Rings

• Know the definitions:
 – ring, commutative, identity, field;
 – unit, zero divisor, characteristic;
 – homomorphism, isomorphism.

• Know how to:
 – Prove that a subset of a ring is a subring, (or show that it isn’t).
 – Prove that a function is a homomorphism, or isomorphism (or show that it isn’t).
 – Show that two rings can’t be isomorphic, because they have some difference in structure.
 – Identify the units and zero divisors in a ring.

• Know how to construct new rings from old and to compute in these rings.
 – The Cartesian product of rings R and S is a ring $R \times S$.
 – The 2×2 matrices over a ring R form a ring, which we write $M(R)$.
 – We also have the polynomial ring, $R[x]$ over a ring R.

Polynomial rings over a field F

• Know the special properties of $F[x]$, and that is is similar to \mathbb{Z}.
 – Division theorem.
 – Euclidean algorithm.
 – Prime iff irreducible.
 – Unique factorization.

• Know the relationship between roots and factors.
 – In $F[x]$, the remainder when $f(x)$ is divided by $(x - a)$ is $f(a)$.
 So $x - a$ is a factor of $f(x)$ iff a is a root of $f(x)$.
 – Know how to test whether a polynomial in $\mathbb{Z}_p[x]$ of degree 2 or 3 is irreducible.