solving this equation $\lambda^2 - 2\lambda = 0$ yields the following eigenvalues and corresponding eigenvectors:

$\lambda = 0$: $v_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \quad \lambda = 1$: $v_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

$\lambda = 2$: $v_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$

There are three basis vectors in total, so matrix A is diagonalizable and
\[
P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}
\]
diagonalizes A.

We know that in this case the matrix $P^{-1}AP$ will be diagonal with $\lambda_1, \lambda_2, \ldots, \lambda_n$ as its successive diagonal entries, where λ_i is the eigenvalue corresponding to v_i, $i = 1, 2, \ldots, n$. Thus, we obtain
\[
P^{-1}AP = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}
\]
15) Find the geometric and algebraic multiplicity of each eigen value, and determine whether A is diagonalizable. If so, find a matrix P that diagonalizes A, and determine $P^{-1}AP$.

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$

The given matrix is a lower triangular matrix, thus by inspection we find the eigen values:

- $\lambda = 0$: Algebraic multiplicity equals 2.
- $\lambda = 1$: Algebraic multiplicity equals 1.

Let us find the eigenvectors and thus determine the geometric multiplicity of the eigenvalues. We have

$$\lambda = 0: \quad P_1 = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \quad P_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}; \quad \lambda = 1: \quad P_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Thus we see that for every eigenvalue the geometric multiplicity is equal to the algebraic multiplicity. So, A is diagonalizable, and

$$P = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$

diagonalizes A.

We know that in this case, matrix $P^{-1}AP$ will be diagonal with $\lambda_1, \lambda_2, \ldots, \lambda_n$ as its successive diagonal entries, where λ_n is the eigenvalue corresponding to P_i for $i = 1, 2, \ldots, n$. Thus
Thus, we obtain
\[p^T A p = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

\[p = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}, \quad p^T A p = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

17) Find the geometric and algebraic multiplicities of each
eigenvalue, and determine whether \(A \) is diagonalizable.
If so, find a matrix \(p \) that diagonalizes \(A \), and
determine \(p^T A p \).

\[A = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 5 & -5 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \]

The given matrix is an upper triangular matrix. Thus, by inspection we find the eigenvalues:
\[\lambda = -2: \text{algebraic multiplicity equals 2}. \]
\[\lambda = 3: \text{algebraic multiplicity equals 2}. \]

Let us find the eigen vectors and determine the
geometric multiplicities of the eigen values. We have:
\[\lambda = -2: p_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad p_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}; \quad \lambda = 3: p_3 = \begin{bmatrix} 0 \\ 0 \\ -1 \\ 1 \end{bmatrix}, \quad p_4 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \]

Thus we see that for every eigenvalue the geometric
multiplicity is equal to the algebraic multiplicity. So \(A \) is
diagonalizable and
\[p = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \]
diagonalizes A.

We know that in this case the matrix $P^T A P$ will be diagonal with $\lambda_1, \lambda_2, \ldots, \lambda_n$ as its successive diagonal entries, where λ_i is the eigenvalue corresponding to p_i for $i = 1, 2, \ldots, n$.

Thus we obtain

$$P^T A P = \begin{bmatrix}
-2 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{bmatrix}$$

18) Use the method of example 6 to compute A^{10}, where

$$A = \begin{bmatrix}
1 & 0 \\
-1 & 2
\end{bmatrix}$$

We know that

$$A^{10} = P D^{10} P^{-1}$$

where D is a diagonal matrix.

Let us find the diagonal matrix.

The given matrix is lower diagonal matrix. Thus by inspection we find the eigenvalues and the corresponding eigenvectors.

$\lambda = 1$: $p_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$; $\lambda = 2$: $p_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

There are two basic vectors in total; so matrix A is diagonalizable and
\[
P = \begin{bmatrix}
1 & 0 \\
1 & 1 \\
\end{bmatrix}
\] diagonalizes \(A \).

We know that in this case the matrix \(P^T A P \) will be diagonal with \(\lambda_1, \lambda_2, \ldots, \lambda_n \) as its successive diagonal entries where \(\lambda_i \) is the eigenvalue corresponding to \(\alpha_i \) for \(i = 1, 2, \ldots, n \).

