Suggestions for preparing for the Second Exam

I. Know how to prove the classics:
 - There exist an infinite number of primes.
 - $\sqrt{2}$ is irrational.
 - The sum of a rational number and an irrational number is irrational.

II. Know the definitions!
 - Subset. Intersection, union, set difference, complement.
 - Power set, Cartesian product, partition.
 - Relation, inverse of a relation, function. Injective (one-to-one), surjective (onto) and bijective functions.
 - Reflexive, symmetric, antisymmetric, asymmetric, transitive.
 - Equivalence relation, equivalence class.
 - Partial order (poset). For posets, comparable, chain, total order, maximal, minimal, least, greatest.

III. Know your relations.
 - Verify or prove that a relation R is symmetric. Know how to enlarge R to create a symmetric relation.
 - Ditto for reflexive, transitive, equivalence relation, partial order.
 - Know how to use tables, graphs and lists of elements to represent a relation.
 - For a relation R on A, be able to find the smallest relation containing R which is symmetric (ditto for reflexive, transitive, an equivalence relation, a partial order).
 - Know the standard examples of equivalence relations ($\text{mod } n$, 10.3 #19, 20, 22, 24, 25, 35).
 - Know the standard examples of partially ordered sets: \leq for the real numbers; divides on the integers; $\mathcal{P}(A)$ for a set A; D_n; (10.5 #18, 19, 20, 32).
 - Draw Hasse diagrams for a poset. Find minimal and maximal elements of a poset.

IV. Functions as relations.
 - Determine when a relation is a function, and if so, when it is injective, surjective, or bijective.
 - Find the inverse relation of a function. Is it a function, injective, surjective?
 - Give examples of functions satisfying various properties (7.3 #4-10).
 - Use the pigeonhole principle.