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Abstract

This study examines an age-structured model for erythropoiesis
using hematocrit to control EPO production. The model extends pre-
vious work to include the variable velocity of maturation along with
the effects of blood plasma on hematocrit. Experimental data on phle-
botomized subjects are used to fit the parameters in the model, and
various numerical simulations are performed. The numerical studies
are compared to previous models for humans following a blood do-
nation and rabbits with an induced autoimmune hemolytic anemia.
Numerical simulation of the age-structured model allows important
comparisons to blood reticulocyte experiments. The variable aging of
precursors to erythrocytes results in increased stability of the model,
indicating that this may be an important adaptive control. The relative
importance of the various controls in the model and their physiological
significance are discussed. Experimental hematocrit readings on two
of the authors suggest more complicated controls.
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1 Introduction

The advent of the serious disease AIDS has caused great concern about
the HIV virus infecting the blood supplies around the world. Each day
40,000 units (450 g) of blood are needed in the U.S. [1], yet no artificial sub-
stitute has been created. This means that blood donations remain a critical
life-giving source for the many operations and replacements needed after
massive hemorrhages from accidents or treatment of diseases like hemophilia.
A better understanding of the regulation of erythropoiesis through modeling
may provide valuable information on optimal collection schemes for autol-
ogous donors who want to guarantee a safe blood supply or help increase
supplies in the case of a major disaster.

There are several hematopoietic diseases that are believed to arise due
to abnormalities in the feedback controls regulating hematopoiesis [8, 17,
18, 19, 21, 22, 23, 24, 29, 36, 43, 45, 46, 47]. For example, oscillations in the
erythrocyte concentrations are observed in cases of autoimmune hemolytic
anemia [13, 31, 33]. An age-structured model of Bélair et al. [2] and Mahaffy
et al. [26] reasonably reproduced the experimental results of Orr et al. [31]
for rabbits that were given red blood cell iso-antibodies over a long period
of time, inducing an autoimmune hemolytic anemia. The mathematical
models provide an alternate tool for understanding the relative importance
of the different physiological controls and could be used to test therapeutic
treatments.

Erythropoiesis is the genesis of undifferentiated stem cells, primarily in
the bone marrow, to mature red blood cells, or erythrocytes, which circu-
late throughout the body to deliver oxygen (O2) to the tissues. (William’s
Hematology [4] provides an excellent reference for erythropoiesis.) The pri-
mary control of erythropoiesis is governed by the hormone erythropoietin
(EPO), which is released in the bloodstream based on a negative feedback
mechanism that detects the partial pressure of O2 in the blood. The con-
centration of EPO directly affects precursor cells (BFU-Es and CFU-Es) by
determining the number that mature into erythrocytes through either re-
cruitment or preventing apoptosis. In addition, EPO appears to accelerate
the maturing process when the hematocrit is particularly low.

The regulation of erythropoiesis has been studied extensively using age-
structured models [2, 5, 6, 7, 14, 15, 26, 27]. Bélair et al. [2] and Mahaffy et
al. [26] used several assumptions to reduce their age-structured models to
models with delays that allowed bifurcation analysis and relatively simple
numerical studies. This work extends the mathematical model developed in
Mahaffy et al. [26] to include the effects of blood plasma on the regulation of
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erythropoiesis following a phlebotomy. After a phlebotomy, the body loses
both erythrocytes and plasma. However, the O2 detection, which determines
the quantity of EPO released, probably depends on the concentration of
hemoglobin in the blood. The model of Mahaffy et al. [26] is modified
to examine the concentration of hemoglobin, then numerical studies find
parameter values that best fit the experimental studies of Maeda et al. [25]
and Wadsworth [42] for a collection of normal males following a phlebotomy.

The complete age-structured model includes a variable velocity of ag-
ing for the precursor cells, which has been observed experimentally ([4],
p.436). This effect significantly increases the difficulty of study, as the
model no longer reduces to a relatively simple system of delay differen-
tial equations. Bélair and Mahaffy [3] linearized the age-structured model
and demonstrated how varying the velocity of aging stabilizes a similar
model. Simulation of the partial differential equations allows the mathe-
matical model to be compared to experimental studies on reticulocytes in
the blood, which physiologists use to gauge new erythrocyte production. To
analyze a variable velocity of aging, the system of partial differential equa-
tions is simulated numerically. Our numerical studies use a modification of
the method of characteristics presented by Sulsky [39, 40] for age-structured
models and compare the results to the simplified model discussed above.
Our analysis of the mathematical model simulating the experiment of Orr
et al. [31] for an induced autoimmune hemolytic anemic in rabbits shows
that creating the initial data for the system of delay differential equations is
fairly complex compared to the initial conditions for the partial differential
equations. However, the partial differential equation code is significantly
more complex and requires smaller stepsizes for a given accuracy. These
numerical results reinforce the analytical results of Bélair and Mahaffy [3],
showing that inclusion of a variable velocity of aging for precursor cells
stabilizes the mathematical model and suggesting the importance of this
adaptation to physiological controls.

In the next section we briefly present crucial elements of the physiology
used to formulate the age-structured model, including the changes from the
previous age-structured models of Bélair et al. [2] and Mahaffy et al. [26].
Several assumptions are necessary to reduce the age-structured model to a
system of state-dependent delay differential equations. The third section
begins with a least squares best fit of the simplified delay differential equa-
tion model to the collective experimental data of normal males following
a phlebotomy. A numerical scheme based on the method of characteris-
tics is developed to study the complete age-structured model, including the
complication caused by a variable velocity of aging. By examining the pop-
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ulations in the lower age classes, the mathematical model can simulate the
experimental studies of blood reticulocytes, giving an indirect measure of
erythrocyte production. When the velocity of aging of the precursor cells
is allowed to vary, the numerical simulations show increased stability of
the model. We improve on earlier models of a rabbit with an induced au-
toimmune hemolytic anemia [2, 26] by using hematocrit for the control and
including additional modifications on rabbit physiology from the literature.
A linear analysis of the models proves the stabilizing effects of a variable
velocity of aging by precursor cells. Numerical studies give an error analysis
of the computer algorithms that are employed. The final section contains
actual data collected on two of the authors following a phlebotomy, and
these data show additional complications in the physiological controls for
the concentration of erythrocytes in the blood. We discuss the relevance of
our mathematical model to normal subjects following a phlebotomy and to
diseased states, such as a hemolytic anemia.