Thus we have:

\[
D = P^T A P = \begin{bmatrix}
1 & 0 \\
0 & 2 \\
\end{bmatrix}
\]

So we obtain:

\[
A^{10} = P D^{10} P^{-1} = \begin{bmatrix}
1 & 0 \\
1 & 1 \\
\end{bmatrix} \begin{bmatrix}
1 & 0 \\
0 & 2^{10} \\
\end{bmatrix} \begin{bmatrix}
1 & 0 \\
-1 & 2 \\
\end{bmatrix} = \begin{bmatrix}
1 & 0 \\
-1024 & 2048 \\
\end{bmatrix}
\]

\[
A^{10} = \begin{bmatrix}
1 & 0 \\
-1024 & 2048 \\
\end{bmatrix}
\]

20) Compute stated power:

\[A = \begin{bmatrix}
1 & -2 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1 \\
\end{bmatrix} \]

(a) \(A^{-2301} \)

We know that:

\[A^k = P D^k P^{-1} \]

Where \(D \) is a diagonal matrix and \(k \) is a positive integer. In our case, \(k \) is negative. We can write:

\[A^{-2301} = \left(A^{-1} \right)^{2301} \]

Now we can use the formula stated above for:

\[B = A^{-1} = \begin{bmatrix}
1 & -2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix} \]

let us find the diagonal matrix.
The given matrix is an upper triangular matrix. Thus, by inspection, we find the eigenvalues and the corresponding eigen vectors.

\(\lambda = -1; \quad \mathbf{p}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; \quad \mathbf{p}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}; \quad \lambda = 1; \quad \mathbf{p}_3 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \)

so, the matrix \(B \) is diagonalizable and

\[
\mathbf{p} = \begin{bmatrix} -4 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}
\]

diagonalizes \(B \).

We know that in this case, the matrix \(\mathbf{p}^T B \mathbf{p} \) will be diagonal with \(\lambda_1, \lambda_2, \ldots, \lambda_n \) as its successive diagonal entries, where \(\lambda_n \) is the eigenvalue corresponding to \(\mathbf{p}_n \), for \(i = 1, 2, \ldots, n \).

So we obtain:

\[
B = \mathbf{p} \mathbf{D} \mathbf{p}^T = \begin{bmatrix} -4 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_n \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & -1 & 4 \end{bmatrix}
\]

Thus:

\[
\mathbf{A} = \begin{bmatrix} 3 & -2 & 8 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}
\]

\[
\mathbf{A} = \begin{bmatrix} 1 & -2 & 8 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}
\]
1) Find the characteristic equation of the given symmetric matrix, and then by inspection determine the dimensions of the eigenspaces:

\[
\begin{bmatrix}
1 & 2 \\
2 & 4
\end{bmatrix}
\]

The characteristic equation of matrix A is

\[
\det (\lambda I - A) = \det \begin{bmatrix}
\lambda - 1 & -2 \\
-2 & \lambda - 4
\end{bmatrix} = (\lambda - 1)(\lambda - 4) - 4
\]

\[
\Rightarrow (\lambda - 1)(\lambda - 4) - 4 = 0
\]

\[
\Rightarrow \lambda^2 - 5\lambda + 4 = 0
\]

\[
\Rightarrow \lambda(\lambda - 5) = 0
\]

Thus, the eigenvalues of A are \(\lambda_1 = 0 \) and \(\lambda_2 = 5 \). So, there are 2 eigen spaces of A.

As we know, the dimension of an eigenspace is the nullity \((\lambda I - A) \) corresponding to \(\lambda \).

So, if \(\lambda = 0 \) then

\[
(\lambda I - A) = \begin{bmatrix}
1 & -2 \\
-2 & 4
\end{bmatrix}
\]

Reducing to row echelon form has the form \[
\begin{bmatrix}
1 & 2 \\
0 & 0
\end{bmatrix}
\]

Thus, the dimension of the eigenspace of A corresponding to \(\lambda = 0 \) is equal to

nullity \((\lambda I - A) \) = \(2 - \text{rank}(\lambda I - A) \) = 2 - 1 = 1.

