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Periodic Solutions for Certain Protein 

Synthesis Models* 

In this paper, we investigate the qualitative hchnvior of a chws of dctcr- 
ministic models with delays that arise in the study of protein synthesis. \k’e 
demonstrate the existence of nonconstant periodic solutions to our system of 

diff[,rc~nti;ll-d(~lHv equ;kons under cc&n conditions on the parameters. iVe 

conclude u?th a brief discussion of the biological significance of our results. 

In this paper WC shall analyze a class of mathematical models for the control 
of protein synthesis in biosynthetic pathways. ‘The models are based on the 
Jaroh-RTonod hypothesis [I 2, 161 for gene regulation in prokar):otic cells. 
XZathematical models of this type ~vere first proposed by Goodwin [7, 81 and 
have subsequently led to numerous investigations of both experimental and 
theoretical nature. I:oI- a review of the biochemical model and a list of related 
references the reader is rcfcrred IO Hanks and MahAT\: [3]. 

Briefly, we are concerned with negative feedback or repressible systems such 
as those frequently found in biosynthetic pathways of prokaryotic organisms. 
In the mathematical models, one assumes that the cndproduct, x’, , is fed back 
negatively, affecting the production of the first substance, x1 , in a nonlinear 
manner. The other substances, xi , are produced linearly at a rate proportional 
to xi 1 . All substances are assumed to be degraded at a rate proportional to 
their own concentration. The n-dimensional generalization of Goodwin’s 
model [7], is given by the following system of ordinary differential equations: 

iI -- --d-- - hi(l) 
I 7 kc,(t) 

Lq(t) -= cxixi-,(t) - &T<(f): i = 2,..., n. 
(1.1) 
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Goodwin suggested that by introducing delays into the system to account 
for particular biological processes that the resulting system might exhibit 
sustained oscillations and be used to support the hypothesis that protein syn- 
thesis is involved in epigenetic oscillations. Banks and Mahaffy [2] showed that 
even with delays, the equilibrium for (1 .l) is globally asymptotically stable with 
respect to positive initial data. In this paper, we are interested in the qualitative 
features of models with a higher order feedback of the form [a/(1 + kxCo)]. We 
shall give rigorous arguments to show the existence of oscillations and periodic 
solutions (for certain parameter values) of delay differential equations including 
a nonlinearity of this type. 

We analyze our system of delay differential equations by using the solution 
operator to establish a completely continuous map of a cone into itself. By 
showing that the equilibrium point of our system of differential equations is 
ejective we are then able to use a fixed point theorem of Nussbaum [IS] to 
prove the existence of periodic solutions. We conclude with a brief discussion 
of the biological implications of our results. 

2. MATHEMATICAL BACKGROUND 

In this section we want to consider the n-dimensional Goodwin-type model 
with p repressor subunits and delays. This model can be expressed by the 
following system of equations: 

with the positive constants a, b, k, ai , pi, 7i where x = (%r ,~.., F~)’ is the 
unique equilibrium solution of 

An der Heiden [l] has shown that by using the following substitutions in (2. I ), 
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one obtains an equivalent system with only one delay Y = Cy=, 7i . For nota- 
tional convenience we drop the _ and obtain the following: 

__- *l(t) = 1 + +Jt “_ y) + qr, 4%(t) + %I 

?qt) = Ol&&) - p$qq, i = 2,..., n. 
(2.2) 

Define f(f) = -O%r + a/(1 + k([ $ %Jp). 
We shall need to consider the linearization of (2.2) about the solution x(t) = 0. 

This linearization has the form 

j(t) = AY(4 + By(t - f,) 

where A and B are n x n constant matrices with 

A= 

and 

-b 0 . . . . . . . . . . . 0 \. 

a2 432. . 
0. . . 

. . . 
,.. . . . 
. . . . 

. . 

0 . . . . . . 0 0112. 

..* 0 f’(0) 
0 

! . . . . . . . . 0 

f’(0) = -apk?q-l/p + KLFJ2. 

The formal adjoint equation for (2.3) is 

j(s) = -+@)A - jj(s + r)B. 

To obtain the characteristic equation for (2.3) we consider 

det[A - ;\I + Be-"] = 0. 

This is equivalent to 

1-b - X 0 ..a 0 e-"yf'(O)\ 

det = 0. 

(2.3) 

(2.4) 

cw 
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After expanding bq’ the first row and using properties of the determmant of the 
remaining triangular matrices vve see that the above becomes 

Therefore, the characteristic equation for (2.3) is 

(b + A) [fi (& $ A.)] - (fi aj) f’(0) e-““ = 0. 
i=2 j==z 

(2.6) 

For II = 1 Madeier and Tomiak [9] and for n = 2 an der Heiden [1] have 
established conditions for existence of periodic solutions of (2.2). We shah 
show that under certain conditions oscillatory phenomena and periodic solutions 
exist for the equations (2.2) for arbitrary finite n. The technique we shall use is 
similar to that used by Somolinos in [19]. First, we need to define an eject& 
point of a map Y. 

DE~PK~IOK 2.1. Suppose X is a Banach space, U is a subset of X, and x 
is a given point of U. Given a map 9: U\(x) -+ X, the point CT E U is said to be 
an ejectiue point of Y if there is an open neighborhood @ C X of x such that for 
every y E G n U, y # x, there is an integer m = m(y) such that YUm # G n U. 

To show existence of periodic solutions of (2.2) the main result we shall 
make use of is the following theorem: 

"THEOREM 2.1 (Nussbaum [IS]). If K is a closed:, bounded, convex, CO- 
dimensional set in a Banach space X, F: K\{x,) -+ K is completely co&mous, 
arLd x0 E K is an ejectiue point of F-, then there is a $xed point of .F in K\fa$. 

To use this theorem we need some way of demonstrating ejectivity. First, 
we must define some terminology that we shall use and then state a theorem of 
Chow and Hale 151. 

DEFINTION 2.2. Let V = g([-r, 01; I?*) be the Banach space of con- 
tinuous functions mapping [-Y, 0] into R” with the topology of uniform 
convergence. Let yt E V denote y(t + 0) for 13 E [--7, O]. For any characteristic 
root h of (2.3) there is a decomposition of V as $7 = P, @ 0, , where P, and Q,\ 
are invariant under the solution operator FL(t) of (2.3), FL(t)+ = y,(+), (b E %‘. 
For further details about this decomposition see Hale [ 10, p. 168 ff]. We define 
the projection operators of the above decomposition of ?? by 7ih with range 
equal to P,, and I - 7~,, with range equal to ,O, . 
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To show ejectivity we shall make use of a theorem of the following type: 

THEOREM 2.2 (Chow-Hale [5]). S pp u ose the following conditions are ful$lled. 

(i) There is a characteristic root A of (2.3) satisfying Re X > 0. 

(ii) There is a convex set i( _C %?, 0 E a, and 6 > 0, such that 

(iii) There is a completely continuous function 7: R\(O) ---f [a, co), 0 < a: 
such that the function defined by 

where xt is a solution of (2.2), maps K\(O) into K and is completely continuous. 
Then 0 E V is an ejectivepoint of F. 

For our protein synthesis model we shall actually need to prove and use a 
variation of this theorem in order to demonstrate ejectivity in a space slightly 
different from V. 

3. ANALYSIS OF THE CHARACTERISTIC EQUATION 

At this point we shall derive conditions under which at least two roots of (2.6) 
lie in the right half of the complex plane. In fact, we shall also show these roots 
lie in a strip in the complex plane between the lines z = f(+)i. These bounds 
will be used later in verification of condition (ii) of our analog to Theorem 2.2. 
Specifically, employing the argument principle, we shall analyze the image of 
the closed contour r under the transformation F(h) where 

WV = P + A) [jfJ (& + “I] - (!& %)fV) CAT 

= D(X) eie(n) + CIe-Ar, 

with C, = -(nj”=, aj) f'(0) > 0, a constant, and where r (except in special 
cases) is as diagrammed in Fig. 3.1. Let X = p + iv, then by setting (6 + X) = 
[vz + (b + p)2]1/2eie,(A), where 0,(X) = arctan(v/(b + p)), and doing the same 
with the /$ + /\, we see that 

D(h) = [v” + (b + ,~)~]l” n [v2 + (k$ + P)~]~” 
j=e 
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FIG. 3.1. The contour r. 

and 

9(X) = arctan (*) t iz arctan i-j+&-). 

For convenience let us further define 

In our anaiysis we shall compare the orientation of F and D1 with respect 
to the origin and determine the number of clockwise encirclements of the 
origin by F as h moves along r. Observe that we have alignment of F, D1 l and 
the origin whenever (see Fig. 3.2) 

arg[F(X) - D,(X)] = -kr $ arg &(A), for some integer k, 

0(X) - arg[F(X) - D,(h)] = e(x) + YV = hr. (3.1) 

------ 
01 

FIG. 3.2. Alignment condition. 

Along 23 p --7~ < arg(F - Q) < 0 and B(X) > 0, therefore k is a non- 
negative integer. Clearly at h = 0 we have alignment as both DJO) and P(0) 
lie on the positive real axis. This corresponds to k = 0. As v increases along yI 7 
@(A) increases and arg(F - III) decreases. Since at t, = V/Y, arg[F(in/r) - 
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D1(ir/y)] = -r, this implies Q(irh) - arg[F(k/r) - Q(kr/~)] > n; hence 
there exists a v,, , 0 < v0 < n/r, such that 

&iv,) - arg[F(iv,) - D,(ivJ] = 0(&J + TV0 = r. 