2 Mathematical Model using Hematocrit

This section summarizes key elements in the physiology of erythropoiesis
and develops a mathematical model describing this process, especially fol-
lowing a significant blood loss. The model and its associated assumptions
closely parallel the earlier works of Bélair et al. [2] and Mahaffy et al. [26].
After a phlebotomy, the body has lost about 450 g of whole blood, which
is about 7-8% of total blood volume for the average man. About 43% of
the blood by volume ([4], p.426) is erythrocytes with most of the remainder
being plasma. The plasma is replaced fairly rapidly; however, the erythro-
cytes require the much longer process of erythropoiesis to regenerate. Since
biological controls usually react to concentration changes, the model devel-
oped here differs from the earlier models by examining the hematocrit or
hemoglobin concentration instead of the direct population of erythrocytes.
This requires the addition of a function for the plasma component in whole
blood.

Since this model extends earlier models [2, 26], we significantly condense
the physiological information used to develop the age-structured model. Ery-
thropoiesis begins with either the pluripotential stem cell or a self-sustaining
pool of BFU-Es (burst forming units already committed to become erythro-
cytes). The precursor cells rapidly proliferate, primarily under the influence
of the hormone erythropoietin, EPO, for about 4 days until they become
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reticulocytes. The reticulocytes spend a couple more days increasing their
hemoglobin content, becoming more specialized, and shrinking in size. The
reticulocytes enter the blood stream, then after 1-3 days lose their nucleus
and become mature erythrocytes. Erythrocytes are specialized cells con-
taining hemoglobin that transport O2 from the lungs to the other tissues
in the body. Specific cells, primarily the peritubular interstitial cells of the
outer cortex in the kidneys, sense the partial pressure of O2 in the blood and
release EPO using negative feedback to complete this physiological control
loop.

Since the process of erythropoiesis depends on the relatively long mat-
uration and finite life-span of the erythrocytes, an age-structured model
provides a natural means of studying this population of cells. The age-
structured model begins with the population of precursor cells, denoted
p(t, µ), where t is the simulation time and µ is the age of the precursor cells
and could represent accumulation of hemoglobin. Experiments suggest that
EPO affects the early stages of erythropoiesis in two significant ways. Its
primary control is on the number of new cells recruited into the proliferat-
ing precursor population, probably by preventing apoptosis of CFU-Es. Let
S0(E) represent the number of new precursor cells, which are recruited and
survive into the proliferating precursor cell population. EPO also appears to
accelerate the maturing process, so let V (E) be the velocity of maturation.
This information combines to give the boundary condition:

V (E)p(t, 0) = S0(E).(2.1)

In general, the birth rate for the proliferating precursor cells depends
on the level of maturity, µ, and the concentration of EPO and is denoted
β(µ,E). If κ(µ − µ̄) is the distribution of maturity levels of the cells that
are released into the circulating blood, where µ̄ represents the mean age
of mature precursor cells (reticulocytes) and µF is the maximum age of a
precursor cell, then ∫ µF

0
κ(µ− µ̄)dµ = 1,

and the disappearance rate function is given by:

K(µ) =
κ(µ− µ̄)∫ µF

µ κ(s− µ̄)ds
.

Experiments of Finch et al. [10] show that following a significant blood loss,
there is an early release of stored reticulocytes, called “shift reticulocytes.”
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Thus, a better model might have K depend on either EPO or the concen-
tration of mature cells. Our V (E) partially accounts for this phenomenon.
With these conditions the age-structured model for the population of pre-
cursor cells with t > 0 and 0 < µ < µF satisfies:

∂p

∂t
+ V (E)

∂p

∂µ
= V (E)[β(µ,E)p−K(µ)p].(2.2)

The last stage of development for precursor cell is the non-proliferative
phase, where the cells now called reticulocytes become packed with hemo-
globin and lose many other cellular components. The reticulocytes squeeze
out of the bone marrow and enter the blood stream, where they soon be-
come mature erythrocytes, which transport O2 to the tissues of the body.
Let m(t, ν) be the population of erythrocytes in the blood at time t and age
ν. If the mature cells age at a rate W , which is almost constant for ery-
thropoiesis since the aging process appears to depend only on the number of
times that an erythrocyte passes through the capillaries, then the boundary
condition for cells entering the mature population is given by the following
expression:

Wm(t, 0) = V (E)

∫ µF

0
κ(µ− µ̄)p(t, µ)dµ.(2.3)

Note that the earliest age classes of the mature population actually represent
blood reticulocytes.

After many times of being squeezed through the capillaries, the oldest
erythrocytes lose pliability of their membranes, which cannot be repaired
without a nucleus. Since these cells could cause damage to the circulatory
system by blocking blood vessels, the oldest erythrocytes are marked for
active degradation by macrophages. Assuming either a constant supply
of markers or number of phagocytes that are satiated from engulfing the
oldest erythrocytes results in a constant flux of erythrocytes from the mature
population. This produces a moving boundary condition with the age of the
oldest erythrocyte, νF (t), varying in t. The boundary condition, following
Mahaffy et al. [26], is given by:

(W − ν̇F (t))m(t, νF (t)) = Q,(2.4)

where Q is the fixed erythrocyte removal rate. A number of erythrocytes
from all age classes are lost primarily from the breakage of capillaries due
to body movement or physical impact such as that caused by feet hitting
a hard surface while running. Let γ(ν) be the death rate of mature cells
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(depending only on age), then the age-structured model describing m(t, ν)
is given by:

∂m

∂t
+W

∂m

∂ν
= −Wγ(ν)m, t > 0, 0 < ν < νF (t),(2.5)

where the maximum age, νF (t), is determined by (2.4).
The ability of blood to carry O2 to the tissues is more complicated than

the simple counting of erythrocytes in the blood. A standard phlebotomy
for a normal male entails a 7-8% loss in total blood volume with 43% of
that volume on average being erythrocytes. (Females have a lower average
hematocrit with greater variability due to their body tissue composition and
menstrual cycle and lose a higher percentage of blood volume from their
smaller size. [28]) The initial response of the body is to shunt blood away
from less important tissues, which means vital organs such as the kidneys
where the majority of the O2 sensors reside will see no significant drop in
the partial pressure of O2. There are O2 sensors in the skin from which the
blood is shunted, but our model does not consider this. A better measure
of the O2 carrying ability of the blood and the test used by blood banks is
the concentration of hemoglobin, which is the actual O2 carrying molecule.
Another related quantity is the hematocrit, which is the percent of the blood
volume comprised of erythrocytes. Since the concentration of hemoglobin in
erythrocytes is almost constant, there is a strong correlation between these
measurements. Thus, the blood’s O2 carrying capacity is directly related to
the hematocrit, H(t), or hemoglobin, Hb(t), which are given by:

H(t) =
M(t)