Analogously, for \(\lambda = 5 \) we have that

\[
(\lambda I - A) = \begin{bmatrix}
4 & -2 \\
-2 & 1
\end{bmatrix}
\]

Reducing to row echelon form has the form \[
\begin{bmatrix}
1 & -\frac{1}{2} \\
0 & 0
\end{bmatrix}
\]

Thus, the dimension of the eigenspace of A corresponding to \(\lambda = 5 \) is equal to

nullity \((\lambda I - A) \) = \(2 - \text{rank}(\lambda I - A) \) = 2 - 1 = 1.

Dimension of eigenspace corresponding to \(\lambda = 0 \): \(1 \)
Dimension of eigenspace corresponding to \(\lambda = 5 \): \(1 \)
The characteristic equation of matrix A is:

$$\det(\lambda I - A) = \det \begin{bmatrix} \lambda - 2 & 0 & 0 \\ 1 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 2 \end{bmatrix} = (\det \begin{bmatrix} \lambda - 2 \\ 1 & \lambda - 2 \\ 0 & 0 & \lambda - 2 \end{bmatrix})^2$$

$$= (\lambda - 2 - 1)^2 = (\lambda - 3)^2(\lambda - 1)^2 = 0.$$

Thus, the eigenvalues of A are $\lambda = 3$ and $\lambda = 1$, so there are two eigenvalues of A. As we know, the dimension of the eigenspace is nullity $(\lambda I - A)$ corresponding to $\lambda = 3$, so, if $\lambda = 3$, then

$$(\lambda I - A) = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

reducing to row echelon form:

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus, the dimension of eigenspace of A corresponding to $\lambda = 3$ equals to nullity $(\lambda I - A): 4 - \text{rank}(\lambda I - A) = 4 - 2 = 2$.

Analogously, for $\lambda = 1$ we have that

$$(\lambda I - A) = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

reducing to row echelon form has the form
Thus, the dimension of the eigenspace of A corresponding to $\lambda = 1$ equals to the multiplicity $(\lambda - 1) = 4 - \text{rank}(\lambda - I) = 4 - 2 = 2$.

The characteristic equation is $(\lambda - 3)^2(\lambda - 1)^2 = 0$.

The dimension of the eigenspace of A corresponding to $\lambda = 1$ is 2.

The dimension of the eigenspace of A corresponding to $\lambda = 3$ is 2.

2) Find a matrix P that orthogonally diagonalizes A, and determine $P^2 A P$.

Given $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$

The characteristic equation of matrix A is

$\det(\lambda I - A) = \det \begin{bmatrix} \lambda - 3 & -1 \\ -1 & \lambda - 3 \end{bmatrix} = (\lambda - 3)^2 + 1$

And we find the following bases for the eigenspaces:

- $\lambda = 1$: $P_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$
- $\lambda = 3$: $P_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

There are two basis vectors in total, so matrix A is diagonalizable, and

$P = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$

diagonalizes A. As a check, we should verify

$P^{-1}AP = \begin{bmatrix} -1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$
4) \[A = \begin{bmatrix} 6 & -2 \\ -2 & 3 \end{bmatrix} \]

The characteristic equation of matrix \(A \) is
\[
\det (\lambda I - A) = \det \begin{bmatrix} \lambda - 6 & 2 \\ 2 & \lambda - 3 \end{bmatrix} = (\lambda - 6)(\lambda - 3) - 4
\]
\[= (\lambda - 2)(\lambda - 7) = 0 \]

and we find the following bases for the eigenspaces:
\[
\lambda = 2: \quad p_1 = \begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix} \quad \lambda = 7: \quad p_2 = \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}
\]

