Rings and Ideals

- Know the definitions:
 - ring, commutative, identity, field;
 - unit, zero divisor, characteristic;
 - homomorphism, isomorphism.

- Know how to:
 - Prove that a subset of a ring is a subring, or an ideal (or show that it isn’t).
 - Prove that a function is a homomorphism, or isomorphism (or show it isn’t).
 - Show that two rings can’t be isomorphic, because they have some different structure.
 - Identify the units and zero divisors in a ring.

- Know how to construct new rings from old and to compute in these rings.
 - The Cartesian product of rings \(R \) and \(S \) is a ring \(R \times S \).
 - The \(2 \times 2 \) matrices over a ring \(R \) form a ring, which we write \(M(R) \).
 - The polynomial ring, \(R[x] \) over a ring \(R \).

- Know how to work with quotient rings. (Here you may assume the ring is commutative with identity.)
 - If \(I \) is an ideal in \(R \), the elements of \(R/I \) are written \(a + I \) where \(a \in R \).
 - \(a + I = b + I \) when \(a - b \in I \).
 - Addition in \(R/I \) is defined by \((a + I) + (b + I) = (a + b) + I \).
 - Multiplication in \(R/I \) is defined by \((a + I)(b + I) = (ab) + I \).

- Know the special properties of \(\mathbb{Z} \) and \(F[x] \).
 - Division theorem.
 - Euclidean algorithm.
 - Prime iff irreducible.
 - Unique factorization.
 - Every nonzero element is either a zero divisor or a unit.
 - In \(F[x] \), \((x - a) \) is a factor of \(f(x) \) iff \(a \) is a root of \(f(x) \).
 - Any ideal in \(\mathbb{Z}, \mathbb{Z}_n, F[x] \) or \(F[x]/a(x) \) is principal. Be able to identify all ideals in these rings. Know how to find a generator.
 - The inverse of a unit in \(\mathbb{Z}_n \) or in \(F[x]/p(x) \) can be found using the Euclidean algorithm. When \(p \) is prime \(\mathbb{Z}_p \) is a field. When \(p(x) \) is irreducible \(F[x]/p(x) \) is a field.
Groups

- Definitions
 - group, subgroup, cyclic subgroup, abelian group;
 - order of a group, order of an element;
 - homomorphism, isomorphism.

- Standard examples
 - The additive group of a ring.
 - The group of units in a ring.
 - U_n the group of units in \mathbb{Z}_n.
 - $GL(2, F)$, the group of invertible 2×2 matrices over a field F.
 - $SL(2, F)$, the group 2×2 matrices over a field F that have determinant 1.
 - D_n, the group of symmetries of a regular polygon
 - S_n the group of permutations of n objects.

- Know how to prove that a subset of a group is a subgroup (or show it is not).
- Know how to show that a group is cyclic or show it is not.
- Know how to prove that a function from group G to group H is a homomorphism.

Have a look at the last two exams and the last couple of problem sets. Here are a few extra problems:

1. Let I and J be ideals in a ring R (commutative with identity).
 (a) What is $I + J$? What is $I \times J$? What is $I \cap J$?
 (b) Show that each of these is an ideal.
2. Express in the simplest form.
 $\langle x^2 - 1 \rangle + \langle x^2 + 2x + 1 \rangle$ in $\mathbb{Q}[x]$.
 $\langle x^2 - 1 \rangle \cap \langle x^2 + 2x + 1 \rangle$ in $\mathbb{Q}[x]$.
 $\langle x^2 - 1 \rangle + \langle x^2 + 2x + 1 \rangle$ in $\mathbb{Q}[x]/(x^3 - 1)$.
 $\langle x^2 - 1 \rangle \cap \langle x^2 + 2x + 1 \rangle$ in $\mathbb{Q}[x]/(x^3 - 1)$.
3. Identify an isomorphism between $GL(2, \mathbb{Z}_2)$ and S_3. How many isomorphisms are there? List all the subgroups of S_3
4. Show that the set of 2×2 matrices with determinant ± 1 is a subgroup of $GL(2, F)$.
5. Show that U_{11} is a cyclic group, generated by 2. Show that U_{15} is not cyclic.