M(t) + q(t)
and Hb(t) ' 100

3 H(t),(2.6)

where M(t) is the total volume of erythrocytes and q(t) is the plasma vol-
ume. With the assumption that all erythrocytes are similar in volume,
independent of age, the erythrocyte volume correlates directly to the total
population of mature cells, so

M(t) =

∫ νF (t)

0
m(t, ν)dν,(2.7)

and M has volume units equivalent to the average size of the erythrocyte.
The plasma volume is more rapidly generated. First, interstitial fluid

enters blood vessels to increase blood volume, then with hydration the blood
generates new serum proteins with significant increases in liver albumin
synthesis after 36 hr, creating new plasma. Moore [28] states that following a
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large blood loss, plasma begins entering the blood on average at 40-60 ml/hr
and stabilizes exponentially in 30-40 hr. This blood volume change occurs
primarily at the expense of the interstial volume, which takes several days to
recover. The data of Wadsworth [42] suggests that the new plasma increases
blood volume to a level higher than before the phlebotomy. From these data,
we chose the plasma function

q(t) = α1(1 + (α2t− 0.08)e−α3t),(2.8)

where 0.08 reflects the plasma lost at t = 0 (time of the phlebotomy) and
α1 normalizes the plasma volume with the erythrocyte volume M . The
parameters α2 and α3 are found in the next section using a least squares
best fit to the data of Maeda et al. [25] and Wadsworth [42].

The EPO level E is governed by a differential equation with a negative
feedback, depending on the hematocrit, H(t), or hemoglobin, Hb(t), which
reflects O2 carrying capacity of the blood. Since most data give the concen-
tration of hemoglobin, the equation used in our model for human subjects
is given by

dE

dt
= f(Hb)− kE,(2.9)

where k is the decay constant for the hormone and f(Hb) is a monotone
decreasing function of Hb, representing the negative feedback effect of the
O2 carrying capacity of the blood on the rate of hormone production. We
choose the Hill function f :

f(Hb) =
a

1 +K(Hb)r
,(2.10)

which often occurs in enzyme kinetic problems. For our simulations on
rabbits with an induced hemolytic anemia, we substitute H(t) for Hb(t)
in f . Bélair et al. [2] used experimental data in the literature to find the
parameter r, while the parameters a and K are found in the beginning of
the next section by a least-squares estimate.

Mahaffy et al. [26] analyzed the partial differential equations and their
boundary conditions given by Eqns. (2.1)–(2.5), which describe an age-
structured model for the erythrocytes. The method of characteristics is
applied to this system following the techniques of several authors [2, 11, 12,
26, 27, 37] to produce a system of threshold delay equations. The method
of characteristics is also the basis of the numerical scheme for solving the
partial differential equations in the next section.

In their general form, Eqns. (2.1)–(2.9) are too complicated to analyze
and fit to experimental data. Mahaffy et al. [26] made several simplifying
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assumptions that are reasonable for erythropoiesis, which allowed reduction
of the system of threshold delay equations to a system of delay differential
equations with a fixed delay in one equation and a state dependent delay in
an equation governing the age at which mature erythrocytes die. Our anal-
ysis of the age-structured model for erythropoiesis following a phlebotomy
begins with very similar assumptions to fit the experimental data and con-
nect to the previous research [2, 26], then it relaxes the condition on the
velocity of aging to better match known effects of EPO and determine how
much this affects the model through computer simulation.

Following Mahaffy et al. [26] for the simplified model, we assume that
the velocities of aging are constant and normalized to one, i.e.,

V (E) = 1 and W = 1.

This assumption significantly simplifies the expressions for p(t, µ) andm(t, ν).
The second assumption is that the precursor cells grow exponentially for a
given period of time µR, then stop dividing as seen in the physiological
system. This assumption on the birth rate of the precursor cells yields

β(µ,E) =

{
β, µ < µR,
0, µ ≥ µR,

(2.11)

for some constant growth rate β. If κ(µ − µ̄) is a Dirac δ-function, then
the changing of precursor cells into mature erythrocytes only occurs on
the boundary. Finally, the death rate of the mature cells, γ(ν), is taken
to be constant. From Mahaffy et al. [26], these assumptions reduce the
age-structured model to the following system of delay differential equations
with a fixed delay T and a state dependent delay occurring in the equation
governing the age at which mature cells die:

dM(t)

dt
= eβµRS0(E(t− T ))− γM(t)−Q,

dE(t)

dt
= f(Hb(t))− kE(t),(2.12)

dνF (t)

dt
= 1− Qe−βµReγνF (t)

S0(E(t− T − νF (t))
.

Note that Hb(t) in the second differential equation is found by Eqns. (2.6)
and (2.8).

As noted in Mahaffy et al. [26], the system of equations (2.12) is relatively
easy to analyze. The first two differential equations are uncoupled from the
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state-dependent delay in the ν̇F (t) equation. Thus, bifurcation analysis is
reduced to examining a system of two differential equations with a single
time delay, T . Furthermore, this system of delay differential equations is
readily simulated using an adaptation of the fourth order Runge-Kutta for
ordinary differential equations. This latter fact significantly simplifies our
problem of fitting parameters in the model to the experimental data.

3 Numerical Simulation of the Model

The model derived in the previous section was developed to examine the
controls of the erythropoietic system based on hematocrit, rather than the
population of erythrocytes found in previous models [2, 26]. Blood banks
require eight weeks between blood donations, but could a more optimal
strategy be developed for crisis periods requiring increased blood supplies
or could autologuous donors wanting the safety of their own blood during
optional surgery obtain a larger supply? Several experiments have collected
data on hemoglobin and EPO concentrations for human subjects following
a phlebotomy. To test the age-structured model developed in the previous
section, we need data over several weeks, so the data of Maeda et al. [25]
and Wadsworth [42] were combined. These data and some physiological in-
formation were sufficient to identify the many parameters in the simplified
model (2.12) using a least squares best fit. The model fits the collection of
data reasonably well, so could be used to examine different blood donation
schemes without human subjects. However, the significant variation ob-
served in individual data (as shown in the next section) suggests additional
factors be considered.

The studies of (2.12) are extended to test the effects of the state vary-
ing velocity V (E), which is the key complicating element preventing the
reduction of the threshold-type delay differential equations to the simplified
system of delay differential equations (2.12). Sulsky [39, 40] showed that
one of the most efficient numerical methods for age-structured models uses
the method of characteristics, which is how our age-structured model (2.1)–
(2.9) is simplified. When her models included mass-structure [40], which
is similar to our model with the state varying velocity, then a combination
of the method of characteristics with an adaptive grid scheme was the best
numerical routine that she tested.

