Gersgorin Theorem

March 19, 2013
We begin by establishing some notation while giving a theorem from math 254 (without proof).

Theorem 1: For \(A = [a_{ij}] \in M_n(F) \), the following are equivalent:

1. \(A \) is nonsingular (i.e., \(Ax = 0 \) only when \(x = 0 \))
2. \(\text{nullity} (A) = 0 \)
3. \(\text{rank} (A) = n \)
4. \(A \) is invertible (i.e., there exists \(B \in M_n(F) \) with \(AB = BA = I_n \))
4. \(\det (A) \neq 0 \)
5. \(\text{RREF}(A) = I_n \)
6. 0 is not an eigenvalue of \(A \)

Remarks:

i) Theorem 1 holds for any field \(F \), but we are interested when \(F = \mathbb{C} \) (or \(\mathbb{R} \)).

ii) In what follows, conditions 1 and 6 of Theorem 1 will be most pertinent.
$A \in M_n(\mathbb{C})$ is diagonally dominant in row i if

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|.$$

A is simply diagonally dominant if A is diagonally dominant in row i for all $i = 1, 2, \ldots, n$.

Remarks

The above definition may also be given as:

- A is diagonally dominant of rows
- A is strongly diagonally dominant

We say A is weakly diagonally dominant (of rows) if

$$|a_{ii}| \geq \sum_{j \neq i} |a_{ij}|, \quad \text{all } i = 1, 2, \ldots, n.$$
Theorem 2 (Fergy-Desplanques) If \(A \in M_n(\mathbb{C}) \) is diagonally dominant, then \(A \) is nonsingular.

Proof

We will show the contrapositive that if \(A \) is singular, then \(A \) is not diagonally dominant.

Suppose \(A \) is singular and \(\circ \neq x \in \mathbb{C}^n \) satisfies \(Ax = 0 \). We may divide \(x \) by one of its largest entries so we may assume that

\[
1 = \max \{ |x_1|, |x_2|, \ldots, |x_n| \} = |x_i|.
\]

Since \(Ax = 0 \), \((Ax)_i = 0 \) or

\[
a_{ii} x_i + a_{i2} x_2 + \cdots + a_{in} x_n = 0
\]

Solving this equation for \(a_{ii} \) yields

\[
a_{ii} = -\sum_{j \neq i} a_{ij} x_j
\]

so that

\[
|a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |x_j| \leq \sum_{j \neq i} |a_{ij}|
\]

which shows that \(A \) is not diagonally dominant in row \(i \).
We will use theorem 2 to prove Zerosgerin's Theorem which comes next.

For any $z_0 \in \mathbb{C}$ and $r > 0$, let

$$D(z_0, r) = \{ z \in \mathbb{C} \mid |z - z_0| \leq r \}$$

be the closed disc of radius r with center z_0.

For any $A \in M_n(\mathbb{C})$, let

$$r_i = \frac{\sum_{j \neq i} |a_{ij}|}{n}$$

and let

$$D_i = D(a_{ii}, r_i)$$

be the Zerosgerin discs of A,

$i = 1, 2, \ldots, n$.
Theorem 2 (Gersgorin) Every eigenvalue of A lies in $D_1 U D_2 U \ldots U D_n$.

Proof:
Suppose $\lambda \in \mathbb{C}$ and $\lambda \notin D_i$, $i = 1, 2, \ldots, n$. Recall that λ is an eigenvalue of A iff $\lambda I_n - A$ is singular. We claim λ is not an eigenvalue of A, or that $\lambda I_n - A$ is nonsingular.

Since $\lambda \notin D_i$, $i = 1, 2, \ldots, n$,

$$|\lambda - a_{ii}| > r_i = \sum_{j \neq i} |a_{ij}|$$

for all $i = 1, 2, \ldots, n$. This shows that $\lambda I_n - A$ is diagonally dominant and hence nonsingular.