This will be the first alignment after X = 0. Now if they exist define vk as the 
successive alignments of D, , F and the origin as A moves along y1 from 0 to 
L/r and such that 

@(iv,) - arg[F(&) - Dl(ivk)] = 19(ivJ + Yvk = (k + l)~, 1 < k < ho, (3.2) 

where vk, denotes the last alignment along 1/i . Note that from the formula for 
B(h) we see that (k + 1)~ < n-ir/2. 

Let p* be chosen arbitrarily large and let h traverse ~a where along y2, 0(A) 
decreases monotonically toward zero. Using (3.1) and matching the indices with 
(3.2) we can ennumerate the alignments along ‘yz (if they exist) by the formula 

or 

Wb) - arg[W,) - WA,)] = B(h,) + 7~ = (k + 1)~ 

e(x,) = kT for 1 < K < k, . (3.3) 

Notice that the first A, is hkO with the last being A, , that is Re A, < Re A,-, . 
There is the possibility that alignment occurs at X = i7~/~ as a special case. In 
this special case we define iv, = A, . This special case can be handled the 
same as the other cases in our’arguments below. 

Along y3 , e(4 d ecreases to zero with Q*) = 0. D, , F and the origin align 
at A = p* since DI(p*) and F(p*) lie on the real axis. Now we shall use the 
above information to prove the following: 

PROPOSITION 3.1. (i) Suppose D(iv,) > C, , then F(A) does not encircle the 
origin as h goes around r, hence by the argument principle no roots of F(X) = 0 
lie inside r. 

(ii) Suppose D(iv,) < C, , then F(X) encircles the origin as h goes around I7 
The argument principle can be used to demonstrate that at least two roots of F(X) = 0 
lie inside r. 

Remark. If D(iv,) = C, , then F(iv,,) = 0 and so the image of r under the 
transformation F passes through the origin. This means that the zeros of F lie 
on the imaginary axis at &iv0 . 

(This will be the case when a Hopf bifurcation for one of the parameters 
such as Y occurs.) 

Proof. Our argument will compare F(A) to Dl(A) to determine the orientation 
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ofF with respect to the origin, Geometrically, it is easily seen that D,(h) winds 
counterclockwise as X goes along yr then unwinds as X goes along ys and ys , 
giving a net of no encirclements which was to be expected since all zeros of D, 
lie in the left half plane. 

Case (i). (see Fig. 3.3) Suppose D(iv,,) > C, . In this case at v,, , F(&,) lies 
between D(iv,) and the origin. Now note that along y1 and ys clockwise, D(X) is 
strictly increasing as is easily seen from the formula for D(X). For each x+~, k 
odd we have Dr(&) lying between the origin andF(iv,). Since D(h) is increasing, 
for v,< , k even F(&) is lying between Dl(iv,,.) and the origin. Similarly along yZ 
when k is odd Dl(X,) 1 ies between the origin and F(X,& and for K even F(h,) lies 
between the origin and Di(X,). Thus F(X) has the same orientation relative to 
the origin as D,(h), hence the image of P under the transformation F does not 
encircle the origin. (To encircle or have a different orientation we must have 
the origin between F(h) and Dl(X) at some A.) 

FIG. 3.3. 30 encirclement 

Cuse (ii). (see Fig. 3.4) Suppose D(iv,) < C, . Since D(h) is increasing 
along yi and yr clockwise with D(h) -+ +co as p* --t -co, for p* sufficiently 
large, there exists A* such that D(X*) = C, . If A* = iv,, or A,, , iz = 1, 2,..., 
then we must modify I’. In these situations we see that a zero of P lies on r 
(another bifurcation is occurring if A* = iv,,), hence more roots of F(X) = 0 
are passing into the region enclosed by r. Since we only need to find two zeros 
of F inside r we are not particularly interested in these roots and so can modify 
r by making an E-radius semicircle on l’ about A* to exclude this point and 
thus not obtain encirclement due to these zeros of F. 

Let D(X*) = C, (or in the above special cases where we modify r as stated 
above and let D(h*) = C, where now A* will be on that c-radius semicircle). 
Going clockwise on r from 0 to A*, D(X) < C,; and from A* to P-L”, D(A) > Cr , 
which will be just as in Case (i) and so F will have the same orientation relative 
to the origin as Dl on this part of r. 

First we handle the case when only q, exists with D(iv,) < C, , so that align- 
ment occurs only at h = 0, &iq,, and CL*. As X goes from 0 to iv,, arg D,(X) 

40917%; I -6 
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FIG. 3.4. Two encirclements. 

increases monotonically from 0 to B(iv,,). At iv, the origin lies between Dr(iv,) 
and F(&), i.e., argF(&,) = B(iv,) & r. Here argF(iv,) = B(iq,) - rr since 
argF(zi+J = @(iv,) + r implies there exists a G, 0 < 6 < V, , such that argF(6) 
= B(G) which contradicts the definition of v,, . As h proceeds from &, to z7i/~ 
along r we must show that F(iv) does not have the same orientation as D1 , 
If F were to have the same orientation as D, then F must go counterclockwise 
about the origin which means there exists a G with v,, < D < r+ such that 
ImF(iG) = 0 and Re F(G) > 0. At iG, t?(G) > @(z&J by monotonicity, while 
arg[F(G) - Dl(iG)] = -CY. S ince -z- < arg[F - DJ < 0, we have Im D,(i3)%> 
Im F(G) = 0 so that 0(G) < 7r. We observe that since F(G) lies on the positive 
real axis and 0(G) < rr we have arg[F(iG) - D,(6)] > B(6) - r. Therefore, we 
see that -+ > 0(G) - v > B(iv,) - r = -v,,t which is a contradiction of 
B > v0 . Thus, we see that for q, < v < r/r along yl, F has an orientation 
relative to the origin which is opposite to Dl . Since we are assuming only vs 
exists there are no X,‘s so from (3.3) we see that B(A) < rr or Im Dl(X) > 0 along 
y2 , At h = in-/y, argF(in/r) = 6’ - 2n, while 0(&/r) = t? where #, 0’ < r. 
Along yz , ImF(h) = Im D,(h) and F --j D, exponentially since F(A) = Dl(X) - 
Cre-@r. Let p* ---f + co, then argF + 0 and 1 F j --f + cc which implies that 
relative to the origin arg F(h) has gone -277 radians as h has gone from 0 to p* 
along y1 , ?/z , and K . By using a symmetry argument we see that F(X) encircles 
the origin twice as h goes around I’. 

Now suppose vi exists. Again since D(ivJ < C, at iv,, D, has traversed 
0(&,) radians while F has gone B(iv,,) - w radians. At A = iv1 we have Dl(ivl) 
between the origin and F(iv,). Following a similar argument to the one when 
only ~a existed we find that Dl(ivl) will have traversed d(iv,) radians while 
argF(iv,) = 0(+) - 27-r which implies F(iv,) has gone clockwise one revolution 
relative to the origin compared to 4(&J. 
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We continue in the same manner. Suppose V, exists and Im h’s >> 7’2 , then. 
at iv, we have the origin between F(iv,) and Dr(&,) (since D(~vJ < C,). If v3 
exists, then D,(iv,) lies between the origin and F(GJ. ArgF(iv,) = 6(&) - 4~ 
and arg D,(iv,) = 0(&) which make a difference of two clockwise encirclements 
relative to the origin using similar arguments to those above with v0 and r~r . 

Kow continue in the same spirit until either (a) Im hX < v2, for some 
-1 = 1, 2,... or (b) the +‘s are exhausted. If, in case (a) Im X* < ~~~~~ for some 

j. (Im A* > v2jo--2 ) then along r from ivzju to p* the orientation ofF 1s the same , 
as D, as in Case (i). Arguing as above, along yr from 0 to iv2?, we find that 
arg Dr(i~~~~-r) = B(~u,~~-,) and arg F(ivz,,-r) = B(i~~,r) - 2j07r, which gives a 
difference ofj, clockwrse rotations relative to the origin. D,(x) does not encircle 
the origin which implies that relative to the origin along yr , y* , y:, , F(h) has j, 
clockwise rotations about the origin, so again from symmetry we see that F(h) 
has Zj,, clockwise encirclements of the origin as X traverses r. 

If on the other hand, in case (b) the +‘s are exhausted (after k > I) then there 
exists h,. such that 0(X,“) = kgz since D,(h) does not encircle the origin as X 
traverses r along yr , ye , y3 . Let j, be even with hn, being the first Xj , j even, 

along ys such that D(hjO) > C1e-030T (takej, = 0 if D(h,) < Cre-u~~ for all A, on 
yz). From hi0 to ,u* again we see that relative to D, , F behaves as in Case (i) 
and so F(h) has the same orientation as Q(X) relative to the origin. in the special 
case j, -1; 0 take X, such that Re X, > Re X, on y2 and the above holds. 

Recall arg[F - Or] = -V on yz so whenever j is odd D,(hj) lies between 
3(Aj) and the origin, @(A,) = jx, i.e., F and D, are on the negative real axis. 

Whenever-j is evenj > j, , the origin lies betweenF(&) and D,(&), i.e., F(X,) < 0 
and D1(Xj) > 0 both real, while for j even and j < j, 1 F(hj) and Or(&) lie on 
the positive real axis with F(X,) < D,(hj). Along yg until h = XjO , F(/\) never 
crosses arg F(X) = 2rnn for any m E 2, thus F has no encirclements of the origin 
while &(X) encircles the origin clockwise each time D,(X,j) goes to D,(X,,-,) as X 

goes from .& to h,+, along along r (provided these do exist). From this we 
can now evaluate the number of encirclements of the origin by F in case (b). 