The numerical studies examine how the variable velocity of aging of pre-
cursor cells affect the stability of our model of a phlebotomy, then they
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are extended to a case study of a rabbit with an induced hemolytic ane-
mia. In this second case, the variable velocity of aging is shown to have
a significant stabilizing effect. The physiological parameters for the rabbit
are improved over earlier studies [2, 26] and include the negative feedback
based on hematocrit. Linearization of the functional differential equations
about the unique equilibrium of the general model and analysis using the
characteristic equation provide details on how the variable velocity stabilizes
the model. Also, an error analysis is presented on the convergence of the
numerical simulations.

3.1 Parameter Estimation for Normal Human Subjects

The analysis of the mathematical model begins with identification of the
parameters for a normal human male following a phlebotomy. The simpli-
fied system of delay differential equations (2.12) with the plasma function
(2.8) and nonlinear feedback function (2.10) has twelve parameters and the
function S0(E) to be determined. Bélair et al. [2] and Mahaffy et al. [26]
used information about the human erythropoietic system to find many of
the parameters. From cell doubling times and the average time for precusor
cells to reach the stage of reticulocytes, β = 2.079 (da−1) and µR = 4.0
(da). The average loss of erythrocytes, not caused by aging, is assumed to
be γ = 0.001 (da−1). The average time of maturation gives T = 6 (da),
while the average mature cell lives 120 (da), which is the equilibrium value
for νF .

Since a normal human subject has 3.5 × 1011 erythrocytes/kg of body
weight [9], we assumed the equilibrium value of M = 3.5. From Maeda et
al. [25], we assumed the initial and equilibrium value of EPO to be 16.95
(mU/ml), while the combined experimental data gave an equilibrium for the
concentration of hemoglobin, Hb = 15.29 (g/100 ml). With (2.6) and (2.8),
the values of M and Hb give α1 = 4.13. With the parameter and equilibrium
values listed above and the assumption that S0(E) is linear, then a steady-
state analysis of (2.12) yields S0(E) = 4.466 × 10−7E and Q = 0.02745.
Bélair et al. [2] found that the Hill coefficient in (2.10) is r = 6.96.

The information above provides all parameters for the simplified model
(2.12), except for α = (α2, α3, a,K) and k in Eqns. (2.8) and (2.10). The pa-
rameter k relates to the half-life of EPO, which literature gives values ranging
from 4 to 24 hr, and is computed from the equilibrium conditions on the
second equation in (2.12). The four parameters, α, have no direct biologi-
cal interpretation, so they were fit to the Maeda et al. [25] and Wadsworth
[42] data on normal human subjects following a phlebotomy using a least
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squares functional. The Maeda et al. [25] data on EPO concentration have
error bars that are ten times the error bars for their hemoglobin concen-
tration. Thus, we chose to give the EPO data only 10% the weighting of
the hemoglobin data. Let Hbd(ti) and Ed(ti) be the average hemoglobin
and EPO concentrations, respectively, of the human subjects at day ti and
Hb(ti,α) and E(ti,α) be the solutions of (2.12) depending on the parame-
ters α. If Hb = 15.29 and E = 16.95 are used to normalize the data, then
the least squares functional to be minimized is given by

J(α) = wm

Nm∑
i=1

(
(Hbd(ti)−Hb(ti,α))2

Hb
+ 0.1

(Ed(ti)− E(ti,α))2

E

)
(3.1)

+ww

Nw∑
i=1

(
(Hbd(ti)−Hb(ti,α))2

Hb

)
,

where wm = 8 and ww = 7 are the numbers of subjects in the Maeda et
al. [25] and Wadsworth [42] data, respectively, and Nm and Nw are the
number of times data were collected. The functional (3.1) was minimized
by a computer search over a range of parameter values. For each set of
values α, a modified Runge-Kutta scheme was used to simulate (2.12), then
the value of (3.1) was computed and compared to other values of α. Fig. 3.1
shows the data with the solution Hb(t) to (2.12) with the optimal parameter
values, α2 = 0.05332, α3 = 0.09872, a = 184.6, and K = 9.238× 10−9. The
values of α2 and α3 are reasonable based on the information given by Moore
[28] and Wadsworth [42]. The equilibrium constraint on k yields k = 4.160
(da−1), which matches the shortest half-life in the literature. The data on
the concentration of EPO from Maeda et al. [25] are shown with the solution
E(t) to (2.12) in Fig. 3.2.

The Figs. 3.1 and 3.2 show a fairly reasonable fit of the mathematical
model to the experimental data. In Fig. 3.1, the data of Maeda et al. [25]
tend to lie below the curve and show a slower recovery, while the data of
Wadsworth [42] are significantly higher in the early part of the experiment
(lacking data on the important first few days) and show a more rapid recov-
ery to normal compared to the model. In Fig. 3.2, the EPO data of Maeda
et al. [25] closely match the model for the first couple weeks, then again
his subjects show a slower recovery. We note that these are two distinct
experiments with small sample sizes, which complicate the comparisons of
our model to the expected response of a normal human subject following a
phlebotomy. The mathematical model shows that 90% of the erythrocytes
lost from a blood donation are regenerated in slightly more than 30 days.
This agrees with the statement in Wadsworth [42] (and often quoted by
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Figure 3.1: Simulation of Eqn. (2.12) with optimal parameters showing the
concentration of hemoglobin following a blood donation with data of Maeda
et al. (◦) and Wadsworth (+).

blood banks) “that recovery of haemoglobin concentration was completed
within 3–4 weeks of the haemorrhage.”

3.2 Simulation of the Age-Structured Model

With a set of parameters that match the data for the simplified model
(2.12), we examined the effects of a variable velocity V (E) on the system of
partial differential equations, (2.1)–(2.9). Simulation of the complete age-
structured model also allows a comparison of the model to the experimental
measurements of blood reticulocytes. Our numerical technique parallels Sul-
sky [40], using the method of characteristics to follow the solution for fixed
time steps. When the characteristic velocities V (E) and W are one, then
the aging of the structured populations move in step with time, which is
why the age-structured model readily reduces to the system of delay dif-
ferential equations. With V (E) varying with E, the aging of the precursor
population through its accumulation of hemoglobin and advancement to
mature erythrocytes changes. Williams ([4], p. 436) claims that under ex-
treme stress, the maturing stage of erythropoiesis is accelerated. Studies
using radioiron [10, 16, 20, 32] show that anemic conditions can decrease
transit time (time of maturation) in the bone marrow for precursor cells by
over a day, and furthermore, the stress of blood loss results in early release
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Figure 3.2: Simulation of Eqn. (3.12) showing EPO levels with data of Maeda
et al. following a blood donation using the optimal parameters found by Eqn.
(3.1).

