• Be able to precisely define the following terms. Be careful about the logic in the definition!
 – Group, subgroup, cyclic group, generators of a group.
 – Order of an element, order of a group.
 – Homomorphism, isomorphisms, automorphism, inner automorphism.
 – Center of a group, centralizer of an element.
 – Normal subgroup.

• Here are the key theorems; be able to use them.
 – Theorem 7.8: the order of an element.
 – Theorem 7.10: properties determining a subgroup.
 – Theorems 7.18, 7.28: cyclic groups.
 – Theorem 7.23, 7.24: Properties of cosets (see my in class version).
 – Theorems 7.26, 7.27: (Lagrange) the order of subgroups of a finite group.
 – Theorems 7.34, 7.36: Properties of normal subgroups and quotients.
 – 7.41, 7.42, 7.43, 7.44: Homomorphism and isomorphism theorems.
 – Let \(\phi : G \rightarrow H \) be a homomorphism. You should be able to prove these.
 * If \(B \) is a subgroup of \(B \) then \(\phi^{-1}(B) \) is a subgroup of \(G \). In addition, if \(B \) is normal
 then \(\phi^{-1}(B) \) is normal.
 * If \(A \) is a subgroup of \(G \) then \(\phi(A) \) is a subgroup of \(H \). (Caution: If \(A \) is normal,
 \(\phi(A) \) may not be!)
 – You should be able to prove some of the simpler results about abelian groups and the
 order of an element (Sec. 7.2).

• Known how to work with the standard examples.
 – \((\mathbb{Z}_n, +), (U_n, \cdot)\).
 – \(\text{Gl}(2, \mathbb{Q}), \text{Sl}(2, \mathbb{Q})\) and the matrix groups over \(\mathbb{Z}_p\) for \(p\) prime.
 – The symmetric group \(S_n\), the dihedral group \(D_n\).
 – Subgroups of the above, such as the quaternions.
 – Review the classification of groups of order < 8 that we did in class.