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Abstract. A technique is discussed for locating the Hopf  bifurcation of an 
n-dimensional system of delay differential equations which arises from a 
model for control of  protein biosynthesis. Certain parameter values are shown 
to allow a Hopf  bifurcation to periodic orbits. At the Hopf  bifurcation the 
periodic orbits are shown to be stable either analytically or numerically 
depending on the parameter values. 
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1. Introduction 

There have been numerous studies of periodic enzyme syntheses for populations 
of prokaryotic and eukaryotic cells. A ,summary of some of the experimental 
studies can be found in Tyson [13, 14]. The oscillations are observed in both 
synchronous and asynchronous cell cultures which suggests that the autogenous 
oscillations in enzyme activity may be controlled by a negative feedback system 
for the synthesis of the enzyme. A variety of oscillatory phenomena in biology 
are thought to arise because of negative feedback, from high frequency neural 
activity to longer period circadian rhythms and endocrine oscillations [ 15]. There 
has been considerable interest as to whether or not the classical model of 
repression proposed by Jacob and Monod [6] could account for oscillations. In 
this paper we determine when oscillations can arise in a class of models for 
genetic repression with time delays and show that there is a stable periodic orbit. 
A stable periodic solution is one which could be observed experimentally. 

Goodwin [4, 5] proposed a mathematical model for genetic repression which 
was developed from the theory of Jacob and Monod using biochemical kinetics. 
This model has been extended and studied extensively [see e.g., 2, 9, 10, 13, 15]. 
Previous work has been mainly concerned with the existence of periodic solutions 
to the systems of differential equations for this model. In this paper we are 
interested in studying the stability of small amplitude periodic solutions. Mahaffy 
[8] showed the existence of  periodic solutions for an n-dimensional model of 
repression with delays and also demonstrated a technique for calculating when 
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a small amplitude periodic solution from a Hopf  bifurcation occurs. This tech- 
nique for finding a Hopf  bifurcation is combined with a technique developed by 
Stech [1 l, 12] for determining the stability of a Hopf  bifurcation. 

In Sect. 2 we present the model and find a region where periodic solutions 
may exist and then use a method for locating where a Hopf  bifurcation occurs. 
A theorem is given that determines a region where a Hopf  bifurcation can occur 
as the delay varies. For a collection of examples the critical delay is computed 
numerically. In Sect. 3 we present formulae which allow one to compute the 
stability of  the Hopf  bifurcation for the model. For a particular range of  parameter 
values we show that the Hopf  bifurcation is always stable. We also give numerical 
results which suggest that for the n-dimensional repression model the Hopf  
bifurcation always results in a stable periodic orbit. 

2. The Hopf bifurcation in a genetic repression model 

The mathematical model for genetic control by negative feedback or repression 
was first derived by Goodwin [5]. Using non-dimensional variables we present 
the n-dimensional model for repression with a discrete delay, r, representing 
transcription and translation. It is given by the following system of differential 
equations: 

1 
Xl(t) - b l x l  -- b l x l ( t )  

l + [ x , ( t - r ) +  ~ , ]  p 

=- f ( x ,  ( t - r) ) - bl x l  ( t ) ,  (2.1) 

Y c i ( t ) = x i _ l ( t ) - b i x i ( t ) ,  i = 2 , . . . ,  n, 

where bi represent non-dimensional decay rates, p is the Hill coefficient for 
repression, and ffi are the constants used to translate the equilibrium of the model 
to the origin and can be found from the unique solution to the system of equations 
given by 

f (0)  = 0 and Xi-l = big,, i = 2 , . . . ,  n. 