First suppose k, is even; then along yr , Dr(i~) traverses (k,/2 T B/(&T) ’ 2~ 
radians while F(iv) goes (&(27r) - 1) . 2 rr radians where g = S(&+) mod 2~- 

and B^ = argF(in/r) mod 27~. Along yz and ya , Ox(X) goes --(k,,i? f 8!(2~)) . 2~ 
radians since D, does not encircle the origin, whilelk traverses -(6/(2~)~j~/2) ‘2~ 
radians withjo/ being the number of times that F(h) follows Dl(X) around the 
origin as in Case (i). Therefore, the net encirclement around the origin for F 
is -(4/(27r) + j,,/2) . 257 + (4/(2~) - 1) . 2~ = --(I + j&?) . 2,~ radians along 

yl , y2 , ys or 1 -i- j,i 2 clockwise encirclements. Again, by using the symmetry 
we obtain 2 L j,, clockwise encirclements of the origin by F(X) as X proceeds 
clockwise around P. 

Now suppose k, is odd; then along yr, Dl(iv) traverses ((k, - l)j; - 8/(b)) ’ 2~ 
r-adians while F(h) goes (d/(257) - 1) . 2 7~ radians where 8 and 0 are as before. 
-ilong yz and y3 , Dl(X) must return -((kO - 1)/Z + o/(2%)) . 2~ radians since 
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it does not encircle the origin, whileF along ys and ys does not cross arg F = 2wm, 
m an integer, until hi0 , then F(X) follows D,(h), so F traverses -(B^@)+jo/2) .2n 
radians. Combining our information along yI , ~a , M we see that relative to 
D,(h), F(/\) makes an angle of -(d/(277) + jsj2) . 2~ + (d/(297) - 1) . 27~ = 
-( 1 + j,/2) 3 257 radians or F encircles the origin clockwise 1 + j,/2 times along 

Ylt Yz f Y3. By symmetry again we see that F(h) encircles the origin clockwise 
j, + 2 times as h winds clockwise around I’. 

Using the above information with the argument principle we have the 
proposition. Q.E.D. 

The proof of the above proposition, in fact, shows us exactly how many 
roots of F(h) = 0 lie inside r (if there are any). At this point we shall verify that 
there are cases when Proposition 3.l(ii) can be used on our Goodwin-type 
repression model. Consider the example when a = 2, p = 4, b = k = aj = 
pj = 1. From (2.2) and (2.4) it is easily seen that f = (I,..., l)‘andf’(O) = -2. 
Hence, C, = 2 Hi”=, olj = 2 and II = (b2 + 9)1/2 nj”=, (/3$ + 9)rp = 
[(I + ~a)~/~]~~. So the condition [(l + I+,~)~~~]~ < 2, which is D(iv,) < C, , is 
equivalent to vo2 < 4rfn - 1. But v,, < T/F, so we find roots of F(h) = 0 inside 
I’ if F > rr/(411n - l)ljz. When a = 2, then Y > r will guarantee that the 
condition and conclusion of Proposition 3.l(ii) hold. For arbitrary n, if b nj”=, pj 
< -f’(O) nj”=, aj , then since 

(b2 + v$)1'2 Q @j2 + Vo2)1'2 < [b2 + (~/~)"]"'jj [Pj" f (.rr/y)211'2 

and since lim,-, [b2 + (r/,)211/2 JJj”=, [$” + (r/,)211/2 = b nj”=2 & , we can 
easily see by similar calculations to the ones above that for Y sufficiently large 
the condition and conclusion of Proposition 3.l(ii) will hold. 

From the above information we have found that there exist conditions under 
which (2.2) is locally unstable. This is the first step in showing that periodic 
solutions to (2.2) may exist. We shall now demonstrate that under appropriate 
conditions solutions of (2.2) oscillate. From this, we shall obtain a completely 
continuous map needed to make use of Theorem 2.1 and an analog to Theorem 
2.2. Under additional hypotheses we shall then be able to use Proposition 3.1 
to establish ejectivity and hence obtain the existence of periodic solutions to (2.2). 

4. OSCILLATIONS OF THE GOODWIN-TYPE MODEL 

At this point, we must define the cone with which we shall be working to 
utilize Theorem 2.1 and our modification of Theorem 2.2. We start by defining 
the cone K similar to that of an der Heiden [l]. 
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DEFINIT~OX 4.1. Let V0 = R-l X @(l-r, 01; I?) be the Banach space 
formed by the product of Euclidean n - 1 space and the space of continuous 
functions mapping [-Y, 0] into Ii with the usual product topology; that is, if 
# = (x0 ,&J E %TO with x0 = (x1 ,..., ~,-~)r E IF-l and & E- V([-r, 01; R)? then 

fi I?v, = (Xi”=;’ j xi 12 -f- SU~~~[-~,~] / $,(5)j2)t’“. Let K i: %‘@ with K = (# = 
(x0 , &J: x0 E RTz-l with xi > 0, i = I,..., 72 - 1, &-Y) = 0, and es+,(t) 
nondecreasing on [--Y, 01). Kow for any Q!J t %ZO with # = (x0 : 4,) with x0 
satisfying xi > --X, for i < TZ and &(a> >, --X, for i3 E [-Y, 01, one can show 
:hat (2.2) with initial data 4 has a unique solution defined on [0, CC) (Mahaffy 
!17]). Let zt E %,, designate a solution of (2.2) with zt = (x(t), .IT,~) where 
x(t) = (q(t),..., x,-l(t)y and x,~ E %?([-r, 0); R) is tbe function with values 
xn(t -j- 0) for 19 E [-r, O]. 

Next, we must make use of a result of Mahaffy j17]. In estabiishing our 
results for global asymptotic stability of (2.2) for certain parameter values we 
also established bounds for the asymptotic limit of the solution in the general 
case. We derive the following p2 + 1 degree po!ynomial in X where X can be 
either an upper or lower bound on x?(t) + %I , 

b(b q- C,X”)QX + C,apX - a(b + C&YD)Q = 0 (4.1) 

;L (c4W’. If h t ere is a unique positive solution to (4.1) then 
symptotic stability; however, if there exist multiple roots then 

the asymptotic Jimit, lim,,,(x,(t) -+ Q will be bounded below by the smallest 
root of (4.1) greater than zero and bounded above by the largest root of (4.1) 
less than a/b. Similarly one obtains asymptotic bounds on x2(t),..., xFl(t). Let 
V 1 >...> U, be the lower bounds and V, ,..., V, be the upper bounds. Since the 
lower bounds are greater than zero, VI > 0, we can choose an E > 0 such that 
0 < U, - E E ?P(clearly lir < U,). Let iY = jsp (o~Jjli3~)LP, i = 2,. ,., n. V\ie 

define V1 = a/b[l + A( U”)D] and let Vi = (n:=, (qj,Bj)]V1. From results of 
Mahaffy [17] we can see that 0 < Ui < Vi and I/i > Vi , i = 1 ,..., r,; hence, 
if we start with initial conditions in K then after some finite time t* the solution 
of (2.2) has the following bounds 

Define the above region in Rn described by these inequalities as 2. By the 
definition of the region .B it is easily seen from (2.2) that if the initial data is 
such that x(t) E 9 for t E [-v, 01, then z(t) E B for all t >, 0. 

We are now ready to define the cone K0 that we shall use in proving the 
existence of oscillations and periodic solutions of (2.2). Let 

K. = (Z/J = (x0, &): # E K, (x0 ) (in(O)) E 9 and for all 

t E C-Y, 01, 0 < &(t) < vn - g.J. 
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To identify the position of the solution z(t) E Rn at time t, we shall adopt a 
notation similar to the one that Hastings, et ~2. [l I] use in their paper which 
deals with the case when Y = 0, i.e., a system of ordinary differential equations, 
In identifying the position of z(t) = (xl(t),..., x,(L’))T we shall divide P into 
its orthants using the notation S(B, ,..., b,) where the hi’s equal either 0 or 1. 
bi = 0 will denote that the ith coordinate is negative while bi = 1 will represent 
nonnegativity of the ith coordinate. For example, by starting with initial condi- 
tions in K we see that x(O) E S(l,..., I); that is ~~(0) is nonnegative for each 
i = l,..., n. We shall show that the solution of (2.2) follows the same direction 
as in the ordinary differential equation case of Hastings, Tyson, and Webster. 
Starting with x(0) E S(l,..., 1) as t increases x(t) proceeds to S(0, I,..., l), then 
into S(0, 0, l,..., I), etc. until z(t) E S(0 ,..., 0). x(t) then passes into S(1, 0 ,..., 0), 
then into S(1, 1, 0 ,..., 0), etc., returning to S(l,..., 1) and completing a cycle. 

We shall now follow the trajectory through one cycle and then by showing 
that the solution is back where we started we can demonstrate oscillations of 
the system (2.2). To analyze this cycle we shall use the following formulae 
derived from (2.2) using the variation of constants formula: 

1 + R[x,(s “_ r) + x;L]Q I e 
-a&s) ds + “Q) ,-b(t-r) 

= 
s 
itf(xn(s - Y)) e-b(t-s) ds + xl(t) p-b@‘), 

xi(t) = ltt +c~-~(s) ee4i(t-s) ds + xi(t) e-a~(t-‘). 