of “shift reticulocytes.” In the absence of EPO, the velocity of maturing,
V (E), should be zero, while at equilibrium it should be one. By assuming
that at most maturation is accelerated by two days, we choose a velocity of
maturation function of the form:

V (E) =
κ1E

κ2 + E
,(3.2)

where κ1 = 1.5 and κ2 = 8.475.
Below we outline the steps used for this numerical computation. The

numerical simulation begins with a discretization of the density of precursor
cells (number of cells/unit age, µ) and mature cells denoted

p(ti, µj) ≡ pi,j and m(ti, νk) ≡ mi,k,

where ti = t0+ih for some step size in time h and µj(i) and νk for appropriate
age-structure grids. With the variable velocity, the grid for precursor cells,
µj(i), varies with time, ti, which is also the reason that the density of the
precursor cell population is studied. The values pi,j and mi,k are referred to
as the age classes of cells at time ti. In our simulation the normal human
subject undergoes a phlebotomy at t0 = 0. The initial age classes µj(0) and
νk are separated by the stepsize h to give a uniform grid.
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The age-structured model is easily solved to find its steady-state cell
distribution. At equilibrium, V (E) = 1 and with the assumption (2.11),
then the precursor cell population has an exponential growth distribution
until µ = µR, then the cell population remains constant until maturity.
Divided into the discrete age classes, the initial density of precursor cells
(number of cells/unit age, µ) is given by:

p0,j =

{
P0e

βµj(0), µj(0) < µR,
P0e

βµR , µj(0) ≥ µR,
,

where P0 = S0(E) is the initial density of new precursor cells, µR = 4 (da),
and µj(0) = jh for 0 ≤ j ≤ µF /h = J0 and µF = 6 for humans.

The steady-state distribution of mature cells is given bym(ν) = P0e
βµRe−γν .

At t = 0, the phlebotomy is assumed to reduce all age classes of mature ery-
throcytes by 8%. Thus, the initial distribution of mature erythrocytes:

m0,k = 0.92m(νk),

with νk = kh for 0 ≤ k ≤ νF /h and νF = 120 for humans. After the
phlebotomy, the immediate effect on the hemoglobin concentration is no
change, since the whole blood donation causes both plasma and erythrocytes
to be lost. Hence, Hb(0) is the same as the equilibrium value.

The method of characteristics is used for subsequent calculations of both
the precursor and mature populations. The numerical routine begins by
computing V (E), using the value of E from the previous time step. This al-
lows computation of the density of new precursor cells (number of cells/unit
age, µ) by

pi,0 = S0(Ei−1)/V (Ei−1),

where i represents the index for time. The other precursor population den-
sities are found by following the solutions along the characteristics. Thus,
the new grid values, µj(i) = µj−1(i − 1) + hV (Ei−1) for 1 ≤ j ≤ Ji−1 + 1
and precursor densities at the new grid points are

pi,j =

{
pi−1,j−1e

βhV (Ei−1), µj(i) < µR,
pi−1,j−1, µj(i) ≥ µR,

,

with special consideration for the case where µj(i) crosses µR having expo-
nential growth up to µR and remaining constant afterwards.

The next step in the procedure is finding how many precursor cells enter
the mature population. The precursor population densities are integrated
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over this updated grid using the trapezoid rule to find how many cells are
in this new population, including grid values with µj(i) > µF . The program
finds the first µj(i) > µF . With this value of j = Ji, the final grid point is
adjusted so µJi = µF and pi,Ji is given by the weighted average between the
values of pi,Ji−1 and pi,Ji before the grid is adjusted. With this updated grid,
the total new precursor population is computed using the trapezoid rule and
is subtracted from the total computed before the grid was adjusted. The
difference is the number of precursor cells entering the mature population,
mi,0, which satisfies the boundary condition (2.3).

The procedure for finding the populations in the mature age classes,
mi,k, is similar to that for the precursor age classes. However, since W = 1,
the grid νk remains uniformly spaced with νk = hk for 0 ≤ k ≤ νF (ti)/h,
except for the final grid point, which depends on the boundary condition
(2.4). The mature age classes at ti satisfy

mi,k = mi−1,k−1e
−γh,

with each age class decaying exponentially at each time step.
The modeling assumption that a constant number of erythrocytes are de-

stroyed for each time step affects the age of the oldest erythrocytes, νF (t),
which determines the number of mature age classes. The numerical simula-
tion takes the total number of mature erythrocytes from the previous time
step and multiplies it by e−γh to account for the general loss of erythrocytes
from the destruction rate γ, then adds the new cells, mi,0, entering from
the precursor cell population. Next hQ of the oldest cells are removed with
the program finding how many mature age classes remain, including any
fractional remainder. Linear interpolation is used to find the new νF (ti).

With the total mature population of erythrocytes, M(ti), known at ti,
Eqns. (2.6) and (2.8) are used to find the concentration of hemoglobin,
Hb(ti). Then Eqn. (2.9) is integrated using an improved Euler’s method to
find the new concentration of EPO, E(ti). This completes a time step in the
simulation and allows computation of all the key variables for any time by
iterating the loop. Details on the accuracy and order of convergence of this
algorithm and comparisons of integrating the partial differential equation
to numerical integration of the equivalent delay differential equation when
V (E) = 1 are provided at the end of this section.

Fig. 3.3 shows a simulation following a blood donation of the complete
age-structured model with the variable velocity given in Eqn. (3.2), using
a stepsize of h = 0.02, and compares it to the model given by Eqn. (2.12),
where V (E) = 1. The figure shows that the concentrations of hemoglobin
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and EPO vary only a few percent over the course of the simulation. If Hb(t)
and E(t) are solutions with the variable velocity and Hb1(t) and E1(t) are
solutions to (2.12), then the numerical data find that

max
0≤t≤50

|Hb(t)−Hb1(t)|
Hb(t)

= 0.0057 and max
0≤t≤50

|E(t)− E1(t)|
E(t)

= 0.018.

The velocity of aging reaches a maximum of V (E) = 1.132 at t = 8.3. Thus,
a relatively large variation in the aging velocity produces relatively minor
effects on the concentrations of hemoglobin and EPO. However, the changes
do moderate the effect of the blood donation by increasing the minimum
concentration of hemoglobin and having the recovery occur slightly earlier
as seen by the left shift for the minimum of the graph in Fig. 3.3.

Figure 3.3: The solid curves show the age-structured model with variable
velocity, while the dotted curves used V (E) = 1, which are equivalent to the
graphs in Fig. 3.1 and 3.2. The data are shown for comparison.