The nonlinear system (2.1) may be written 

Yc( t) = A x (  t) + B x (  t - r) + H ( x (  t - r)), (2.2) 

where A = [a0] is an n x n matrix whose only non-zero elements are a~i = -b i  on 
the diagonal and l 's on the subdiagonal and B is an n x n matrix whose only 
non-zero element is f ' (0)  in the (1, n) position. H(O) is a nonlinear n - v e c t o r  

function with an expansion of the form 

3 

H(r E 4) 
j=2 

where ~ (g,) are the appropriate symmetric, bounded j-linear forms on the Banach 
space C ( [ - r ,  0]; R") with the usual sup norm. A more detailed description of 
/-/j(4') is presented in Sect. 3. 
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The character is t ic  equa t ion  for  (2.1) is given by  det[A + B e -xr - h i ]  = 0, which 
u p o n  expans ion  becomes  

I~ ( b , + A ) - f ' ( 0 )  e - X r = 0  (2.3) 
i = 1  

where f ' ( 0 )  = - [ p 2 ~ - 1 / (  1 + X~)2]. I f  we assume that  for  r = 0 (the ord inary  differen- 
tial equa t ion  case) all solut ions A of  (2.3) have Re A < 0, then it was shown in 
Mahaffy  [7] that  whenever  

- f ' ( 0 )  > f l  b~ =-/3 (2.4) 
i = l  

then there exists an t o > 0  such that  for  r =  ro, (2.3) has two pure ly  imaginary  
solutions • = +iz, o and  all o ther  solutions A have Re A < 0. I f  we consider  r as 
the b i furca t ion  p a r a m e t e r  then as r increases we have a t ransverse crossing of  
the imaginary  axis by a pa i r  o f  eigenvalues A, thus a H o p f  b i furcat ion occurs. I f  
f ' ( 0 ) < / 3 ,  then  all solut ions A of  (2.3) have  Re A < 0 ,  hence the system (2.1) is 
locally asymptot ica l ly  stable. For  the special  case when  p = 1, it has been  shown 
that  (2.1) is global ly asymptot ica l ly  stable [1, 3]. 

When  (2.4) is satisfied and (2.1) is locally stable for  r = 0, Mahaffy  [7] gives 
a technique for  comput ing  the critical value ro at which the H o p f  b i furca t ion  
occurs. I f  we define 

e( iv )  =- [I (b;+it,), 
j=l 

then  compu te  z, o such that  [P(ivo)J=lf'(O)[ which has a unique solut ion as 
[P(0)[ < [if(0)[ and [P(i~)I increases monoton ica l ly  with p. The critical value of  
the delay ro is found  by  the fo rmula  

7r - arg P(ipo) 
ro - (2.5) 

~'o 

where  

arg P(ivo) = ~ arctan(uo/bj) .  
j=l 

It is o f  par t icular  interest  to determine for  a fixed p what  values of  bi allow 
there to be  an r I> 0 such that  the system (2.1) is locally unstable.  We summar ize  
our  findings in the fol lowing theorem:  

Theorem 2.1. Let f lo - - -p - l (p -  1) (p+I)/p. I f  0 < / 3  <rio,  then there exists an ro>~O 
such that (2.1) is locally unstable for all r > ro. I f  fl >t flo, then all solutions A of  
(2.3) have Re A < 0 for all r ~ O. 

Proof. From Mahaffy  [8] we see that  the critical value flo is when  /30 = If'(0)l. 
Solving for  the equi l ibr ium solut ion we find that  flxn = 1 / ( 1 + 2 ~ ) ,  so i f ( 0 ) =  

- p W l  ~ - p - k l  _ p ~ - l / ( 1  + ~ ) 2  = _ p f l 2 ~ + l .  Hence  I = ppoXon but  1 = flo~on + poXon f rom the 
equi l ibr ium solution. Combin ing  these we see that  

/30 = p - l ( p _  1)~p+l~/p and Xon = ( p -  1). -~/p 
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N o w  from above we see that 

~rl l 
If'(o)l-- p/3=~zg +'-- p/3 L~-  "] =/3 +/3[(P - l ) -p / ( l  +.~P.)]. 

If /3 </30, then 2.  > ~o. which implies -o _ x .  > (p 1)-1  From this we see that 

If'(0)[ =/3 +/3[(p - 1) - p / ( 1  + ~z~.)] > /3  +/3[(p - 1) - p / ( 1  + (p - 1)-1)] --/3. 

If fl >/30, then a similar argument gives If'(0)[ </3. By applying Theorem 1 of  
Mahaffy [7] which uses the argument principle and including any regions which 
are locally unstable in the ordinary differential equation case (r = 0), we establish 
our result. 

