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Abstract
Genetic control models for Escherichia coli are pre-

sented with delays for transcription and translation.

Feedback controls for induction and repression are de-

veloped using biochemical kinetics. These techniques

are applied to develop models for the lac operon, in-

cluding catabolite repression. Mathematical analyses

of the models show Hopf bifurcations and hystere-

sis effects. The modeling techniques are extended to

the regulation of DNA replication and cell growth in

E. coli.
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Brief History
• F. Jacob and J. Monod (1961)

Transcriptional Control

• Induction - Positive control
• Represson - Negative control
• Nobel Prize in 1965

• B. C. Goodwin (1963)
Mathematical Models
• Biochemical kinetic models
• Epigenetic oscillations suggested
• Require negative feedback
• Enhanced by delays
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Brief History - Analysis
• J. S. Griffith (1968)

• Induction model - Hysteresis of Solutions
• Represson model - Stability conditions

• J. P. Hastings, J. J. Tyson, and D. Webster (1977)
• Periodic solutions of repression model

• D. J. Allwright (1977) and H. T. Banks and J.
Mahaffy (1978)
• Stability of repression model with delays

• Hadeler and Tomiak (1977), an der Heiden
(1978), J. Mahaffy (1980)
• Periodic solutions of repression model with

delays
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Repression - trp Operon
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Biochemical Equations
Transcription
With the σ70 factor, RNA polymerase melts the DNA
to form an opening complex. The polymerase
sequentially reads the DNA, adding nucleotide
triphosphates (NTPs), to produce the completed
mRNA.

DNA+NTP

k+1

ª
k−1

DNA · NTP

k2
−→

+nNTP

DNA+mRNA
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Biochemical Equations
Translation
Shortly after transcription begins, ribosomes attach to
the elongating mRNA and translate the triplet codons
by accepting the appropriate charged tRNAs and
adding amino acids (AA) to the new protein (R).

mRNA+ tRNAfMet

k+3

ª
k−3

mRNA · tRNAfMet

k4
−→
+iAA

mRNA+ R
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Biochemical Equations
Repressor Binding
This simplified model assumes that ρ molecules of the
endproduct/repressor protein, R, bind to the operator
region of the DNA to prevent transcription.

ρR+DNA

k+5

ª
k−5

DNA · ρR
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Biochemical Kinetics
Quasi-Steady State
Assume the intermediate complexes are formed
rapidly and are essentially in equilibrium.

d[DNA · NTP]
dt

= k+1[DNA][NTP]

−(k−1 + k2)[DNA · NTP] = 0

Thus, if K1 = k+1/(k−1 + k2),

[DNA · NTP] = K1[DNA][NTP]

Similar argument for the translation intermediate.
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Biochemical Kinetics
Fast Equilibrium
Assume the repressor and operator region of
tryptophan operon rapidly equilibrate.

d[DNA · ρR]
dt

= k+5[DNA][R]
ρ − k−5[DNA · ρR]

= 0

Thus, if K5 = k+5/k−5,

[DNA · ρR] = K5[DNA][R]
ρ
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Conservation Law
Assume the total DNA is in constant concentration
and satisfies the conservation law

[DNA]T = [DNA] + [DNA · NTP] + [DNA · ρR]
= [DNA](1 +K1[NTP] +K5[R]

ρ)

Thus,

[DNA] =
[DNA]T

1 +K1[NTP] +K5

Negative feedback by the repressor, R
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DE for Transcription
Let µ be the decay and dilution rate for [mRNA], then
from the kinetic equations above the differential
equation describing the production of mRNA is

d[mRNA]

dt
= k2[DNA · NTP]− µ[mRNA]

=
k2[DNA]T [NTP]

1 +K1[NTP] +K5[R]ρ
− µ[mRNA]

Cellular Control – p.14/32



Repression Models
Let x1(t) be the concentration of mRNA and xn(t) be
the endproduct.

Úx1 =
a1

1 +Kxρn
− b1x1

Úxi = aixi−1 − bixi, i = 2...n

Adding delays for transcription and translation

Úx1(t) =
a1

1 +Kxρn(t− τ)
− b1x1(t)

Úxi(t) = aixi−1(t)− bixi(t), i = 2...n
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Mathematical Results
• Repression model without delays

• Global asymptotic stability for n = 2 or ρ = 1

• Global asymptotic stability provided
ρ cos(π/n)n < 1

• Existence of a periodic solution for unstable
equilibrium

• Repression model with delays
• Global stability for ρ = 1 (Razumikhin

arguments)
• Periodic solutions after Hopf bifurcation
• Period of oscillation is 2-4 times delay
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Linear Analysis - DDE
(

Úx1(t)

Úx2(t)

)

=

(

−b1 0

a2 −b2

)(

x1(t)

x2(t)

)

+

(

0 f ′(x̄2)

0 0

)(

x1(t− τ)

x2(t− τ)

)

