Abstract Algebra
Math 521A
Michael E. O'Sullivan

Review for Third Exam: Chapters 5, 6

Commutative rings with identity: ideals, and congruence modulo an ideal

- Know how to
 - Define ideal, and prime ideal.
 - Prove that a subset of a ring is an ideal (or show that it isn’t).
 - Use the language of ideals with \(\mathbb{Z}, \mathbb{Z}_n, F[x], F[x]/m(x) \).

- Know the relationship between homomorphisms and ideals. (The kernel is an ideal; The first isomorphism theorem; See also 6.2 #13, 24).

- Know how to compute in the quotient of a ring by an ideal.
 - If \(I \) is an ideal in \(R \), the elements of \(R/I \) are written \(a + I \) where \(a \in R \).
 - \(a + I = b + I \) iff \(a - b \in I \).
 - Addition in \(R/I \) is defined by \((a + I) + (b + I) = (a + b) + I\).
 - Multiplication in \(R/I \) is defined by \((a + I)(b + I) = (ab) + I\).

- Know how to compute in a polynomial ring modulo a polynomial.
 - Find the inverse of an element \(a(x) \) of \(F[x]/m(x) \), when \(a(x) \) is coprime to \(p(x) \).
 - Identify units and zero divisors in \(F[x]/m(x) \).
 - Identify all ideals in \(F[x]/m(x) \).
 - Define irreducible and prime for polynomials.
 - Know that \(m(x) \) is prime iff \(m(x) \) is irreducible. In this case, \(F[x]/m(x) \) is a field.

- Be able to work in \(R \times S \) where \(R, S \) are commutative rings with identity.
 What are the ideals in this ring?

- Our standard examples of non-principal ideal rings.
 - Be able to compute and work with ideals in \(\mathbb{Z}[x] \) and \(F[x, y] \) for \(F \) a field. See 6.1#41 and example p. 140, 6.2#13, 6.3 #10.
 - Be able to find units, zero divisors, idempotent elements (\(x \) such that \(x = x^2 \)) in \(F[x, y] \) modulo a simple ideal like \(\langle x^2, xy, y^2 \rangle \).