Formula (2.5) gives a technique which computes numerically where a Hopf  
bifurcation occurs for the parameter r when parameters p, bi and n are fixed. In 
Fig. 2.1 let n = 4  and bl = 1, i = 1, 2, 3, then for different values of  p and b 4 the 
critical value is ro where the Hopf  bifurcation occurs. Note  that b4 =/3 in this 
case. When p = 8  the region 0 . 3 < b 4 < 0 . 3 5  is where (2.1) with r = 0  is locally 
unstable. 
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Fig. 2.1 .  A series  o f  curves  for different p values across  wh ich  a H o p f  bi furcat ion to a per iodic  so lut ion 
occurs  in the de lay  r and b 4 phase  space .  Here  b l = b 2 = b 3 = 1 a n d  n = 4 
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3. Computing the stability of the Hopf bifurcation 

In the previous section a technique was presented to determine where a Hopf  
bifurcation occurs for (2.1). In this section we apply a method developed by 
Stech [11, 12] to determine the stability of  the bifurcation. The notation used 
below parallels that of Stech [12] for a generic Hopf  bifurcation. 

Define 

A(a,A)==_[IA - A - B e  -;'r] 

where A and B are defined in (2.2). Hence A'(a)  = Ok(a, a)/Oa is an n • n matrix 
with l 's on the diagonal and rf'(O) e - x r  in the (1, n) position. From the sparsity 
of A(a, A), it is easy to find A- l (a ,  a). In fact we shall later show that only the 
first column of A -1 is needed, so with this information we write 

1 
a - l ( a , . ~ )  - 

det a ( a ,  A) 

fi  ( b , + a )  .. 
i = 2  

f i  (b,+ A) 

A left eigenvector for A(a,  A) at h = ho = ivo is ~:* = (1, c2 , . . . ,  cn) where 

k - I  

Ck= I-i (bi+h0), k = 2 , . . . ,  n. 
i = l  

A right eigenvector for A(a, A) at h = ho is s c = (dl, d2,. �9 �9 , d ,- l ,  1) r where 

d n _ k  = fi  (bi + Ao), k = 1 , . . . ,  n - 1. 
i = n - - k + l  

When the linearization of (2.1) is considered, we obtain the fundamental 
solutions on the 2-dimensional center manifold ~b(s)= see xos and 4S(s)= ~Se-X0s 
where A0 = ivo. For the generic Hopf  bifurcation which appears to be the only 
case for the n-dimensional model of repression first compute the trilinear form 
H3(~b 2, q~) and the bilinear forms H2(~b 2) and H2(~b, 4~) where Hj(~O) are the j th  
Frechet derivatives of  the nonlinear H(4')  in (2.2). To compute these multilinear 
forms first write an expansion for f (~)  which is given by 

where 

f"(O) sr2+f"(O) ~.s+ 6(11r f(sr) = f'(O)~" + ~ .  (~ 3! 

- p ( p  - 1)~ p-2 + p(p + 1)X 2p-2 
f"(O)/2 ! = h2(O) = 2[ 1 + ~p]3 (3.1) 
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and 

f" (0) /3  ! = h3(0) 

- p [ ( p  - 1 ) ( p  -2 )2P . -3-4(p  + 1)(p - 1)2~P-3+(p+2) (p+ 1)2 3p-3 
6[ 1 + XPn] 4 

(3.2) 

As f is the only nonlinearity and it appears in the first component  with a 
dependence upon the nth component  in the system (2.1), it can be readily shown 
that 

H3(6 2, t~) = ha(O)( e -%r, 0 , . . . ,  O) r 

/-/2(r 2) = h2( O )( e - 2%r, 0 , . . . ,  0) r 

H2(6, 4S) = h2(0)(1, 0, . . . ,  0) T. 

To determine the stability of a generic Hopf  bifurcation Stech [12] showed 
that it suffices to determine the sign of K where: 

K = Re{(32),*H3(r r ' ,  

[ ~ [ 2 , 

2 / 1 \ / 2 \  *H " A- ' (0 ,0)H2(6,  6))/~:*A'~}. 