Characteristic equation
∣

∣

∣

∣

−b1 − λ f ′(x̄2)e
−λτ

a1 −b2 − λ

∣

∣

∣

∣

= 0

or
(λ+ b1)(λ+ b2)− a2f

′(x̄2)e
−λτ = 0
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Hopf Bifurcation
Since f ′(x̄2) < 0, the characteristic equation with
A ≡ −a2f

′(x̄2) is

(λ+ b1)(λ+ b2) = −Ae−λτ

For a Hopf bifurcation, λ = iω
Define P (iω) = (iω + b1)(iω + b2), then need

|P (iω)| = A

and

arg(P (iω)) = arctan

(

iω

b1

)

+ arctan

(

iω

b2

)

or θ = π − ωτ
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Hopf - Argument Principle
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Tryptophan Model
• Study by M. Santillán and M. C. Mackey (2000)

• 4 Nonlinear Delay Differential Equations
• Variables for the Operator, mRNA, Enzyme,

and Tryptophan
• Include Enzyme Inhibition and

Transcriptional Attenuation
• Nonlinear utilization of Tryptophan
• Estimate Parameters from Experiments
• Stable Model that matches Experiments
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The lac Operon
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Classic Induction Model
Let x1(t) be the concentration of mRNA and xn(t) be
the endproduct

Úx1 =
a1 + k1x

ρ
n

1 +Kxρn
− b1x1

Úxi = aixi−1 − bixi, i = 2...n

Often analyzed with a1 = 0

Saturation enzyme kinetic or S-curve function
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Mathematical Results
• Possibly 3 Equilibria

• Lower Equilibrium interpreted as Uninduced
State

• Upper Equilibrium interpreted as Induced
State

• Middle Equilibrium is always a Saddle Point

• Knorre experiments on lac operon showed
oscillations

• Selgrade (1982) showed a Hopf bifurcation for
n = 5

• Delays destabilize the Model
• No oscillations in the Physiological range
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lac Model A - Mahaffy(1984)
Let x1 be [cAMP], x2 be [mRNA], x4 be [Lactosei],
x3 be [β-galactosidase], and x5 be [Glucose]

Úx1(t) =
1

1 + xγ5(t− τ1)
− b1x1(t)

Úx2(t) =
x1(t)(1 +K2x

ρ
4(t− τ2))

(1 +K3x1(t))(1 +K4x
ρ
4(t− τ2)) +K5

−b2x2(t)

Úx3(t) = x2(t)− b3x3(t)

Úx4(t) = x3(t− τ3)− b4x3(t)x4(t)

Úx5(t) = x3(t)x4(t)− b5x5(t)

Assumes β-galactosidase is rate limiting.
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lac Model B - Mahaffy(1984)
Let x1 be [cAMP], x2 be [mRNA], x4 be [Lactosei],
x3 be [β-galactoside permease], and x5 be [Glucose]

Úx1(t) =
1

1 + xγ5(t− τ1)
− b1x1(t)

Úx2(t) =
x1(t)(1 +K2x

ρ
4(t− τ2))

1 +K4x
ρ
4(t− τ2)

− b2x2(t)

Úx3(t) = x2(t)− b3x3(t)

Úx4(t) = x3(t)− b4x4(t)

Úx5(t) = x4(t)− b5x5(t)

Assumes β-galactoside permease is rate limiting.
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Results - lac Models (1984)
• Complex models with many parameters

• Model A has unique equilibrium
• Model B has possibly 3 equilibria
• Argument principle methods allow finding Hopf

bifurcations
• Need revisiting with physiological parameters
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lac Model C - M & Savev(1999)
Simplified with no catabolite repression
Let x1 be [mRNA], x2 be [β-galactoside permease],
x3 be [β-galactosidase], and x4 be [Lactose]

Úx1(t) =
1 + k1x

ρ
4(t− τ)

1 + xρ4(t− τ)
− b1x1(t)

Úx2(t) = x1(t)− b2x2(t)

Úx3(t) = r3x1(t)− b3x3(t)

Úx4(t) = Sx2(t)− x3(t)x4(t)

Examines the induction of both enzymes by lactose.
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Results - lac Model (1999)
• Unique Equilibrium with S parameter measuring

induction level

• Enzymes with same dilution and decay give local
stability

• Global asymptotic stability when ρ = 1

• For b2 > b3, complex dynamics possible
• Existence of bifurcation on a torus (2 pairs of

complex e.v.s)
• Hysteresis of solutions (2 coexisting periodic

solutions)
• Only stable solutions in Physiological range
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Bifurcation Diagram
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Model Simulation
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Recent Modeling Efforts
• Mahaffy and J. Zyskind (1989)

- Model initiation of DNA replication

• P. Wong, S. Gladney, and J. D. Keasling (1997)
• Models for lac operon with 13 DEs
• Over 50 parameters - Most obtained from

experiments
• Models test alternative theories of metabolism
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Future Directions
• New models need close ties to experiments

• Models must include growth
• New molecular kinetics may be needed
• Interesting dynamics arise naturally
• Delays need considering
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