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Outline
• Discuss the Physiology
• Develop the Age-Structured Model
• Reduce the Model to Delay Equations
• Bifurcation Analysis
• Compare to Examples

• Rabbit with Induced Auto-Immune Hemolytic
Anemia

• Human Subject following a Phlebotomy
• Summary
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Hematopoiesis
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Erythropoiesis
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Features of Erythropoiesis
• BFU-E and CFU-E differentiate and proliferate in

response to EPO
• Maturation requires about 6 days

• EPO accelerates maturation
• Lack of EPO causes apoptosis

• Cell divisions every 8 hours for about 4 days
• Reticulocytes do not divide - increase hemoglobin
• Erythrocytes lose nucleus - live 120 days
• Macrophages degrade RBCs
• EPO released near kidneys with half-life of 6

hours
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Age-Structured Model

– p.7/37



Detailed Model
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Active Degradation of RBCs
• RBCs age - Cell membrane breaks down
• Membrane marked with antibodies
• Macrophages destroy least pliable cells
• Model assumes constant supply macrophages
• Saturated consumption of Erythrocytes

- Satiated predator
• Constant flux of RBCs being destroyed
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Constant Flux Boundary Condition
• Let Q be rate of removal of erythrocytes
• Erythrocytes lost are Q∆t

• Mean Value Theorem - average number RBCs

m(ξ, νF (ξ)) for ξ ∈ (t, t+∆t)

• Balance law

Q∆t = W∆t m(ξ, νF (ξ))

−[νF (t+∆t)− νF (t)]m(ξ, νF (ξ))

• As ∆t → 0,

Q = [W − ÚνF (t)]m(t, νF (t))
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Constant Flux - Diagram
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Simplifying Assumptions
Several simplifying assumptions allow reduction of
the age-structured model to delay differential
equations

• Assume that V (E) = W = 1.
• Assume the birth rate β satisfies:

β(µ,E) =

{

β, µ < µ1,

0, µ ≥ µ1,

• Assume that γ is constant.
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Reduced PDEs
The model satisfies the partial differential equations:

∂p

∂t
+

∂p

∂µ
= β(µ)p

∂m

∂t
+

∂m

∂ν
= −γm

with the boundary conditions:

p(t, 0) = S0(E) and p(t, µF ) = m(t, 0)

(1− ÚνF (t))m(t, νF (t)) = Q
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Negative Control
The negative feedback by EPO satisfies the equation:

ÚE =
a

1 +KM r
− kE

where the total mature erythrocyte population is

M(t) =

∫ νF (t)

0

m(t, ν)dν
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Method of Characteristics
Applied to a Simplified Model

The method of characteristics can be used to simplify
the partial differential equations given above. Let
P (s) = p(t(s), µ(s)),

dP

ds
=

∂p

∂t

dt

ds
+

∂p

∂µ

dµ

ds
= β(µ(s), E(t(s)))P (s),

which has the solution,

P (s) = p(t, µ) = P (0) exp

[∫ s

0

β(µ(r), E(t(r)))dr

]

,

provided

dt

ds
= 1 and

dµ

ds
= V (E(t(s))) = 1
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Characteristics Diagram
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Evaluating p(t, µ) and m(t, ν)

To find p at µF ,

p(t, µF ) = p(t0, 0)exp

[∫ µF

0

β(r)dr

]

= p(t− µF , 0)e
βµ1 = eβµ1S0(E(t− µF ))

Similar use of the characteristics gives

m(t, ν) = m(t− ν, 0)e−γν,
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Finding M(t)

M(t) =

∫ νF (t)

0

m(t− ν, 0)e−γνdν

=

∫ νF (t)

0

p(t− µF − ν, 0)e−γνdν

=

∫ νF (t)

0

eβµ1S0(E(t− µF − ν))e−γνdν,

= e−γ(t−µF )eβµ1

∫ t−µF

t−µF−νF (t)

S0(E(w))eγwdw,
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Leibnitz’s Rule
We apply Leibnitz’s rule for differentiating an
integral:

ÚM(t) = −γe−γ(t−µF )eβµ1

∫ t−µF

t−µF−νF (t)

S0(E(w))eγwdw

+eβµ1 [S0(E(t− µF ))−

S0(E(t− µF − νF (t)))e
−γνF (t)(1− ÚνF (t))

]

= −γM(t) + eβµ1S0(E(t− µF ))−Q,
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Model with Delays
After reduction of PDEs, the state variables become
total mature erythrocytes, M , EPO, E, and age of
RBCs, νF .

dM(t)

dt
= eβµ1S0(E(t− T1))− γM(t)−Q

dE(t)

dt
= f(M(t))− kE(t)

dνF (t)

dt
= 1− Qe−βµ1eγνF (t)

S0(E(t− T1 − νF (t))

where T1 = µF .