From before we find that 

~:*A'(a)~:= ~ [[ (bj+Ao)+rf'(O)e -x~ T, (3.3) 
i=1 j ~ i  

H2(4~, e-2*~ 2Ao)H2(62)) 

= H2( 4S' e-2x~ h2(0) e-2a~ (,~2 )T)  
I],"--1 (b ,+2Ao)- f ' (0 )  e -2x~ (b ,+2Ao) , . . . ,  1 

[h2(0) 2] , -3i.or . 
- I-[,"=, (b, + 2;to) - f ' ( 0 )  e -2~or te , u , . . . ,  0) T, 

[h2(0)]2 (e -%r, 0 , . . . ,  0) T. /-/2(6, a-l(0, 0)H2(6, 6))  -[[ ,%, b , - f ' ( 0 )  

Stech [12] showed that the Hopf  bifurcation is stable when r <0 ,  so for our 
model of genetic repression to have small stable periodic orbits it suffices to show 
that 

Re~3h3(0 )  e_,~or+2 [h2(0)]2 e -3%r 

t r  Y l-I,"-_~ (b,+2ivo)-f '(O) e -2%~ 

4 [h2(O)] 2 } 
q" n Y [I~=1 b~-f'(O) e-%~ <0.  (3.4) 
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Fig. 3.1. A series of  curves for different p values showing the value of K at the Hopf  bifurcation as 
b 4 varies. Note that K is always negative implying a stable Hopf  bifurcation. 

Figure 3.1 shows K for  different values of  p and  b 4 at the H o p f  b i fucat ion  r0 
compu ted  in Fig. 2.1 where  again n = 4 and  b~ = 1, i = 1, 2, 3. Numer ica l ly  the 
value of  K is a lways negat ive indicating a stable per iodic  orbit  near  the H o p f  
bifurcat ion.  Numer ica l  integrat ion of  (2.1) does show the per iodic  orbits to be 
at tracting or stable. 

Because of  the complex i ty  of  (3.4) we can not  p rove  in general  that  K is 
always negat ive;  however ,  in a region near  13 = 13o the fol lowing theorem holds: 

Theorem 3.1. There exists an e > 0  such that if13e(13o-e, 13o), then (2.1) has a 
small amplitude stable periodic solution. 

Proof. T h e o r e m  2.1 shows that  for  13e(13o-el, flo) for  some el > 0 there exists a 
critical t o>  0 such that  a H o p f  b i furca t ion  occurs.  By the definit ion of  Vo and 
(2.5) one can show that  as 13~13o, r o ~ .  As If'(0)1=13o at 13o, then with the 

- p + l  _ equi l ibr ium solut ion one can show that  Xo,, -1/p13o and ~o, =(p-1)/p13o. 
Substi tut ing these into (3.1) and (3.2) we can show that  

132p( v - 3 )  
h 2 ( 0 )  - 

2(p - 1) 

133p2(p - - 2 ) ( p  - - 7 )  
h3(0) = 6(p - 1) 2 (3.5) 

a t / 3  = 13o. 
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At /3 =/3o there is no Hopf  bifurcation with respect to the parameter r; 
however,  it is easily seen that the coefficients h2(0) and h3(0) vary continuously 
with respect to the parameter/3. For/3 near/30 the argument principle used in 
the proof  o f  Theorem 2.1 gives Uo to be very small as/3 ~/30; however,  Uoro~ 7r 
as/3 ~/30 from the argument principle and our definitions of  u0 and r0. 

From the above information we examine 7• at /3 =/30. At /3 =/30, u0ro= ~ ", 
Uo = 0, and f ' ( 0 ) = - / 3 0 ,  so we may substitute these values with (3.5) into (3.4) 
and obtain 

/33op2(p--2)(p-7) 2 /34p2(p-3)2 4 /34p2(p-3)2 
3,K- 6 ( p - 1 )  2 2/30 4 ( p - 1 )  2 2/30 4 ( p - 1 )  2 

/33p2(p + 1) 
4 ( p -  1) ' 

which is strictly negative. 
For /3 </30 but near /30 we see from (3.3) that 7 has a large positive real 

component  with only a small imaginary component .  Thus to complete our proof  
we use the continuous dependence of  K on the parameters to show that there 
exists an e < 0 such that f or /3e ( / 3o -e ,  rio) ,  K < 0 .  Hence the result o f  Stech [11] 
gives the existence of  a small amplitude stable periodic solution near the Hopf  
bifurcation. 
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