Suggestions for preparing for the Third Exam

I. Know the definitions!

- Subset. Intersection, union, set difference, complement.
- Power set, Cartesian product, partition.
- Relation, inverse of a relation.
- Function. Injective (one-to-one), surjective (onto) and bijective functions.
- Reflexive, symmetric, antisymmetric, asymmetric, transitive.
- Equivalence relation, equivalence class.
- Partial order (poset). For posets, comparable, chain, total order, maximal, minimal, least, greatest.

III. Know your relations.

- Verify or prove that a relation R is symmetric.
- Ditto for reflexive, transitive, equivalence relation, partial order.
- Know how to use tables, graphs and lists of elements to represent a relation.
- For a relation R on A, be able to find the smallest relation containing R which is symmetric (ditto for reflexive, transitive, an equivalence relation, a partial order).
- Know the standard examples of equivalence relations (mod n, 10.3.10 and exercises 10.3 #18, 19, 22, 23).
- Know the standard examples of partially ordered sets: \leq for the integers (or rationals) divides on the integers; $\mathcal{P}(A)$ for a set A; D_n; (10.5 #16, 17, 8, 19, 20).
- Draw Hasse diagrams for a poset. Find minimal and maximal elements of a poset.

IV. Functions as relations.

- Determine when a relation is a function, and if so, when it is injective, surjective, or bijective.
- Find the inverse relation of a function. Is it a function, injective, surjective?
- Give examples of functions satisfying various properties (7.2 #9).