This is a state-dependent delay differential equation.
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Properties of the Model
• State-dependent delay model has a unique

positive equilibrium

• Delay T1 accounts for maturing time
• State-dependent delay in equation for νF , the

varying age of maturation
• The νF differential equation is uncoupled from

the differential equations for M and E

• Stability determined by equations for M and E
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Linear Analysis of the Model
Linearizing about the unique equilibrium (M̄, Ē, ν̄F ),

ÚM(t) = eβµ1S ′
0(Ē)E(t− T1)− γM(t)

ÚE(t) = f ′(M̄)M(t)− kE(t)

ÚνF (t) =
1

Ē
E(t− T1 − ν̄F )− γνF (t)

The characteristic equation is given by

(λ+ γ)
[

(λ+ γ)(λ+ k) + Āe−λT1
]

= 0,

where A ≡ −eβµ1S ′
0(Ē)f ′(M̄) > 0. One solution is

λ = −γ, which shows the stability of the νF equation.
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Analysis of Characteristic Equation
• Remains to analyze

(λ+ γ)(λ+ k) = −Ae−λT1

• A Hopf bifurcation occurs when λ = iω solves
the characteristic equation

• From complex variables, we match the
magnitudes and arguments:

|(iω + γ)(iω + k)| = A

Θ(ω) ≡ arctan

(

ω

γ

)

+ arctan
(ω

k

)

= π − ωT1

• Solve for ω by varying parameters such as γ
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Hopf - Argument Principle

Link to Var. Vel. Anal.
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Variable Velocity of Maturing
• Physiologically, erythrocytes mature more rapidly

with increasing EPO

• Velocity of maturation, V (E), is a
non-decreasing function, e.g.

V (E) =
κ1E

κ2 + E

• Method of characteristics leaves a threshold-type
functional equation rather than simpler delay
equation

• Linear analysis of the age-structured model
relatively simple
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Linear Analysis with Variable Velocity
The modified characteristic equation for the
threshold-type functional equation becomes

(λ+ γ)(λ+ k)− eβµ1f ′(M̄)(V1 + V2e
−λµF ) = 0

where

V1 ≡
V ′(Ē)S0(Ē)

V (Ē)

V2 ≡
V (Ē)S ′

0(Ē)− V ′(Ē)S0(Ē)

V (Ē)
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Linear Analysis (continued)
• This has the form

(λ+ γ)(λ+ k) + α1 + (α2 − α1)e
−λµF = 0

with α1 = V1 and α2 positive.

• Since α2 = A from previous characteristic
equation, the α1 shifts our geometric diagram
above to the right with a smaller radius circle.

• This can be readily seen to stabilize the model.
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Hopf - Variable Velocity

Link to Anal. Link to Hopf
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Auto-Immune Induced Anemia
Rabbits were injected with antibodies to their Red
Blood Cells
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Identify Parameters
• Physiological parameters found for rabbit

• Extensive literature search
• Some gaps using other species studied
• Difficult, but essential process

• Increasing the destruction of Erythrocytes, γ,
causes a Hopf Bifurcation

• Model most sensitive to parameters γ and µF

• Variable velocity of maturation stabilizes the
model
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Simulation
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Phlebotomy (Blood Donation)
• Normal blood donation is about 8% of blood
• O2 sensors near kidneys probably sense

concentration, not M(t)

• Blood donation loses erythrocytes and plasma, no
concentration change

• Plasma recovers quickly
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Model for Phlebotomy
• Define the hemoglobin concentration

h(t) = H
M(t)

M(t) + ρ(t)

• The plasma function chosen to fit data

ρ(t) = α
[

1 + (β1t− 0.08)e−β2t
]

• The age-structured model remains the same
except

ÚE(t) = f(h(t))− kE(t)

• Fit model to data of Maeda et al and Wadsworth
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Model a Phlebotomy
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Model Compared to Data
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Summary
• The mathematical model provides a good

example of how age-structured models are related
to models with delays.

• The modeling of satiation for destruction of
erythrocytes could prove valuable in other
population models.

• The model for erythropoiesis can be fit to existing
data and can hopefully provide insight into the
study of some hematopoietic diseases. It is
unlikely to aid in the study of normal individuals
for improved blood donation schemes.
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Summary (cont)
• Our numerical simulations and analytical study

show how a variable velocity of maturation
stabilizes the model. This implies that plasticity
in the precursor compartment may be an
important evolutionary adaptation.

• Current studies have identified the most
significant parameters in the model, which could
give insight to the likely causes of the disease
states and possible therapeutic approaches.

• New studies examine thrombopoietic systems
using a multi-compartment model to account for
size structures of megakaryocytes.
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