(4.2a) 

We shall also need a hypothesis on the nonlinear term f. 
(Hl) Assume that the nonlinear term f(4) satisfies the following: There 

exist a 6 > 0 and c > (b/u)(es - 1)-r with a = ny=, (c+/&) and p E 

min@, P2 ,..., A> such that If(t)1 3 c I 5 I for I t I < 6. 
We must show that ourf satisfies (Hl). Choose c positive with c < a@~:-‘/ 

[l +- ~x,Q]~. Now we consider the Maclaurin series expansion off, 

f(5) = f(O) + f’(o)t + f”(O)c? + ‘.. = f’(O)E + f”(o)s? + ..‘> (4.3) 

where the coefficient of the linear termf’(0) is given by (2.4). From this we see 
c <f’(O). Now take 0 < Y < +co, large enough so that (b/a)(e@ - 1)-r < c. 
For f sufficiently near the origin the higher order terms are negligible and so 
the linear term off dominates. This implies there exists 6 = 6(c) > 0 such that 
] f(f)] > c / t 1 for ) E j < 6. So we observe that for Y sufficiently large, where Y 
depends on our choice of c, f satisfies (HI). 

THEOREM 4.1. Assume (HI). Starting with y’I E K,,\(O) us initial conditions for 

(2.2), then fog zt the corresponding solution of (2.2), 
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(ii) there exists a continuous function TV: Kl\(O} + (r, c0) such that 

%zdY? E ~i\@h 

; s jiiii 

z(t) is oscillato~fy, i.e., there exists a sequence QJ times (sk>,“=,- with 
.- sicel 1 > T such that xl(+) = 0 and xi(slc) 3 0 (not all = 0), 

fo: k = 1 mod 2 and xi(sk) < 0, i = 2 ,..., n, for, k = 0 mod 2. 
i = 2,..., 11: 

PYOO$ To prove this we shall prove (i). A very similar proof will establish (ii). 
Using the proofs of (i) and (ii), we can argue (iii) quite easily. To show (i) we 
need a series of lemmas. 

Using the above notation we start with initial data #, E K,\(O) and so z(0) E 
!(I,..., 1). Suppose at some t, , xi(tO) = 0 for some i 3 2. Now since xiJtO) 3 0 
this implies that Qt,) 2 0 which implies that the trajectory z(t) either remains 
in S(I ,..., I) or it leaves S(l)..., 1) through x1 = 0 and passes into S(0, l,..., I). 
We can assume that for t E [0, to) for some t, that the trajectory is in S(l,...) 1) CJ 
(x1 > 0). Then since x%(t) 3 0 for t > --Y it is seen that 

< a 1 + kX,p 
- b%$ - bx,(t) = - bx&) < 0. 

Therefore, xl(t) is strictly decreasing for z(t) E S(l,..., 1) I? (x1 > 01, 0 < t < t, I 
and in fact xl(t) - 0; say q(t,) = 0. We shall show that t, is finite. First we shall 
investigate what happens when t, is infinite. 

LEMMA 4.1. Suppose xl(t) is strictly decreasing to zero and we remain in 
S( l,..., I). Then after somejinite time T, , &(t) < 0 for all t > To , i - I ,... f n, i.e., 

&z(t) > (%iPn> 5-1(t) > “** > @ (4%)) x,(t) = a%(t) 

for all t >, To . Furthermore, xi(t) \y 0 as t -+ + co. 

f’ro~f. For t such that 

44 < (%/A) x1(t), i.e., .%$t) > 0, :“I 

we find x2(t) strictly increasing. Since xl(t) is decreasing to zero and xa(i.) > 0 
we know that the inequality (*) cannot hold for all time. Let TI be the first 
time t with t > Y such that k2(t) < 0; then for all 72 > or >, Tr we shall show 
that ~~(7~) < x~(T~), i.e., x2(t) is monotonically decreasing. 

Suppose that there exist or and r2 with TV > ~r > r, , such tbat X2(T2) > xaj~r). 
In particular, we know that x2(t) is decreasing (at least nonincreasing) at Tr so 
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follow xa(t) until x,(l) is nondecreasing (this must occur if &~a) > ~~(7~)). Let 
t* be such that x2(t) is decreasing on [Tr , t*) and nondecreasing at least on 
[t*, ~~1. We take r1 = t* and then xa(rJ < x~(TJ. In the special case where 
$a(TJ = 0 and $(t) > 0 on some interval after Tl we take rr = Tr . At t = or 
we see that 

while at 7% we have 

Therefore, azzl(~J - &x2(ra) 2 01aq(~r) - ,Qca(~J which implies 

/%%(Ta) < ,&dT~TI) + %kdTd - xdT1)). (**I 

But xl(t) is strictly decreasing which implies ~~(7~) < x~(T~). Using this fact 
together with (**) we find that xz(T2) < x2(71) w ic contradicts the assumption h h 
that there exist r1 and ra such that x2(T2) > ~~(7~). 

From this we see that after some finite time Tl , ~+~(t) < 0. Since x1(t) \y 0, 
we see that a$(t) + Pzxz(t) -+ 0 as t -+ +co which implies xa(t) I 0. So by a 
similar argument we obtain a finite time T, > Tr such that &3(t) < 0 for all 
t > T2 and x3(t) \ 0. Continuing in the same manner we find there exist times 
Ti > TipI such that %+r(t) < 0 for all t 2 Ti and x,+r(t) ‘li 0. Set T,, = TSml 
and the lemma is established. 

From Lemma 4.1 we see that if to were infinite and if z(t) remained in S( 1,. . . , 1) 
then after some finite time the trajectory must be arbitrarily close to the origin 
and all xi’s montonically decreasing. 

LEMMA 4.2. Assume (HI) and suppose 0 < x, < 8, for all t 2 T for some 
finite T, then t, is finite. 

Proof. Suppose to is infinite. Take T 2 To + Y where T, is as in Lemma 4.1 
and such that 0 < x,(t) < 6, t > T. Lemma 4.1 gives xn(t) L 0 so such a T 
exists. For t E [T, T + Y] we first note that f(xn(t - Y)) < 0 as is easily seen 
from the formula for f and the fact that x,(t - Y) > 0. Thus (HI) implies 
-m,(t) 2 f(xJt)) using the assumption that x%(t) > 0. Now using (4.2a), the 
monotonicity of x%(t), and only considering t E [T, T + r], we see that 

xl(t) = Jff(xJs - r)) e-b(t-s) ds + x,(T) eebctdT) 

< q(T) e&-T) - c 
s 

t x,(s - Y) e-b(t-s) ds 

< x,(T) e-b(t-T) - &I f e-b(t--s) ds 

= X1(T) e-b(t-T) - a,(T) e-bt(ebt - ebT)/b 

< x1(T) eebt[ebr - (ca/b)(ebt - eb’)J. 
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+(T + y) < xl(T)e-b'T+9[ebT - (ca]~)(eb(7-~'~ -_ ,,a)] 

= xl(T)ecbr[l - (m/b)(ebr - l)]. 

So by (HI), x,(T T 1,) < 0 which contradicts t, being infinite. (From x,(r r I) 
: 0 it would follow that there exists a t, E [T, T + r] such that zc,(t,) = 0.) 

QED. 

Thus, we have demonstrated that in finite time t, ) z,(Q = 3. In fact, we can 

show that the solution actually passes into S(0, I,. . . , 1). 

h3MNIA 4.3. Assume (HI). Then the trajectory a(t) enters S(O, I,..., I). 
Furthermore, xl(t) < 0 for all t such that xn(t - Y) > 0 and sv.ch that t > r fey 
some T with x(7> E S(0, l,..., I). 

Proof. If at to, ~,(t, - Y) > 0, then clearly %I(t,) < 0 which implies the 
solution actually passes into S(0, l,..., I). Now suppose that Xn(t - y) = 0 for 
i E 10, s] with s < Y, then *I(t) = -h,(t) or x1(t) = e-%,(O). Thus, we can 
easily see that xl(t) >, 0 on [0, S] and q(t) = 0 on [O, S] if and only if q(O) = 0. 
From this we can conclude that if x,(O) > 0, then t0 > s. 

Since ea&,(t) is nondecreasing either xn(t) E 0 on C---T, O] or there exists 
an s - r < 0 such that am = 0 on [-Y, s - Y] and xn(t) > 0 on (s - Y, O]. 
In the latter case we know k,(t) >, -Pnxn(t) for 0 < t < t, so we see that 
xn(t) > e-fin”xJO) for 0 < t < t, . This implies xn(t) > 0 on (s - Y, to], which 
in turn implies that if x,(O) > 0 then xn(t, - Y) > 0 and so the solution passes 
into S(0, l,..., 1). 

Now consider the case when ~~(0) = 0 and xn(t) f 0 on [-Y, 01. In this case 
j(Xn(t)) < 0 for t E (s - Y, 01. Using (4.2b) we see that for t E (s, r] 

xl(t) = :.f(xJ~ - y)) e--b(t-T) & 
s 

= 
s 

$f(xn(7 - Y)) e@(+) d-7 < 0, 
s 

which implies z(t) passes into S(0, I,..., 1). 
Next consider the possibility x,(t) = 0 on C-Y, 01. Since we are starting 

with initial data in K,\(O) there is some i such that x,(O) > 0. Let i,, be the 
greatest i such that q(O) > 0. From repeated use of (4.2b) and using x&I) = 0 
for i > i0 we see that 

%(G = i‘” --f%(~-~l) ~,%+dsd e &, + x,(Q) e*?Lt 
“0 
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= -& oIi JoA e-fut--81) [j"' e-P,-l(~l-%) [ . . . 
0 0 

s 

%-io-I 

0 
exp[--Pi,+l(h-i,-1 - h-i,>1 xio(sn-i,) k-i0 

+ ~i,+l(0) exp(--P~o+l~n-60-l )] d.~-~ - *] ds, . 

