Solving Linear Systems
- Transform a system of linear equations into a matrix equation.
- Solve a system using Gaussian elimination.
- Explain the steps that you use (switching rows, scaling a row, adding a row to another one).
- Identify the matrix operation corresponding to each step.
- Find the RREF form of a matrix.
- Find the kernel of a linear transformation.
- Find the image of a linear transformation.
- Write a vector x as a sum of vectors v_1, \ldots, v_m.
- Invert a matrix using Gaussian elimination.

Vector Space Terminology
- Definitions you should know:
 - linear combination, span, linear independent, basis;
 - subspace, linear transformation;
 - rank, nullspace (a.k.a. kernel), column space (aka image) of a matrix;
 - orthogonal, orthonormal basis,
 - eigenvalue, eigenvector, eigenspace.
- Decide whether a function is a linear transformation.
- Be able to state and use the Rank-Nullity Theorem.

Orthogonality
- In \mathbb{R}^2, given a unit vector u, know how to compute
 - the matrix for projection on to the line through u,
 - the matrix for reflection about the line through u,
- In \mathbb{R}^2, know how to identify a shear matrix, a scaling matrix, and a rotation matrix.
- Find the orthogonal and perpendicular components of a vector relative to a subspace. Given $V \subset \mathbb{R}^n$ and $x \in \mathbb{R}^n$, decompose x, relative to V as $x = x^\perp + x^\parallel$.
- Find the components of $x \in V$ relative to an orthonormal basis of V.
- Transform a given basis to an orthonormal basis using Gram-Schmidt.
- Write the QR decomposition of a matrix.
Determinants

- Know the basic properties of determinants (6.1.6, 6.2.1, 6.2.2, 6.2.4, 6.2.5).
- Similar matrices have the same determinant.
- Compute an arbitrary 2×2 or 3×3 determinant.
- Compute the determinant of larger matrices with special conditions (e.g. lots of zeros).

Eigenvalues and Eigenvectors

- Find the characteristic polynomial of an $n \times n$ matrix A.
- Find the eigenvalues for 2×2, and (doable) 3×3 matrices and triangular matrices.
- Find the algebraic multiplicity and the geometric multiplicity of each eigenvalue.
- Find a basis for the eigenspace associated to each eigenvalue.
- Diagonalize a matrix A when it is possible.
- Understand that diagonalization is change of basis.
1. Let \(v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ v_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \) and \(v_3 = \begin{bmatrix} 1 \\ 3 \\ 6 \end{bmatrix} \).

 (a) Write \(y = \begin{bmatrix} 2 \\ -3 \\ -10 \end{bmatrix} \) as a linear combination of the \(v_i \). Use Gaussian elimination and identify each step as a matrix multiplication.

 (b) Find the kernel and image of the transformation \(T(x) = Ax \).

 (c) What are the nullity and the rank of \(A \).

 (d) Find the inverse of \(A \).

 (e) Solve part (a) using \(A^{-1} \).

2. Let

\[
A = \begin{bmatrix}
1 & 2 & 1 & 1 \\
2 & 4 & 3 & 1 \\
4 & 8 & 5 & 3
\end{bmatrix}
\]

 (1) Find a basis for the kernel of \(A \).

 (b) Find a basis for the image of the transformation \(T(x) = Ax \).

 (b) What are the nullity and the rank of \(A \)?

3. Classify the geometrical properties of the following matrices (look at what each does to the standard basis).

\[
A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{bmatrix} \quad C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad D = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad E = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}
\]

3. Find the \(QR \) factorization of

\[
A = \begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 2 \\
1 & 0 & 1 \\
1 & 1 & -1
\end{bmatrix}
\]

4. Compute the determinant.

\[
A = \begin{bmatrix}
1 & 1 & 0 & 3 \\
1 & 0 & 2 & 2 \\
1 & 0 & 1 & 1 \\
1 & 1 & -1 & 0
\end{bmatrix}
\]

5. Diagonalize each matrix if possible

\[
A = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix} \quad B = \begin{bmatrix}
2 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]