Lecture Notes for Math 696
Coding Theory

Michael E. O'Sullivan
mosulliv@math.sdsu.edu
www-rohan.sdsu.edu/~mosulliv

March 4, 2002

1 A few more things about finite fields

Definition 1.1. The characteristic of a field F is 0 if no finite sum of $1 \in F$ is 0. Otherwise, the characteristic is the smallest integer p such that

$$1 + 1 + 1 + \cdots + 1 + 1 = 0$$

p terms

Definition 1.2. A subfield of a field K is a subset F which contains 0_K and 1_K and is a field under the operations of K, $+$ and \ast_K.

If F is a subfield of K, and $\alpha \in K$ we define $F[\alpha]$ to be the smallest subfield of K containing F and α.

Theorem 1.3. Let F be a subfield of K. Suppose that $\alpha \in K$ is the root of an irreducible monic polynomial $P(x) \in F[x]$. Then $F[x]/P(x)$ is isomorphic to $F[\alpha]$ under the map taking the conjugate class of x to α.

Proof: Suppose that $P(x) = x^n + b_{n-1}x^{n-1} + \cdots + b_1x + b_0$. The field $F[x]/P(x)$ has $1, x, x^2, \ldots, x^{n-1}$ as a basis (here I really mean the conjugate class of these elements). And the field $F[\alpha]$ has basis $1, \alpha, \ldots, \alpha^{n-1}$. The map ϕ taking x^i to α^i is clearly an isomorphism of vector spaces. The multiplicative structure on $F[\alpha]$ is completely determined by $P(\alpha) = 0$, that is, $\alpha^n = -b_{n-1}\alpha^{n-1} + b_{n-2}\alpha^{n-2} + \cdots + b_1\alpha + b_0$. Likewise, the multiplicative structure on $F[x]/P(x)$ is determined by a similar formula with the conjugate class of x replacing α. Consequently, $\phi(f(x) + g(x)) = \phi(f(x)) + \phi(g(x))$ (again, conjugate classes of $f(x), g(x)$).

This theorem is of great use in showing isomorphisms between two different representations of \mathbb{F}_q over \mathbb{F}_p. It is sufficient to find an element in each representation which satisfies a particular irreducible polynomial, $P(x) \in \mathbb{F}_p[x]$. Then map these two elements to each other. This comment holds when p itself is a power of a prime.

Useful formulas

We assume $q = p^n$ with p prime. Recall that we showed that \mathbb{F}_q with is the splitting field of $x^{q-1} - 1$ over \mathbb{F}_p. Here are some simple consequences:
For any $\alpha \in \mathbb{F}_q$,

$$\alpha^q = \alpha$$ \hspace{1cm} (1)

$$1 + \alpha + \alpha^2 + \alpha^3 + \cdots + \alpha^{q-2} = \begin{cases} 1 & \text{if } \alpha = 0 \\ -1 & \text{if } \alpha = 1 \\ 0 & \text{otherwise} \end{cases}$$ \hspace{1cm} (2)

The final formula follows from the fact that $x^{q-1} - 1 = (x+1)(x^{q-2}+x^{q-3}+\cdots+x+1)$. All elements of \mathbb{F}_q except 0 and 1 are therefore roots of $(x^{q-2} + x^{q-3} + \cdots + x + 1)$.

Conjugates

The Fourier transform

See Blahut's book [1, p. 169]

Vandermonde determinant

See Blahut's book [1, p. 169]

2 The Euclidean Algorithm

Let a, b be integers with $b > 0$. The following algorithm computes the greatest common divisor of a and b.

Input: Nonzero integers a, b.

Objective: To compute the (positive) greatest common divisor of a and b.