There are two basic vectors in total, so matrix \(A \) is diagonalizable and
\[
P = \begin{bmatrix} \frac{1}{2} & -2 \\ 1 & 1 \end{bmatrix}
\]
diagonalizes \(A \). As a check we should verify that
\[
P^{-1}AP = \begin{bmatrix} \frac{1}{5} & \frac{4}{15} \\ -\frac{2}{5} & \frac{1}{15} \end{bmatrix} \begin{bmatrix} 6 & -2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -2 \\ 1 & 1 \end{bmatrix}
\]
\[= \begin{bmatrix} 2 & 0 \\ 0 & 7 \end{bmatrix}
\]

\[
P = \begin{bmatrix} \frac{1}{2} & -2 \\ 1 & 1 \end{bmatrix}
\]
\[
P^{-1}AP = \begin{bmatrix} 2 & 0 \\ 6 & 7 \end{bmatrix}
\]

5) \[A = \begin{bmatrix} -2 & 0 & -36 \\ 0 & -3 & 0 \\ -36 & 0 & -23 \end{bmatrix} \]

The characteristic equation of matrix \(A \) is
\[
\det (\lambda I - A) = \det \begin{bmatrix} \lambda + 2 & 0 & 36 \\ 0 & \lambda + 3 & 0 \\ 36 & 0 & \lambda + 23 \end{bmatrix}
\]
\[= (\lambda + 3)(\lambda + 2)(\lambda + 23) + 36(-36)(\lambda + 23)
\]
\[= (\lambda + 3)(\lambda + 2)(\lambda + 23)(\lambda + 50) = 0 \]

and we find the following orthonormal bases for the eigenspaces
\(\lambda = -3 : P_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \); \(\lambda = 25 : P_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \); \(\lambda = -50 : P_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \)

There are two basis vectors in total, so matrix A is diagonalizable and

\[P = \begin{bmatrix} 0 & -4/5 & 3/5 \\ 1 & 0 & 0 \\ 0 & 3/5 & 4/5 \end{bmatrix} \]

diagonalizes A.

As a check we should verify that

\[P^{-1}AP = \begin{bmatrix} 0 & 1 & 0 \\ -4/5 & 0 & 3/5 \\ 3/5 & 0 & 4/5 \end{bmatrix} \begin{bmatrix} 0 & 0 & 3/5 \\ 0 & -3 & 0 \\ -36 & 0 & -23 \end{bmatrix} \begin{bmatrix} 0 & -4/5 & 3/5 \\ 1 & 0 & 0 \\ 0 & 3/5 & 4/5 \end{bmatrix} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & 25 & 0 \\ 0 & 0 & -50 \end{bmatrix} \]

10) Assuming that \(b \neq 0 \), find a matrix that orthogonally diagonalizes

\[\begin{bmatrix} a & b \\ b & a \end{bmatrix} \]

The characteristic equation of this matrix is

\((\lambda - a)(\lambda - a - b) = 0\)

and we find the following orthonormal bases for the eigenspaces.
\[\lambda = a - b : \quad p_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}, \quad \lambda = a + b : \quad p_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} \end{bmatrix} \]

There are two basis vectors in total, so matrix \(A \) is diagonalizable and

\[P = \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \]

diagonalizes \(A \).

12) (b) Find a matrix \(P \) that orthogonally diagonalizes \(I - vv^T \) if

\[v = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \]

We have that

\[A = I - vv^T = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix} \]

The characteristic equation of this matrix is

\[\det(\lambda I - A) = \det \begin{bmatrix} \lambda & 0 & 1 \\ 0 & \lambda - 1 & 0 \\ -1 & 0 & \lambda \end{bmatrix} = (\lambda - 1)^2(\lambda + 1) = 0. \]

Thus, the eigenvalues of \(A \) are \(\lambda_1 = 1 \) and \(\lambda_2 = -1 \).

It can be shown that

\[u_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix} \quad and \quad u_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \]

form an orthonormal basis for the eigenspace corresponding to \(\lambda = 1 \).

The eigenspace corresponding to \(\lambda = -1 \) has
Finally using u_1, u_2 and u_3 as column vectors, we obtain

$$
P = \begin{bmatrix}
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{bmatrix}
$$

which orthogonally diagonalizes A.

$$
\begin{bmatrix}
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{bmatrix}
$$

$U_3 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ as an orthonormal basis.