3.3 Simulation and Bifurcation Analysis for a Rabbit with
an Induced Hemolytic Anemia

Our next study examines the effects of including a variable velocity of
aging to an age-structured model for an induced autoimmune hemolytic
anemia in rabbits. Mahaffy et al. [26] fit their age-structured model to the
experimental data of Orr et al. [31], where rabbits were given iso-antibodies
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to their erythrocytes. In this paper we refine the values of the parameters
to include more physiological data on rabbits and include the feedback con-
trol of EPO production (2.9) by the hematocrit given by Eqn. (2.6). Since
the experimental data shows distinct oscillations, one might expect that the
variable velocity of aging of the precursor cells would have a significant ef-
fect on the behavior of the model. Bélair and Mahaffy [3] showed that a
variable velocity on a related model could have significant stabilizing effects.
Thus, the experimental data of Orr et al. [31] for rabbits with an induced
hemolytic anemia is fit using the algorithm for intgrating the partial differen-
tial equation with a variable velocity. The solution for the partial differential
equation allows our model to be compared to data from Orr et al. [31] on
the blood reticulocytes. With the same parameters, a numerical simulation
of the age-structured model with V = 1 shows significantly higher ampli-
tude oscillations, indicating a greater loss of stability as predicted. A linear
analysis similar to Bélair and Mahaffy [3] of our model for rabbits with an
induced autoimmune hemolytic anemia shows the stabilizing effect of the
variable velocity of maturation.

A visual fit to the experimental data of Orr et al. [31] is performed
using the numerical algorithm for the model that includes a variable veloc-
ity of maturation for the precursor cells. Many of the parameters in this
model were set using physiological information from the literature before
adjusting the few remaining parameters. A chapter by J. E. Smith [38]
in William’s Hematology provided useful information for determining the
hematocrit function (2.6) for rabbits. The average hematocrit for rabbits
is 41.2% with an erythrocyte count of 6.0 × 106/µl, so the normal M was
taken to be 6.0. Thus, for rabbits the hematocrit function becomes

H(t) =
M(t)

M(t) + 8.56
.

J. Vacha [41] gave the formula ν = 68.9m0.132, where m is the mass of the
animal, for the lifespan of red blood cells for various animals, so assuming
the experimental rabbits were between 0.5 and 1 kg, we use ν = 65 for
the average lifespan of erythrocytes in rabbits. Orr et al. [31] stated that
the mean red blood cell count for their anemic rabbits was about 75% of
normal, which using human data would correspond to an equilibrium level of
EPO of E = 70 mU/ml. (We found no data on rabbit EPO concentration,
and since this variable could readily be scaled, our choice of E was not
important.) From the work of Bélair et al. [2] and Mahaffy et al. [26], we
fixed the parameters k = 6.65, K = 112, 000, and r = 6.96 in (2.9), where
hematocrit, H, is used instead of hemoglobin.
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In our simulation of the experimental data of Orr et al. [31], we adjusted
the parameter γ, the equilibrium H, and the time of maturation T , and
had the computer program adjust the parameter a, the function S0(E), and
the destruction rate Q to match the equilibrium values. The administering
of antibodies to the erythrocytes in the experimental rabbits is assumed
to effect primarily the random destruction rate γ in the model. Since the
amount that this parameter increases was not measured directly, we used
this as one of the parameters to be adjusted and found that γ = 0.098,
about a 10-fold increase over normal, best fit the data. Since Orr et al. [31]
claimed their experimental rabbits had about 75% of normal hematocrit, we
varied H in a narrow range and found that H = 0.329 (or M = 4.20) best
fit the experimental data. From an equilibrium analysis of (2.12), the Ė(t)
equation gives a = 23, 281. Under the assumption that S0(E) is linear with
S0(E) = S′0(E)E, then simultaneously solving the steady-state equations
for Ṁ(t) and ν̇F (t) give

eβµRS′0(E) = 0.00589 and Q = 0.000706.

We know that human erythrocytes take about 6 days to mature and that
rat erythrocytes appear to mature more quickly, so we varied T , the time of
maturation, in a narrow range to find the best fit to the data. We obtained
T = 4.33 days from our simulations.

Fig. 3.4 shows simulations of (2.12) with h = 0.05 and the age-structured
model with h = 0.02 and a varying velocity, V (E), using (3.2) κ1 = 1.5
and κ2 = 5. This graph shows that a variable velocity of maturation has a
significant stabilizing influence on the model. The bifurcation analysis below
provides more details on why the variable velocity stabilizes the system.
From a physiological perspective, our study suggests that by varying the rate
of maturing for hematopoietic cell lines, an organism increases the stability
of homeostasis for that type of cell. This added complexity in the feedback
control is absent in the analysis of earlier models [2, 26].

xxx(Have Roland take a stab at this section.) The numerical simulation
pointed to an error in the work of Mahaffy et al. [26] concerning the history
used in the initial data for the delay differential equation, which is equivalent
to the age-structured model with V (E) ≡ 1. The previous work used an
initial history with E(t) = 10 for −(T1 + νF ) ≤ t ≤ 0. However, the
history in the initial data for the delay differential equation must reflect
the information contained in the age structure of the precursor and mature
populations at t = 0. Since (2.12) only uses past information on E(t), the
initial data is found by choosing the appropriate levels of EPO needed to
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generate the information stored in the age-structured populations. The age-
structured populations at t = 0 are assumed to come from normal rabbits,
which have a destruction rate γ = 0.001, thus their mature cells have a
distribution m(ν) = m0e

−0.001ν with m0 = 0.07176 and 0 ≤ ν ≤ νF . An
appropriate equilibrium distribution can be made for the precursor cells.
However, at t = 0, the experiment assumes that γ jumps to 0.065 and M
shifts from 3.5 to 2.63. For E(t) to reflect the distribution for m(ν) at
t = 0 with γ = 0.065, we take E(t) = 704e−0.064t, −νF ≤ t ≤ 0, which
accounts for the difference in the values of γ before and after t = 0. A
related extension accounts for the precursor population. Thus, the easier
to simulate delay differential equation (2.12) may have a difficult history to
analyze, while the computer simulation of the age-structured model has a
more complicated algorithm with poorer convergence, but easier modeling
interpretation.