But +0(O) > 0 and xi,(t) is continuous since it satisfies (2.2) so it can be seen 
from the above multiple integral that at least in some small neighborhood say 
t < E, x,,(t) > 0 and so X,(C) > 0 for 0 < t < E. In fact, for t < to we remain 
in S(l,..., 1) and so x%(t) > 0 for 0 < t < t, . 

Assuming z%(t) E 0 on [--r, 0], then as before if x,(O) > 0 then x1(r) > 0. 
In this case to > r so ~,(t, - Y> > 0 and we find that z(t) enters S(0, l,..., 1). 
If ~~(0) = 0, then xl(t) = 0 on [O, Y]. Using (4.2a) we see that 

xl(t) = /‘.f(x,(~ - 7)) e--b+7) dT + x1(y) e-b(f-r) 
T 

= 
s 

tJ(xlL(~ - Y)) edt+ dr < 0 for Y < t < 6, 
+” 

so again x(t) enters S(0, I ,..., 1). 
Since x(t) enters S(0, I,..., 1) there exists 7 > t, such that x1(‘) < 0. From 

(2.2) we observe that whenever xn(t - r) > 0, t > T, (equivalentlyf(x,(t - Y)) 
< 01, qt> < -bx,(t) and so x1(t) < X1(T)e-b(t-T) < 0. So x(t) passes into 
S(0, l,..., 1) and x1(t) remains negative at least until ~,(t - r> < 0. Q.E.D. 

Now we have shown the solution z(t) must enter S(0, I,..., 1) where from 
the equation for xa we have ka < 0. From Lemma 4.3 we have x,(t) < 0 since 
xn(t - Y) > 0 in S(l)..., 1) and S(0, l,..., 1). As before, it is easily demonstrated 
that if at some time t, , x,(tJ = 0 for some i = 3, 4,..., n, then 2i(tl) 3 0 
which implies the trajectory remains in S(0, l,..., 1). Since the trajectory can 
only exit through the hyperplane x, = 0, using the differential equation for x2 
we see that x2(t) is strictly decreasing to 0 in S(0, l,..., 1). Suppose x,(t,) = 0, 
for some t,, to < t, < +co. 

LEMMA 4.4. Assume (Hl); then tl isfinite. 

Proof. Suppose tl = +co. Since z(t) is in S(0, l,..., 1) and since x2(t) is 
strictly decreasing to 0, in an analogous manner to proving Lemma 4.1 we can 
demonstrate that in some finite time T, &(t) < 0 for all t > T, i = 2,..., n and 
xi(t) ‘X 0, i > 2. As before 2,(t) < 0, i > 2, implies x,(t) > (a,/fin) xlzwl(t) > 

... > rr-iL CMm %&> f or all t > T. Since t, is assumed to be infinite the 
above argument implies there exists a time T, > T + Y, such that xn(t) < 8 



,for all i 3 T, - T and 6 as in (Hl). Since c is fixed with c > (bjor)(e% - I)-:, 
we can choose I > E > 0 satisfying 

(b/(1 - c)a)(eD2” - l)-’ = c. 

Sow as before (HI) implies -cxn(t) > f(~~(t)) and since “x1(t) < I), using 
(4.2a) we see that for t E [T, , Tr + v], where Tr = T, + (l/b) ln(l/‘e), 

Now using (4.2b) we have for t E [Tr , TI T r] 

In particular, 

by the choice of E. But this implies there exists a i, E [TI ) T, + I] such that 
x,(t,) = 0 which contradicts t, = +CYJ. Q.E.D. 

Now by Lemma 4.4 we have t, finite, and since x’,(t,) < 0 we see that 
&‘2(tl) = cqz,(t,) < 0 which implies x(t) enters S(0, 0, I,..., I). In a marmer 
similar to the arguments in Lemma 4.3 we see that for all t such that xl(t) < 0, 
&(t) < -P+Jt). So for some T > t, with x2(‘) < 0 we have x2(t) < q(,~)e-Wt-T~ 
< 0 for t > T and t such that xl(t) < 0. 
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This process continues in a similar manner so that at the ith stage we can 
similarly show that the trajectory can only exit through xi = 0 and that xi(t) is 
strictly decreasing to 0. Let q(ti-,) = 0. 

LEMMA 4.5. Assume (HI). Then tieI is$mIe. 

We shall only sketch how the proof of this would go as it is similar in nature 
to that of the previous lemma. Again, if we assume tieI = +co, then in some 
finite time T we can show that kj(t) < 0, i > i for all t > T so x,(t) > 

(%/Pn) %2-l(f) > e.3 > (n& (cQ//$)) xi(t) for all t > T and that zej(t) ‘X 0, 
j > i. Using this we have Xn(t) < S for all t > T,, - r, for some T, >, T + Y, 
where S is as in (HI). 

As before c is fixed in (HI) so there exists 1 > E > 0, satisfying 
[b/((l - ~)~-~a)](e?~~ - 1)-l = c > (b/a)(&’ - 1)-r. Define TI = To + 
(l/b) ln(l/O and for eachj = 2,..., i - 1, Tj = Tj, + (l/pi) ln(l/c). Then again 
by using (4.2a) and assuming t E [T,, , Tie1 + Y] we can show 

q(t) G - -J--- Iz z ‘(’ - ‘) x (T.-,) P for t b T,, -T b I il,!= T 1’ E 

Then using (4.2b) we see that 

x,(t) < - q (a2//3J x,( T,-,)(l - e-az(t-rl)) 

Continuing in a similar manner, we obtain forj = 2, 3,..., i - 1 

We can use this to argue that for t E [Tie, , T,-l + r] 

q(t) = s’ qxiul(s) eeai(t-s) & .+ xi(Ti-,) eMaicteTd-l) 
Ti-1 

( _ c(1 - ,)i-l 
\ b 

+ xi( TiM1) e-pi(t-r*-I) 

<-- 
c(1 - c)i-l 

b 
ax,(T+,)[l - e --Bi(t-%I)] + %<(Tiwl) e-&(t-Ti-l) 
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which implies there exists t,-r E [T,-r , TipI + Y] such that q(&+) = 0 con- 

rradicting the assumption that t,-, is infinite. QED. 

Lemma 4.5 shows that x,(t,-,) = 0 in finite time, so we see that $(tiel) = 
q-.l(ti-r) < 0 and thus z(t) enters 

i 

S(ig3, l,...) 1). 

As before we can show that for each i 3 2, xi(t) i 0 for ali 1 with t > timI 
and such that xiwl(t) & 0. Using the above lemmas and this information we see 
that in finite time t,-r the trajectory z(t) crosses X, = 0 and then enters A’(&..., 0). 
In fact, it is easy to trace its path and see that it cycles through the orthants as 
described previously. 

suppose z(t) E qo,..., 0). If we assume the trajectory first exits &rough any 
face xi = 0, for some i >, 2, say xi(tn) = 0, then (since Ximl(t,) < 0) by the 
comment after Lemma 4.5, xi(t,) < 0 which is a contradiction. So if the tra- 
jectory exits it must exit through x1 = 0. 

For f,-l < t < t,-, T r, x,(t - r) >, 0 which implies by Lemma 4.3 
x,(t) < 0. Since z(t) can only exit S(O,..., 0) through x1 = 0, this implies that z(t) 
remains at least r units of time in S(O,..., 0) U {x, = 01. 

We must still show that -z~,-~+~($J~) E K\{O). Clearly zt,_,+.(~J f 0 and so 
we only need to show eR&zn(t) is nonincreasing on [trier , t,-, + r]. From the 
above comments we know that z(t) E S(O,..., 0) u {x, = 01 on this intenTal. 
Using (4.2b) we obtain 

which is ciearly nonincreasing since the integrand x,-r(s) < 0 on [tnel, t,_, + F] 
(in fact, .q-r(s) < 0). Therefore, we have shown that given I/+ E K,\(O), that 

~d1/11) = “n-1 + I’ ~d’~,~(ti~,(#4 E K,\W. 
It remains to show that ~~(4) is continuous in #. We shah do this by considering 

the nth component of the trajectory at z,-, . Above we have shown that given any 
V; E K,‘\{O), there exists r,-,($) such that x~(&-~(#), 4) = 0 and &(tn-r) < 0. 
By our choice of K. and Kl there exists an open set % C G9,, containing K,, and 
Kr such that our existence theorem (Mahaffy [177) gives us a unique solution 
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for each C/ E %. From Hale [IO, p, 411, we have x,(t, #) depends continuously 
on both t and #, i.e., x(t) exists and is continuous on [0, -/-co) so if we let ,@(t) 
denote the solution at time twith initial data &< and if ($7C}+#0 in the u/, topology, 
then for any b < +-co there exists a k, = k,(b) such that for k > k, we have 
z”(t) -+ x0(t) uniformly on [0, b] and so zn(t, &,.) -+ ~,(t, #,). We want to show 
that tnP1(4) is continuous in 4. 

Fix $i E K,\(O). Then zn(tn-r(&); &) = 0 and z&(t,-J < 0, so by the 
Implicit Function Theorem (Lang [15, p. 1251) there exist neighborhoods V1 
and @r of t,-, and #i and a locally unique continuous function ~-i: qT/, -+ Y< + Y 
such that x,(~i($) - Y; #) = 0 for all # E %r . By uniqueness it - Y = 
Lo on 4& and so t&4) . is continuous in # locally. However, we can do this 
for any #r E K,\(O), so we can extend this to all of K,\(O). Thus we have found 
our continuous map pi: K,\(O) ---f (Y, GO) with pi = t+r(#) + Y and x7-l(d)($) E 

Kl\KO. 
As stated at the beginning of the proof, a very similar proof gives (ii). Observe 

that in part (iii) s1 = to and s2 = t, where t, is the time when xi(t,) = 0 and 
the trajectory is passing into S(1, O,..., 0). Then since (ii) implies we have initial 
conditions for (i) again the cycle repeats and so on giving us (iii), and thus 
completing the proof of the theorem. Q.E.D. 

