Suggestions for preparing for the Second Exam

I. Things you should know about the integers and rational numbers:

• Be able to use (and recognize that you are using) commutativity, associativity, the additive and multiplicative identity, the additive inverse (and, for the rationals, the multiplicative inverse), distributivity.

• Be able to use (and recognize that you are using) properties of <. For example $a < b$ implies $a + c < b + c$.

• Be able to define prime, composite, divides, floor, ceiling.

II. Know the statements of the following theorems and know how to apply them (as in webworks problems):

• Quotient-remainder theorem.

• The unique factorization theorem.

III. Be able to do these computations.

• Use the Euclidean algorithm to find the greatest common divisor of two numbers.

• Convert an integer (base 10) into another base, and convert from any base into base 10.

• Add in any given base. Construct a multiplication table in a given base. Use a multiplication table to find a product of two numbers in any given base.

• Use unique factorization to solve equations involving integers.

IV. Know these standard proofs and proof methods.

• Divisibility results like:
 - Transitivity of divides.
 - If a divides b and a divides c then a divides $b + c$.
 - When $a = bx + c$, $\gcd(a, b) = \gcd(b, c)$.

• Proofs by contradiction:
 - There exist an infinite number of primes (by contradiction).
 - \sqrt{p} is irrational for p a prime (by contradiction).
 - The sum of a rational number and an irrational number is irrational (by contradiction).

• Floor and ceiling proofs using the definitions (as in Epp, §3.5).

• Know how to use of a counterexample to disprove a universal statement.
V. Sequences and recursion.

- Be able to use summation and product notation.
- Be able to use recursive formulas.
- Find the first several terms of a sequence given the initial terms and the recurrence formula.
- Find the formula for the \(n \)th term as a function of \(n \) for some simple examples.

VI. Know the formulas for the following sums:

- The sum of a geometric sequence.
- The sum of the first \(n \) integers.

VII. Know how to prove by induction!

- Use full sentences.
- State the predicate.
- Prove the base step.
- State the assumption for the inductive step.
- Do the inductive step.