I. Understand fundamental logic:
 • Truth tables for \land, \lor, \implies, xor.
 • Be able to show logical equivalence using a truth table.
 • Know some important equivalences
 (Thm. 1.1.1 and $p \implies q \equiv \sim p \lor q$ and $p \implies (q \lor r) \equiv (p\land \sim q) \implies r$).
 • Know how to negate a statement (Important!).
 • Pay particular attention to quantifiers, existential (\exists) and universal (\forall).

II. Know the basics of set theory!
 • Definitions of subset, intersection, union, set difference, complement.
 • Definitions of power set, Cartesian product, partition.
 • Be able to prove one set is a subset of another.

III. Know the basics of number theory.
 • The definition of divides and divisibility properties.
 • Be able to state and use the Quotient-Remainder Theorem.
 • Be able to state and use the Unique Factorization Theorem.
 • Know the classic proofs by contradiction
 - \sqrt{p} is irrational for p prime.
 - The sum of a rational number and an irrational number is irrational.

IV. Functions and relations.
 • Know the definitions: Relation, inverse of a relation, function.
 For functions: injective (one-to-one), surjective (onto) and bijective.
 • Be able to determine when a relation is a function, and if so, when it is injective, surjective, or bijective.
 • Be able to work with lists, tables, arrow diagrams and formulas to define relations.
 • Be able to find the inverse of a bijective function (e.g. $f(x) = 2x + 7$).
 • Give examples of functions satisfying various properties
 (7.3 #4-10 (2nd Ed.) 7.2 #5-14 (3rd Ed.)).
V. Relations on a set.

- Know how to use a table, a list of elements or an arrow diagram (also called a directed graph) to represent a relation on \(X \). (The arrow diagram is different from that for a relation from \(X \) to \(Y \)).

- Verify or prove that a relation \(R \) is reflexive (ditto for symmetric, transitive, antisymmetric, an equivalence relation, or a partial order).

- For a relation \(R \) on \(A \), be able to find the smallest relation containing \(R \) which is symmetric (ditto for reflexive, transitive, an equivalence relation, a partial order).

- Know the standard examples of equivalence relations (mod \(n \), 10.3.10 and exercises 10.3 #18, 19, 22, 23 3rd Ed., 10.3 #15, 16, 19, 20 2nd Ed.).

- Know the standard examples of partially ordered sets: \(\leq \) for the integers (or rationals) divides on the integers; \(\mathcal{P}(A) \) for a set \(A \); \(D_n \); (10.5 #16, 17, 18, 19, 20, 21 both Eds.).

- Draw Hasse diagrams for a poset. Find minimal and maximal elements of a poset.

VI. Know the basics of recursion and induction!

- State the well-ordering principle.

- State the principle of induction.

- Be able to use summation and product notation.

- Find the first several terms of a sequence given the initial terms and the recurrence formula.

- Know the formulas for the following sums:
 - The sum of a geometric sequence.
 - The sum of the first \(n \) integers.

VII. Know how to prove by standard induction! (I won’t test strong induction.)

- Use full sentences.

- State the predicate.

- Prove the base step.

- State the assumption for the inductive step.

- Do the inductive step.

VIII. Know how to count!

- Know the inclusion-exclusion formula and be able to apply it and use a Venn diagram to illustrate.

- Know the 4 ways to choose and the formulas for 3 of them (I won’t test ”order unimportant, repetition allowed”).

- Poker hands (I will describe the hand, and I may give you a strange deck or strange hand).