5. PERIODIC SOLUTIONS OF THE GOODWIN-TYPE MODELS 

Theorem 4.1 gives us the oscillatory phenomenon of the system (2.2). To 
show periodicity we want to make use of Theorem 2.1. We define the operator 
f: K, ---f K, by 

r+ = %($)(1cI) 

where 44 = ~~04) + d 7 7 z ,J+)($)) and z,(&#) e K with zt(#) a solution of (2.2). 
We must show that the map 9 is completely continuous and 7 is bounded 
continuous. 

PROPOSITION 5.1. The map F: Ko\{O} -+ K,\(O) is completely continuous. 

Proof. Since zt($) is continuous in t and #, and $I/) is continuous in # as 
shown above, Yz/ = z,&#) is continuous in 4. Let (Y#,>~=, be any sequence 
in K, . Since K, is bounded in the V. topology, {Y#,C~~zil, is uniformly bounded 
by the bound on K, which implies {~#&“r is equibounded. Since .zt(&J is a 
solution of (2.2) and using the fact that z(t) E 9 we can use (2.2) to obtain a 
uniform bound on the derivatives of ~~($3. In particular, 
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for some M’ independent of s, , sa , and &, This implies xzil.l is an equi- 
continuous family of functions. (Recall xnd E %‘([-Y, 01; R) stands for the 
function Qt + 19) for B E E--P, 01.) Using the Ascoli-Arzela Theorem (Yosida 
[20, p. 851) we have that the sequence {~~“~)j~=~ has a convergent subsequence. 
The other components x~(T(#~)) E R, i = I,..., n - 1 form a sequence which 
have a convergent subsequence by the equiboundedness. Combining these facts 
we have (Y$J~~i=i is relatively compact in K, which implies r: K,\(O) -j KO\{O) 
is completely continuous. Q.ED. 

Kow we must obtain a uniform bound on the map T. 

PROP~SITIOK 5.2. The map 7: K,\,(O) + [ 7, ~2) is bounded contimlous. 

Boof. We have shown 7 is continuous in Z/J, so it suffices to show that the 
map T is equibounded. In Section 4, we showed that for each $ E K,\(O), T(#) 
is finite. However, in this proposition we need to extend those results to obtain 
a. uniform bound independent of the initiai data. Let ti : i = I ,..., n - 1, and or 
be as before, then we shall show that there exists a constant M such that TV < 
:W for all #J E k’,\{Oj. A similar argument will bound ~a and thus we obtain our 
uniform bound on the map 7. 

For clarity we shall divide the argument into two lemmas. The first will 
bound the time for which the nth component of x can be outside a neighborhood 
of the origin. The second will bound the time t, independent of initial data. 

~Eh’iM.4 5.1. Assunze rt( .) is suficiently large. Then there exists a time S, = 
S,(S) such that xn(t) < 6 for all S, < t < 71 where 6 is as in (HI). 

Proof. Let 8, = 6 where 6 is as in (Hl) and then choose a,_, such that 
s,-1 = /3&/2C4 ) i = 2,..., n. Define N = max zsw maxls+(] xi \I. We have 
already shown that for 0 < t < TV, xn(t - Y) > 0, which impliesf(x,(t - Y)) < 0. 
Using this fact we see that 3il(t) < -kc,(t) for 0 < t < or . From the basic 
differential inequalities (Coppel [6, p. 281) we find that 

xl(t) < ecbt q(O) < ecbtN 

So for or sufficiently Iarge we see there exists S, =IL S,(r,) such that xl(t) < 6, 
for all S, < t < or and independent of initial data. 

Now assume S, < t < 71 then kg(t) < 01,6, - ,&x2(t). Again, we can use 
differential inequalities to obtain 
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As before, if pi is sufficiently large then there exists Sa = S,(S,) such that 
x2(t) < 6, for S, < t < or where 6, E (201,SJfl.J. 

Continuing in the same manner we see that for S’-r < t < or 

so for TV sufficiently large there exists Si = S&) such that xi(t) < 6< for 
S$ < t < Q-1 . In particular, there exists S, = S&3,) such that am < 6, for 
all S, < t < 7r , and this is independent of the initial data. Q.E.D. 

We now want to demonstrate the following: 

LEMMA 5.2. The time t, of Section 4 is bounded independent of initial data. 

Proof. We can assume without loss of generality that t, can be made ar- 
bitrarily large for an appropriate choice of 4. If not we would have our uniform 
bound and the proof would be complete. For 0 ,< t < to we have Xi(t) > 0. 
From Eq. (4.2a) we see that iff,(s) = f(~%(s - Y)), 

xl(t) = eebt [q(O) + jotl’(s) ebs ds]. 

For t < to using (4.2b) we see that 

> edRzt [as jot [q(O) + josfl(T) eb7 dT] e(az-b)s ds] 

= evRzt [a,r,(O) jot e(Rz-b)s ds + 012 jOtfl(T) eb7 jt e(Pz-b)s ds d7] 

since fi is continuous and bounded. Let us assume b f ,& to proceed with our 
calculations. The special case b = & is handled in the same manner. 

x2(t) 2 eeast 
I 
a,x,(0)((e(“~-b)t - l)/& - b)) 

t % 1 
tfi(~) eb7((,(R~db)t - e’P~eb”)/(& - b)) d’]. 

0 

But for t < to, x,(t - Y) > 0 which impliesf,(t) < 0 and so 

x%(t) > eCazt[(e(a2-b)t - l)/(/% - 41 [az (x,(O) + jotfdd eb’ d~j]. 
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Assuming 1, b r, we have 

= .~lp,.x,(r) with -4, independent of initia! conditions. 

As in the prooE of Lemma 4.1 we want to find a time T, such that for al! 
t b Tl> x2(“) is monotonically decreasing. Take T1 > Y such that ~~(rl-~) < 
A,& and assume without loss of generality that Tr < t, . Fkecall from Lemma 4.1 
tbat we showed that once &(t’) < 0 for some t’, then k&t) < 0 for at least 
z’ < t < t, . Suppose for the moment that x2 is nondecreasing at ieast untii 
: = Tl then x2(T1) >, x2(r). But from (4.2a) 

q?;j = ,-b(V) 

Using this we see that 

by choice of Tl, which implies ti,(T,) < 0 contradicting xa nondecreasing 
until t = T, . Xote that T, is independent of the initial conditions Q/J. 

Kow we shall show ky(t) < 0 for t -2 T, for some Tz independent of the 
initial conditions (assuming to sufficiently large). Using (4.2b) we see 

3 (+&)(l - e+) xz(Tl + I). 

From (4.2b) and knowing q(t) < xl(t’)e-b(t-t” we end that 
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where cr = @z(r,+I) and ca = &eab(Tl+r), and if b = & 

i(t) = [Cl + C& - (Tl + l))] e-a+ 

where cr as before and ca = /?ae6JTl+1). Using (5.1) we see that x2(t) < 
i(t) x,(T, + 1). H owever, one can easily see from the definition of [ that c(t) 
is an exponentially decreasing function of t, and so there exists a time T2 > 
Tr -/- 1 such that [(Ta) < (1 - e-as). Clearly, T, depends only on b, ,& , /3a , 
and Tr . If we suppose xs is nondecreasing at least until t = ?‘a , then 

by our choice of T, , which is a contradiction of x3(t) nondecreasing until 
t== T,. 

Assuming we do not reach t, , this argument can be continued in a similar 
fashion until we reach T,-, which depends only upon the parameters of the 
system and not JL the initial data. From this we have for t > T,-, , x,(t) decreas- 
ing for i = I,..., n, and so 

Now take T = max(T,-, + Y, S,}, where S, is as in Lemma 5.1. Then 
arguments such as those in the proof of Lemma 4.2 reveal that t, < T + r and 
so t,, is bounded independent of initial data # E K,\(O). Q.E.D. 

As in the above lemma for each tie1 we can show that $(t) < 0, j 3 i for 
all t such that T < t < ti-l for some T depending only upon the parameters 
of the system (assuming ti-l sufficiently large). Having found this T let To = 
max{T + t, S,), where S, is as in Lemma 5.1. Then arguments similar to 
those behind Lemma 4.5 show that tiwl < Ti-l + Y where Ti, is as defined 
in that lemma and TieI is independent of the initial data. In particular we have 
a uniform bound on t,-, = r1 - Y which proves the proposition. Q.E.D. 

It remains to prove that 0 E: V0 is an ejective point of the map f. (Recall our 
completely continuous map Y is in the space g0 , not $7.) We must establish an 
analog to Theorem 2.2 in order to show ejectivity of the origin in %?, . The main 
problem is that in condition (ii) of Theorem 2.2 the projection “n is defined in V 
while we are interested in results in %?,, . We shall, therefore, analyze carefully rrh 
as defined and employed in Hale [lo]. 