Here we note that the Gersgorin Region $D_1 U D_2 U \ldots U D_n$ consists exactly of those λ for which $\lambda I_n - A$ is not diagonally dominant.

Remark: A and $\lambda I_n - A$ have the same r_i.
The last theorem needs to have some ideas from analysis and "Hersprung's Theorem" frequently refers to theorems 3 and 4 together.

Lemma 1 Suppose $A(t)$, $0 \leq t \leq 1$ is a continuous function from $[0, 1]$ to $M_n(C)$. Then there exists continuous eigenfunctions,

$$\lambda_i : [0, 1] \rightarrow C$$

such that the eigenvalues of $A(t)$ are $\lambda_1(t), \lambda_2(t), \ldots, \lambda_n(t)$.

Lemma 1 more or less follows from the following facts:

1. The coefficients of the characteristic polynomial are continuous functions of the entries of the matrix.
2. The roots of a polynomial are continuous functions of its coefficients.
The Yersgorin Region $D_1D_2\ldots D_n$ may be comprised of anywhere from 1 to n connected components.

For example, if A is 8-by-8 with Yersgorin Discs

Then there would be four such components. One of these is a single disc; two of these are unions of two-discs; and one of these is a union of three discs.

Theorem 4: Let C be a connected component of $D_1D_2\ldots D_n$ which is a union of k of the discs. Then C contains exactly k eigenvalues of A, counted according to algebraic multiplicity.
proof sketch

Split \(A = D + B \) where

1. \(D \) is diagonal and \(B \) has zero diagonal

\[
\text{example: If } A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, \text{ then }
\begin{align*}
D &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.
\end{align*}
\]

Define

\[
A(t) = D + tB, \quad 0 \leq t \leq 1
\]

so that \(A(0) = D, A(1) = B \), and \(A(t) \) is continuous (even linear!).

Let

\[
\lambda_1(t), \lambda_2(t), \ldots, \lambda_n(t)
\]

be the corresponding eigenfunctions. For each \(0 \leq t \leq 1 \), let \(G(t) \) be the Herschel Region of \(A(t) \), so that \(G(t) \) contains the eigenvalues of \(A(t) \).

For \(t = 0 \), \(A(0) = D \), so the Herschel discs all have radius 0 and the eigenvalues of \(A(0) \) are just \(\lambda_1, \lambda_2, \ldots, \lambda_n \).
In fact, we may assume that
\[\lambda_i(t) = a_{i,k} \quad \text{all } i = 1, 2, \ldots, n. \]

Assume that the connected component \(C \) is a union of the first \(k \) Neumann discs of \(A \) : \(G = D_1 \cup D_2 \cup \cdots \cup D_k. \)

For each \(0 \leq t \leq 1 \), the Neumann discs of \(A(t) \) have center \(a_{i,k} \) and radius \(\pm r_i \), where \(r_i = \sum_{j \neq i} |a_{i,j}| \)
so that
\[G(0) \subseteq G(t) \subseteq G(1) = G \]
whenever \(0 \leq d \leq t \leq 1 \).

Now, since \(\lambda_1(t), \lambda_2(t), \ldots, \lambda_n(t) \) are continuous, none of these functions can "jump" from one component of \(G \) to another. Thus the first \(k \) eigenfunctions remain in \(C \), and none of the other \(n - k \) eigenfunctions can "jump" into \(C \).
exercise Use Gersgorin's Theorem to prove theorem 2 directly.

exercise Let \(A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \)

a) Find the Gersgorin region of \(A \), \(G \), and display \(G \) in the complex plane.

b) Find and display the eigenvalues of \(A \) on the same page as for part a.

exercise Repeat the previous exercise for \(A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \)

exercise For \(A \in M_n(\mathbb{C}) \) let
\[
\rho = \max \sum_{j=1}^{n} |a_{ij}| \]
be the maximum absolute row-sum of \(A \).
If \(\lambda \) is an eigenvalue of \(A \), show \(|\lambda| \leq \rho \).