Be able to use the following terminology

- eigenvalue, eigenvector (be able to define these also).
- basis for eigenspace.
- characteristic polynomial, characteristic equation.
- similar matrices.

Eigenvectors and Diagonalization

- Let \(A \) be an \(n \times n \) matrix. You should be able to do the following.
 - Compute the characteristic polynomial of \(A \).
 - Find the eigenvalues of \(A \), when the characteristic polynomial is easily factored.
 - Find a basis for the eigenspace for each eigenvector.
 - Diagonalize \(A \) given \(n \) linearly independent eigenvectors.
 - When \(A \) is \(2 \times 2 \), and has complex eigenvalues, find a rotation-scaling matrix that is similar to \(A \). That is, if \(a \pm bi \) are the eigenvalues, find \(P \) such that \(P^{-1}AP = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \).
- Be able to use and understand the meaning of the main theorems.
 - \(A \) is diagonalizable if and only if it has \(n \) linearly independent eigenvectors.
 - If \(A \) has \(n \) distinct eigenvalues it is diagonalizable.
 - A matrix \(A \) is invertible if and only if 0 is not an eigenvalue of \(A \).
 - Similar matrices have the same characteristic polynomial, and therefore the same eigenvalues with the same multiplicities.
- Be able to apply eigenvector analysis to a dynamical system.
 - Be able to classify a \(2 \times 2 \) matrix \(A \):
 - Is the origin an attractor, a repellor, or a saddle point? Is \(A \) a rotation-contraction or a rotation-dilation? The latter cases occur when the eigenvalues are not real.
 - Be able to identify the long term behavior of a dynamical system, given the eigenvalues and eigenvectors.
 - Be able to write a transition matrix for a dynamical system given information about population changes.