Let X, be a solution of the characteristic equation (2.6) with Re ;lo > 0. Let 
Y,,0 be a basis for P,,, , where PA, is the eigenspace of (2.3) associated with h, in 
the decomposition of%? by X, . If PfO is the eigenspace of the adjoint equation (2.5) 
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associated with A, then let @,,” be a basis for P^“, with (@+ 1 YAO) = l, where 
(4, #) is the associated bilinear form 

From Hale [IO, p. 173 ff], we see that for any 4 E %‘, v,,,+ = v/,,O(@j,u I 4). From 
this we see that condition (ii) inf(ii nAO# 11: $ E z, j/ $1; = 6) > 0 is equivalent to 
inf{j(diAO, #)I: $ E E, !j I/J jj = S} > 0. To analyze (Qn, , I/I) we must have a basis 
4iA0 for the solutions of the adjoint equation (2.5). Let @,,a(t) be a d x n matrix 
function and #(t) = (fI(t),..., ,$n(t))T b e an n-vector function, then using the 
bilinear form as in Hale [lo, p. 1781, we have the following: 

since the matrix B has only one nonzero element. If we fix our basis aA , then 

(BA,, 4) = 6(+) with b(.) being a d-vector. From the special form of (5.2) one 
sees that (@,,, , S/J) can be thought of as a mapping defined on R+l x U([-Y, 01; R) 
or $YO , which is the space in which we are interested. 

In the special case when A, is simple then a basis @, of (2.5) has the form 
QAO(s) = e-“osb for some eigenvector b. Let b = (& ,..., b,) and P(t) = 
(t*(t),..., [,(t))T, then (aA, , 4) becomes 

(@*, ) ig = f b&(O) + !‘” b,f’(O) fn(8) e-n~(e+r) do. 
i==l --T 

(5.2a) 

iMine (GA, , .)w, on V. such that if we have $ in V it agrees with (Qh, , $), 
that is, for $I E %? as given above and for & E e. with I,$ = (fI(0),..., f++I(O), 
E,(t))T, t E C-Y, 01, we let (@^,, $a)~, = (CD,,, , $). We shall n.ow show in a 
manner similar to that used in establishing Theorem 2.2 (see Haie [lo, p. 250]) 
that for $+, = (,$JO),..., f,_,(O), fJT EV* we have the following: 

PROPOSITIOX 5.3. Suppose tke following conditions me fu@lied: 

(i) There is a characteristic root X of (2.3) satisfying Re h > 0. 

(ii) There is a convex set K, 2 %YO , 0 E K. , and 6 > 0, suck that 

v = a(S) = rnf(/(GAO , $J~)Q,, 1: $J, E K,, , ‘1 $0 yqo = s> > 0. 

(iii) Tkere is a hounded continuous function 7: KO\(0) -+ [Y, co), suck that 
the function deJined 6y 

r+o = ~7(&o)wJo)~ 40 f Ko\W 

(where zt is a solution of(Z.Z)), maps K,j(O] into K, and is completely continuous. 
TJzen 0 E W0 is an ejective point of F. 
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PYOO~. We want to make use of as much of the machinery developed by 
Hale [lo] as we can in V? before projecting into @, to establish this result. Let 
9: Q -+ %a be the natural projection, that is, if lbC = (#r , z,/~s ,,.., z/J’ E V, then 

We shall follow the proof of Theorem 2.3 in Hale [lo, p. 2511. Let h, be a 
solution of (2.6) with Re X, > 0. As stated before there exists a basis Y,,, for 
P,+, such that for any tic E V, v~,$~ = Yf4b with b = b(#,) = (Dho, lclC) where 
@,,n, is a basis for Pf . We want a posrtrve definite quadratic functional V: 
%?,, + R with V($) =“&“D& and with the property that, for anyp > 0, there is a 
6, > 0 such that, for any 6, 0 < 6 < 6, , @(#) c lim inf,,,+(l/t)[y(,~(~)) - 
Y(#)] > 0 if V(Q!J) > p2@, # E B, C 9?a . Here Bs is the closed ball of radius 6 
in %a . This will be used to show solutions starting in a neighborhood of the 
origin of V,, are forced out in finite time giving ejectivity in our space V, . 

If we have a real basis then b E Rd, where d is the dimension of PA, , so 
9(71-@) = 9(YAF~) = 9(YA0)b E %?,, . Using (5.2) we see that for any #r , $a E V 
with @r = &J2 , then b(&) = 6(&). Let # E 9,; then we can associate a vector 
b*(+) = (QAn, , #)EpO so that whenever 3 = 9’#C we have b(#,) = b^(#). 

Following Hale [lo, p. 2321, if rAOxt = YAOy(t), where xt = x,(#J,) is a solution 
of (2.2) with x0 = 4, E V then there exist d x n and d x d constant matrices e 
and & with the spectrum of B = {h,) and an n x 1 vector function Iz: V + R” 
with Jz(#J = ( f(G(-Y)) - f’(0) &(-Y), O,..., O)T, f and f’(0) as before, such 
that y(t) = By(t) + &(x,). However, it is easily seen that @X/J,) depends only 
on the nth component of #C . Define A(#) = (f(&( -y)) -f’(O) $J~(-Y), O,..., O)r, 
then for #, such that .9#G = #J E %?a we have rZ(#J = A($). 

Let 4, E %’ be any Z/J, such that 9($,) = #J E %‘a and follow Hale [lo, p. 2321. 
Let P(rng.xt) = 9(Yr,o) y(t) with y(t) satisfying y(t) = By(t) + e&~), where 
8, C?, h, zt as before. Suppose D is a d x d positive definite symmetric matrix 
satisfying BTD + DB = I and define V(4) = JTD$, where P(rr,O#J = 9(Y#. 
If g(#) = CA(#), then 

ti*(#) = 6=& + 2gTD6. 

Let /P = min{&TD& j 6 1 = 1) and y = max{@D&: ! 6^ J = l}. Suppose T: 
[0, co) --z R is a continuous nondecreasing function, ~(0) = 0, such that 
/ g(#)l < ~(6) j Z$ / for j # ( < 6. By examining the higher order terms of the 
Maclaurin series in (4.3), similar to the analysis of the linear coefficient we find 
that the quadratic coefficient dominates the terms of order 23 in some suffi- 
ciently small neighborhood of the origin. Thus, there exists +j > j C? ! If”(O)1 
and 6 > 0 such that j g($)l < I f? 1 I A(#)/ < +j i 4 I2 < +j’S I# I = ~(8) I # I for 
J # j ,( 6. Givenp > 0, choose So such that 4~ 1 D j ~(6,) < pp; then as long as 

!$I <~,O<S<&l, and V(4) > p2S2, we have 

p*w 2 $ V($) > 0. 
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We thus have the desired functional V: %?a -k R1 and can complete tht: proof 
of Proposition 5.3 using arguments similar to those of Kale in his proof (see 

[IQ], p. 251). 
Condition (ii) of Proposition 5.2 implies that 

9 = mf{V($;ji # 1;~~): $ E K, , ~1 # 1,~~ -+ O> > 0 

since there is a p > 0 such that /(Q$ , $);gs 2 = 6 i2 < /3-2V(tf%). Ziow we have 

the proper machinery for showing ejectlvlty in the space %‘,, , and the rest of 
the proof follows easily with minor notational changes as in Hale [lo, p. 2511. 
rote that the proof of Hale only uses that 7 is bounded continuous. Q.E.D. 

Thus, we have seen that in order to show ejectivity in our situation we can 
attempt to verify that there exists 6 > 0 such that 

infN%, , $)v, I: 4 E K, ,I; 4’1 k. = 6) > 0 

Let US elaborate on this condition and the quantities it involves for our example. 
-Assume X E I?+, then 

and thus by (2.6) we see that if A, is an eigenvalue such that lie A, > 0 then 
we must have Im(A,> + 0. Let A, = p0 + iaa be an eigenvalue such that A, lies 
inside I”where ris as in Section 3; then we can assume I;L~ > 0 and 0 < o0 < ~jr. 

We shall now find a basis QAO of (2.5) assuming A, is simple. Let 

~(0) = epAU8(bl ,..., b,) for 0 E l--f, 01, 
then 

and 
Tj(O) = -Ah,e-Aqbl ,..., b,), 

-y(Qii - ,q(f? + Y)B = - e-“oe(bl ,..., b,)A - e-hoae-Aor(hl :..,, b,)B 
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Substituting these into (2.5) and multiplying by &J we see that 

--h&b, >.*., f&J = - C-4 + %A, --p&2 + c& ,‘.., --Pibi + c&l,,, ,..., 

- Pnbn + b,f’(O) e-+). 

SO componentwise we obtain the following equations: 

X,b, + bb, - azb, = 0, 

Aobi f &bi - cxi+lbi+l = 0, i = 2,..., n - 1, 

4,bn + ,&bn - e-“@f’(O) b, = 0, 

which imply that 

b, = - 
b 7 A, bz ’ 

bi = oLi+l bi+l , 
Pi + 43 

i = 2,..., n - 1, (5.3) 

b, = 
e+Tf’(O) b 
Pn + 43 l’ 

But (5.3) implies 

..* aJ’(O) ephor 

b1 = (b + ii& + 4,) .-. 0% + 4,) ” ! 

so by (2.6) we have that b, can be chosen arbitrarily. Let 6, = 1. Then from 
(5.3) we must have 

6, = (b + 4J/‘~z , 
(5.4) 

Using this we see that T(S) = (Q(S),..., TV), Q(S) = bie-hos with bj from (5.4), 
forms an appropriate basis for (2.5) with simple eigenvalue A,, , so take CD,,, = q(s) 
for s E [-r, 01. 

We shall establish that, indeed, A, must be simple. Suppose that A, is not 
simple. For ease of argument let us assume X, has a multiplicity of two. In this 
case, we seek a solution of (2.5) of the form r(s) = (bs + c)e-A03 with b = 

(b, >...> 6,) and c = (ci ,..., cn). Using this we find that 

and 
7j(s) = (--h,bs + b - X,c) e+” 

(-5.5) 
+$)A - ?(s f Y)B = -(bs + c) e-@A - (bs + br + c) e-Afe-AoSB. 
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By equating the terms in (5.5) of form se-@ we see that in this case is the 
same as (b, )...> b,) computed above for X, simple. 