Our numerical results suggest that a local analysis of mathematical
model for a rabbit with an induced hemolytic anemia should yield a pair
of eigenvalues with positive real part, which shift to all eigenvalues having
negative real part when a variable velocity of aging is added. Bélair and
Mahaffy [3] provide details for the stability analysis of the age-structured
model for erythropoiesis presented in Section 2 (though not including the
use of hematocrit for the negative feedback). The age-structured model is
integrated along its characteristics, which are determined by the velocity of
aging function, V (E). With assumptions that κ(µ− µ̄) is a δ-function with
µ̄ = µF and that β(µ,E) satisfies (2.11), the resulting system of integro-
differential equations with a state-dependent delay has the form:

M(t) = eβµ1
∫ νF (t)

0
V (E(t− ν))

S0(E(t− ν − τ))

V (E(t− ν − τ))
e−γνdν,

Ė(t) = f(H(t))− kE(t),(3.3)

ν̇F (t) = 1− Q

m(t, νF (t))
,

where hematocrit is given by (2.6), τ satisfies the integral equation

µF =

∫ t

t−τ
V (E(r))dr,

and

m(t, νF (t)) =
V (E(t− νF (t)))S0(E(t− νF (t)− µF ))

V (E(t− νF (t)− µF ))
eβµ1e−γνF (t).
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This system is readily linearized about its unique equilibrium (M,E, νF ),
and the resulting characteristic equation is given by

(λ+ γ)(λ+ k)− eβµRf ′(M)(V1 + V2e
−λT ) = 0,(3.4)

where

V1 ≡
V ′(E)S0(E)

V (E)
and V2 ≡

V (E)S′0(E)− V ′(E)S0(E)

V (E)
.

A bifurcation diagram for the linearization of (3.3) is presented in Fig. 3.5.
Let A1 = −eβµRf ′(M)V1 and A2 = −eβµRf ′(M)S′0(E), then the character-
istic equation (3.4) can be written

(λ+ γ)(λ+ k) +A1 + (A2 −A1)e
−λT ) = 0,(3.5)

where A1 ≥ 0 and A2 > 0. A Hopf bifurcation occurs when (3.5) is solved
for λ = iω, ω > 0. Bélair and Mahaffy [3] show the existence of a Hopf
bifurcation for 0 < γ < (A2 − 2A1)/k, where

ω =

√
A1 −

k2 + γ2

2
+

√
(k2 + γ2 − 2A1)2 − 4((kγ +A1)2 − (A2 −A1)2)

2

and the critical delay or time of maturation is

T =
1

ω
arctan

[
ω(k + γ)

ω2 − (kγ +A1)

]
.(3.6)

where the appropriate branch of the inverse tangent is chosen.

3.4 Error Analysis of the Numerical Algorithms

The complicated nature of the algorithm for the partial differential equa-
tion model makes analytical studies of the error very difficult, so we per-
formed two numerical studies to determine the accuracy and convergence of
this algorithm. The first numerical study compares the algorithm for the
partial differential equation model with V (E) = 1 to a Runge-Kutta method
for the delay differential equation (2.12). Since these models are equivalent
when V (E) = 1, then their numerical solutions should converge to the same
unique solution. The second numerical study examines the global error of
convergence of the algorithm for the partial diffferential equation model by
varying the step size.
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To numerically solve the delay differential equation model given by (2.12),
a fourth order Runga Kutta method for ordinary differential equations is
modified to include the delay history. For simplicity, a linear interpolation
of the numerical data recorded from the simulation is used to approximate
the discrete delay history for the model. The results of Rosen [34] show that
the theoretical global order of convergence for delay differential equations
is the sum of the order of convergence of the integration scheme and the
order of convergence used to interpolate the history. Thus, our numerical
scheme for solving (2.12) should be restricted by the linear interpolation of
the history (O(h)). The numerical simulations of the model (2.12) show
that the the maximum difference between subsequent solutions Hb(t) and
E(t) found by halving the stepsize confirms the order of convergence of with
global truncation error as O(h). Furthermore, one finds that for step sizes
h ≤ 0.02 all solutions have less than 1% difference between the numeri-
cal simulations. Thus, sufficient accuracy of the numerical simulations is
obtained with any step size below h = 0.02.

To verify the correctness of the algorithm described above for the partial
differential equation model, the solutions from the algorithm with V (E) = 1
are compared to the solutions to the delay differential equation, which are of
known accuracy. This comparison (using h = .01) we find that for h ≤ .01,
the results are within 0.00073 for Hb(t) and .028 for E(t). This indicates
that the algorithm is consistent with the known results for V (E) = 1.

With V (E) as defined in equation (3.2), we investigate the maximum
difference for the solutions Hb(t) and E(t), 0 ≤ t ≤ 60 while halving the
stepsize. The results indicate Cauchy convergence corresponding to O(h),
which is to be expected since our code uses an Euler approach to integration.
The data from this investigation is included in Table 2. When the stepsize is
smaller than h = .02, all simulations agree to two significant digits for Hb(t)
and two significant digits for E(t), indicating close proximity to the actual
solution. For stepsizes below h = .01 computation time becomes significant.
For this reason, h = .02 is used for all simulations.

i hi Hbd Ed Hd,i−1/Hd,i Ed,1/Ed,2
1 0.2
2 0.1 0.0285 0.1491
3 0.05 0.0097 0.0538 2.938 2.771
4 0.025 0.0058 0.0338 1.672 1.592
5 0.0125 0.0026 0.0183 2.231 1.847
6 0.00625 0.0013 0.0094 2.000 1.947
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We conclude that the algorithm is consistent with the simplified V (E) =
1 model and that it has global error of convergence O(h). Furthermore, we
find that for h ≤ .02 the the solutions for different values of h have the
required accuracy for our study.

Due to the complicated nature of this algorithm, traditional error analy-
sis would be difficult. We investigated the maximum difference of Hb(t) and
E(t), 0 ≤ t ≤ 60, while halving the stepsize. The results indicate Cauchy
convergence corresponding to O(h), which is to be expected since our code
uses an Euler approach to integration. When the stepsize is h = 0.02,
all simulations agree to four significant digits for Hb(t) and three signifi-
cant digits for E(t), indicating close proximity to the actual solution. The
smaller number of significant figures for E(t) appears to result from E(t)
being sensitive to small errors in Hb through the feedback function in (2.9)
(|df(Hb)/d(Hb)| ' 20). For stepsizes below h = 0.01, computation time
became significant, and the increases in roundoff error began to match the
decreases in truncation error. For these reasons, h = 0.02 is used for all
simulations.

4 Blood Donation Experiment and Discussion

The mathematical model for a phlebotomy seems to follow the data
of Maeda et al. [25] and Wadsworth [42] fairly well. This suggests that the
model could test different blood collection schemes or enhancements through
EPO injections for obtaining more blood. However, the data that was used
only provided a small sample with relatively large error bars, lowering the
confidence in the mathematical model. This led the authors to wonder how
well the model tracked an individual.