Algorithm: Define inductively r_i for $i \geq 0$ and q_i for $i \geq 1$:

While $r_i \neq 0$,

$$r_0 = a$$

$$r_1 = b$$

and r_{i+1}, q_i are the remainder and quotient when r_{i-1} is divided by r_i,

$$r_{i-1} = q_ir_i + r_{i+1}$$

$$0 \leq r_{i+1} < r_i$$

Theorem 2.1. The algorithm above terminates after a finite number of steps. If n is the smallest integer such that $r_{n+1} = 0$ then r_n is the greatest common divisor of a and b.

The number of steps n is at most $1 + \log b/(\log(1 + \sqrt{5}) - 1)$, where \log is base 2.

Proof: See Rosen [2]. \hfill \Box

We now consider a matrix version of the Euclidean algorithm that produces the linear combination of a and b that gives the gcd.
Input: Nonzero integers \(a, b \).
Objective: To compute the a linear combination of \(a \) and \(b \) which gives the greatest common divisor of \(a \) and \(b \).
Algorithm: Define inductively the remainders \(r_i \) and quotients \(q_i \) of the previous algorithm. We also define matrices \(R^{(i)} \), and \(2 \times 2 \) matrix \(T^{(i)} \) for \(i \geq 0 \):

\[
R^{(0)} = \begin{bmatrix} b \\ a \end{bmatrix}
\]
\[
T^{(0)} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\]

While \(r_i \neq 0 \), define \(q_i \) as usual

\[
Q^{(i)} = \begin{bmatrix} -q_i & 0 \\ 1 & 0 \end{bmatrix}
\]
\[
R^{(i)} = Q^{(i)} R^{(i-1)}
\]
\[
T^{(0)} = Q^{(i)} T^{(i-1)}
\]

Theorem 2.2. The matrix \(R^{(i)} \) keeps track of the usual remainders.

\[
R^{(i)} = \begin{bmatrix} r_{i+1} \\ r_i \end{bmatrix}
\]

The matrix \(T^{(k)} \) is the product of the \(Q^{(i)} \),

\[
T^{(k)} = \prod_{i=1}^{k} Q^{(i)}
\]

If the algorithm terminates after \(n \) steps then

\[
\begin{bmatrix} r_{n+1} \\ r_n \end{bmatrix} = T^{(n)} \begin{bmatrix} b \\ a \end{bmatrix}
\]

so the bottom row of \(T^{(n)} \) gives a linear combination of \(a \) and \(b \) that produces the gcd, \(r_n \).

Exercises 2.3.

1) Write a procedure implementing the matrix version of the Euclidean algorithm. Do it first for integers, then for polynomials over \(\mathbb{Q} \), then generalize to polynomials over finite fields.

2) Write a Maple procedure to find all irreducible polynomials of degree less than \(n \) over \(\mathbb{F}_2 \). Extend to other finite fields.

3) Factor \(x^{80} - 1 \) over \(\mathbb{F}_3 \) and explain the relationship between the factors and the elements of \(\mathbb{F}_{81} \).

Factor \(x^{80} - 1 \) over \(\mathbb{F}_9 \) and explain the relationship between the factors and the elements of \(\mathbb{F}_{81} \).
4) Make a table showing the possible orders and the number of elements of each order for \(F_{64}, F_{128}, \) and \(F_{256} \).

5) Let \(n = 6 \). Find all irreducible polynomials over \(F_2 \) of \(\text{deg} \, d \) where \(d | n \). Find the product of these polynomials.

For a given prime \(p \), let \(I(d) \) be the set of irreducible polynomials of degree \(d \) over \(F_p \). Shop that for \(n > 0 \),

\[
\prod_{d | n} \prod_{f \in I(d)} f = x^n - 1
\]

Write Maple code to verify this result.

6) Prove that for any polynomial \(f(x) \) of degree less than \(q - 1 \),

\[
\sum_{\alpha \in F_q} f(\alpha) = 0
\]

. Hint: reduce to the case of a monomial, \(x^i \). For \(i \) coprime to \(q - 1 \) use (2). For \(i \) not coprime to \(q - 1 \) you will need to think about the previous exercise and (2).

References