Now considering the terms in (5.5) of the form e-‘\o” we have - x,c = 
- CA - (br + c)e-VB or equivalently 

b 0 . ..~....... 0 
-312 A . 

[(b, !I’,, 
0. :. : 

6,) - 4&l ,..“l GJj = (Cl ,‘.‘> Cn) . . . I 
.~ ~. 3. 
. . . . 

. . * 0 

0 .....’ 0 --Cl!, 

- reehor(O ,..., 0, bJ’(0)) - (0 ,... $ 0: cJ’(O) ewAor). 

Expanding this term by term we see that 

4,~ - 4 -k bc, - cx*c~ = 0, 

X,C~ - b, + /3ici - ui+lCi;il = 0, 1, = 2,.,., 12 - I, 

bob, - b, f &A - rb,f’(O) esAor - c,f’(O) ewhor = 0, 

So we find that 

61 = (~2 + b,)/@ + 4J, 

ci = (Ci+1%+1 + W(Pi + &I)> 

E, = [bn + (Yb, + cI)J’(0) eFAorj/(/3n -: A,). 

Using the characteristic equation (2.6) we can also write 

6% = hLi(P, i 4)) f 0% + Cl)@ + 43) 
L 

(I% + 4l! 
Ii j=2 

Since b, is arbitrary let us assume b, = 1 and so bi = (i; + A,) 
(n;=* ~j). From this we can calculate the ci’s obtaining 

c - B - /,a ; h, 3 y + ~1 b, , t i 

ci = -f (l/v& + 44) + 
i j&i 
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Using the expression for c, we see that 

However, since h, has a positive imaginary part we obtain that the left side of 
Eq. (5.6) must have a negative imaginary part which is a contradiction. This 
shows that A0 cannot have a multiplicity of two. By assuming a multiplicity of 
K f 1 we would seek a solution of the form q(s) = (bs” + c+~ + *..)e-Q. 
A similar calculation on the coefficients of the two highest powers of s will give 
similar contradiction as in the case when h, was assumed to have a multiplicity 
of two. This shows that h, is indeed simple. 

Let # = (& , t2 ,..., fn)T E %?, then (5.2a) g ives a bilinear form where we may 
take b, = 1. Suppose bj = cj + idj , j = 2 ,..., n, where cj , dj are real. Splitting 
the bilinear form into its real and imaginary parts we get 

Reh #)vo = zl c&(O) + f’(O) /IT e-‘Lo(B+r) cos[~,,(O + Y)] t,(8) d0 (5.7a) 

and 

Using these along with our previous arguments and findings w-e can finally 
establish the following theorem: 

THEOREM 5.1. Assume the following hold: 

(i) Y is su#iciently large such that arctan r/(rb) + Cj”=;;’ arctan X-/(rpj) < 71; 

(ii) (Hl); 

(iii) D(iv,) < C, . 

Then (2.2) has a non-constant periodic solution. 

Proof. Condition (iii), in light of Proposition 3.1 yields the existence of an 
eigenvalue h, with Re h, > 0. The hypothesis (HI) is used to establish Proposi- 
tions 5.1 and 5.2 which give us the bounded continuous map r: K,,\{O} 4 [T, co) 
and 7: K,\(O) -+ K,\(O). We need only argue the existence of a 8 > 0 such that 
inf{((Qho , 4)~~ I: 4 E K, , (1 Z,!J I[w, = 6) > 0. Then Proposition 5.3 guarantees 
that (0) is an ejective point in V, of the map 9. Combining these results, we 
find the hypotheses of Theorem 2.1 satisfied and thus the conclusion yields 
the existence of a fixed point of the map F. A fixed point of the map F implies 
the existence of a non-constant periodic solution. 
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Thus, we must examine inf{/(sPAO, $)a, i: 4 E K, , ;! # ,iy;‘, = S>, which means 
(@)LO , #) must be considered. The proof follows the technique of Hale [lo, 
p. 2661. Having computed a basis GA above it suffices to study the bilinear form 
given in Eqs. (5.7a) and (5.7b). Using’(5.4) we see b, = (b + h,)[~~~s’ (& f A,)]; 
(blip ~2~). Since h, = p 0 + io, , where 0 < ~a < ~T/Y, we find that 

arg b,, = a&b i X0) fl (P. + h > [:I: 3 01 

n-1 

1 arctan(a,;(b + pa)) + C arctan(a,l(& + pa)) 
j=z 

n-1 

< arctan(7r;rb) + C arctan(nirj$). 
i=2 

Using condition (i) we see that arg b, < 77. By looking at the arguments of each b, 
given by (5.4) we can obtain 

i-l 

arg bi = arctan(o,/(b -+ pa)) + c arctan(uo,‘(pj r pa)), 
i=2 

and so it is easy to see arg bj < arg bj+r for each j = 1,. .,, n - !, (arg b, = 0). 
For b, ,..., b, we have 0 < arg bj < V, which gives Im 6, > 0, j = 2 ,.,., n, 
which in turn implies dj > 0 for j = 2,.,., n, where bi = cj + idj. 

Suppose for some 6 > 0 there exists a sequence & = (x2,&,“) E K,, with 
I\& ‘iv0 = 8 such that /(GjAu, &JBO / + 0 as k -+ co. This would contradict 
Wl(@l, , t&f, I: * E K. , I/ # I/e:, = S> > 0. We know f’(0) < 0 and 0 < G,, < 
nj~ whrch implies sin[o&0 + Y)] > 0 for 6’ E [-r, 01, and so 

-f’(O) s”,. e-dQ+~) sin[uo(O + Y)] f,(e) dB > 0. 

Since each dj > 0 for j > 2, if ](@i,0, &JV, i -+ 0 then its real and imaginary 
parts -+ 0 and so (5.71s) implies ,$j7C(0) --t 0 for j > 2. But &J[,(t) is nonnegative 
nondecreasing in t on [-Y, 0] and f,I”(O) + 0, so we find t%‘:(t) - 0 uniformly 
on [--I,, O]. Since b, = c1 = 1, from (5.7a) and the information on & from 
(5.7b) we see fr7c(0) -+ 0. Using this knowledge we see that xoM + 0 and +n” -+ 0, 
which contradicts /I & /!e, = 6. Therefore there exists 6 > 0 such that 
inf{i(oA 0 , 4)~ 0 j: $ E K, , ]I $11~ 0 = S> > 0. Q.E.D. 

COROLLARY 5.1. Assume the following hold: (i) n = 3; (ii) (Hl); (iii) 
D(ivo) < C, . Then (2.2) has a non-constant periodic solution. 

Proof. For n = 3 we find the hypothesis (i) of Theorem 5.1 holds for all 7. 
Q-ED, 
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COROLLARY 5.2. Suppose b(n,“_, ,Bj) < -f’(O)(nj”=, q). Then there exists an 
Y suficiently large such that (2.2) h as a non-constant periodic solution. 

Proof. It is easy to see that there exists an rr such that hypothesis (i) of 
Theorem 5.1 holds for all Y > Y, . From our comments after Proposition 3.1 
we see that since b(n,“=, &) < -f’(0)(n9t2 Q+) there exists an Ye such that 
Y > y2 implies D(iv,) < C, . And finally by our comments after the statement 
of (Hl) we observed that there exists an r3 such that Y > Ye implies f satisfies 
(Hl). Let ? = max(r, , ys , ~a}, then Y > f implies the hypotheses of Theorem 5.1 
hold. Q.E.D. 

6. CONCLUDING REMARKS 

Goodwin [8] suggested that negative feedback or repression in biosynthetic 
pathways might be used to explain experimentally observed epigenetic oscilla- 
tions in living organisms. The evidence for epigenetic oscillations in prokaryotes 
is not unequivocal. Even if oscillations do arise, they may or may not be the 
result of a repressible system. (An asynchronously grown cell culture showed 
only damped oscillations, and this was for a positive feedback or inducible 
system [13, 141.) In the repression models Goodwin conjectured that inserting 
delays could have a destablilizing effect and result in oscillations. Banks and 
Mahaffy [2] showed that for a large class of repression models (the case when 
p = 1 in (2.2)), th e introduction of delays, whether discrete or distributed, will 
not produce oscillations. In fact, this particular class of models has a unique 
asymptotically stable equilibrium. 

Our results in this paper show conclusively that there are ranges of parameters 
for which the system (2.2) has periodic solutions. Computer simulations for 
certain parameter values did seem to approach a stable limit cycle. Using our 
knowledge of the parameters from the derivation of the model, we inferred a 
range of biologically significant parameter values (see Banks and Mahaffy [3]). 
Using these values, we found that in our computer simulations the solutions 
approached the equilibrium solution rather than oscillating. (The delays required 
to produce oscillations were too large to be of biological significance.) However, 
computer simulations can be misleading as was demonstrated by Banks and 
Mahaffy [4]. In [4] we proved that a cyclic gene repression model was asymp- 
totically stable even though other investigators had conjectured, based on 
computer results, that sustained oscillations could arise. This emphasizes the 
importance of an analytical proof of oscillations whenever it is possible. 

The results of this paper give valuable insight into the destabilizing effects 
of the parameters on the system (2.2). In particular, the reader is referred to 
the linear analysis of Section 3. This knowledge shows the relative importance 
of the parameters in our system and so can be useful in predicting the behavior 
of modifications of (2.2). For the system (2.2) we believe, based on the analysis 
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pesented here and in [3], that other biological factors must be taken into 
account before sustained oscillations of biological significance could arise in 
the models. 
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