The authors were unable to obtain data on the individuals listed in the
Maeda et al. [25] and Wadsworth [42] data, so with the help of the San Diego
Blood Bank, two of the authors donated blood, then had their hemoglobin
followed for eight weeks. The data in Fig. 4.1 show the results of this
informal study, overlaying the simulation of our model. These data clearly
do not show the general trend of the average data from the previous section,
which was used to find the best parameters for our model. There remains
the general trend at the beginning of the data for the hemoglobin to drop
immediately following a blood donation, but this effect is very short lived.
In fact, both authors saw a return to almost normal starting hemoglobin
concentrations in 4 or 5 days. Soon the data follows an almost random
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pattern with a mean of 14.66 and 15.10 (g/100 ml) for Mahaffy and Polk,
respectively. (The standard deviation was 0.86 and 0.91 for Mahaffy and
Polk, respectively.) The subjects of this study were not in a controlled
experiment, so their diet and exercise regimes varied significantly (though
measurements were taken at the same time each day).

The data in Fig. 4.1 show that our individual hemoglobin measurements
are significantly more complicated than the data generated by the mathe-
matical model (2.12). Since erythrocytes have the important role of carrying
O2 to all tissues in the body, one expects multiple controls with different
time scales affecting the concentration of hemoglobin in the blood. While
brain damage begins only minutes after the cessation of a blood supply, the
process of erythropoiesis takes six days. Thus, other physiological controls
on the blood supply are needed to adapt to sudden changes in demand for
O2 by the body tissues. As an example, one control discussed by Finch et
al. [10] uses “shift reticulocytes” to rapidly introduce new erythrocytes to
the body following a hemorrhage.

Environmental effects are clearly significant and dominate the process of
erythropoiesis over shorter periods of time. For example, a phlebotomy often
causes changes in the rate of hydration or urination in the subject, which
directly effects blood plasma levels. In Fig. 4.1, the authors observed that
the hemoglobin level dropped significantly for both participants following a
day that included heavy exercise. Though initially this is counterintuitive,
it becomes clear when thinking of blood as a viscous fluid. If the body needs
more O2 in the tissues, then it can accomplish this by decreasing the viscosity
of the blood and having the blood flow more rapidly to the tissues, which
it can do readily by shifting interstial fluid to the blood plasma. However,
over a longer term the body would want to increase the concentration of
erythrocytes, so that the heart would not have to pump as hard.

Several studies [30, 35, 44, 48] have been conducted comparing the blood
of indigenous people living at high elevations. Amerindians (Quechua Indi-
ans) living in Peru and Himalayan natives (Sherpas) of Nepal both live at
elevations exceeding 4000 m with the former being significantly more recent
inhabitants to this elevation. Researchers have wondered how these people
adapt to such extremes. Apparently, the Sherpas have similar hematocrit
to average human populations by evolving an improved hemoglobin for car-
rying O2. In contrast, the Quechua Indians have not adapted as well and
have problems with polycythemia, which is a situation where the hematocrit
is too high and patients have increased incidents of strokes, heart disease,
and pulmonary edema. Both populations have more blood problems due to
modest hypoxic hyperventilation and respiratory alkalosis. The studies of
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these populations show additional complications in determining the controls
of erythropoiesis.

The experiments tracked in Fig. 3.1 and 4.1 show the hemoglobin lower
after 56 days, suggesting less than complete recovery after eight weeks, un-
like the model. However, Mahaffy is a regular blood donor at the San
Diego Blood Bank, and over a 40 month period (7/95–11/98) his hemoglo-
bin averaged 15.2 (g/100 ml) with a standard deviation of 0.85, including
a high of 17.6 (g/100 ml) and low of 13.7 (g/100 ml). (Note: The high of
17.6 (g/100 ml) followed six weeks of living at 2300m elevation.) Thus, there
is tremendous variability of the hemoglobin levels even at “equilibrium.”

The complicated mix of physiological controls, including external input
of diet and exercise, makes a complete mathematical model very difficult
at this time. For example, iron is a dietary element known to significantly
effect the process of erythropoiesis (and is the primary reason Blood Banks
require eight weeks between donations), yet iron’s role is not included in
the model. By including the effects of plasma volume and concentration de-
pendent sensing of O2, this study has improved the mathematical model of
Mahaffy al. [26] for phlebotomized normal human subjects to better match
data. The mathematical model works well describing the cummulative data
of Maeda et al. [25] and Wadsworth [42] and agrees with an intuitive un-
derstanding for the control of erythropoiesis following a phlebotomy. Our
numerical work demonstrates that the variable velocity of aging for the pre-
cursor cells has a minimal effect on the qualitative behavior of the model
for normal human subjects, thus the simplified delay differential equation
model is adequate for a basic understanding of erythropoietic controls fol-
lowing a phlebotomy. Still, the environmental factors dominate the changes
in concentrations of hemoglobin and EPO, making our models inappropriate
for determining better blood donation schemes.

Our comparative studies of the induced autoimmune hemolytic anemia
for rabbits were particularly interesting. Mahaffy al. [26] simulated the
experiments of Orr et al. [31] on rabbits with hemolytic anemia using a
system of delay differential equations similar to (2.12). When we used the
complete age-structured model and included the variable velocity of aging
for the precursor cells, there was a significant increase in the stability of the
mathematical model, as shown in Fig. 3.4. Further mathematical studies
are needed to explain how this addition to the model effects stability. Bi-
ologically, this increased stability is clearly a favorable adaptation from an
evolutionary point of view for maintaining homeostasis of erythrocytes.

Our numerical studies show that a simplified delay differential equation
is much easier to examine, particularly when fitting parameters to the model.
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However, the age-structured model is easier to interpret biologically. Both
models for erythropoiesis provide clues for disease states centered around
stem cells, and though they are inappropriate for improving blood donation
schemes, they assist in the understanding of one major part of the regulatory
process of carrying O2 to the tissues.

Special thanks to the San Diego Blood Bank for their assistance with the
hematocrit study of the authors. Their nursing staff was very cooperative,
amiable, and informative for the duration of our experiment. Also, the
authors recognize the assistance of Danielle Brown and Edward Trovato who
were supported under the REU program of NSF by grant DMS-9208290.
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Figure 3.4: The dashed curve shows the age-structured model with variable
velocity, while the solid curve used V (E) = 1. The data from Orr et al.
is shown (dot and dash curve) and has similar oscillatory behavior to the
V (E) = 1 curve.
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Figure 4.1: The solid curve shows the level of hemoglobin following a blood
donation predicted by the model in Section 3. The data with ◦ are from
the author Mahaffy, while the data with + are from the author Polk after a
blood donation at t = 0.
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