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Abstract

A geometric approach is used to determine the region of stability
for a linear differential equation with two delays. The imaginary and
zero solutions of the charateristic equation produce an infinite set of
surfaces in the coefficient parameter space. A methodology is outlined
for identifying which of these surfaces comprise the boundary of the
stability region. For a range of delays, the stability region changes in
only three ways, starting at an identified initial point and becoming
more complex as one coeflicient increases. Detailed graphical analyses,
including three-dimensional plots, show the evolution of the stability
surface for given ratios of delays, highlighting variations across delays.
The results demonstrate that small changes in the delay ratio cause
signficant changes in the size and shape of the stability region. An
asymptotic analysis of the stability region shows that certain ratio-
nal delay ratios have atypically large regions of stability compared to

nearby delays.



1 Introduction

Models using delay differential equations have appeared with increasing
frequency in a variety of applications (e.g., [2, 3, 4, 5, 13, 15, 16]). Consid-
erable work has been done on the analysis of differential equations with one
delay; however, much less is known about stability for multiple delay prob-
lems. This work identifies some of the difficulties in analyzing a differential
equation with two delays and provides a systematic scheme for determining
the region of stability. Our approach is based on a geometric analysis of the
characteristic equation for a differential equation with two delays.

This work considers a scalar linear first order differential equation with
two delays. The general form of this equation is:

(1.1) Y'(t) + ay(t) + by(t — r1) + ey(t — 72) = 0.

The stability of (1.1) depends on its five parameters and can be determined
by locating the complex roots of the associated characteristic equation:

(1.2) At a+be A 4 e = 0.

The zero solution of (1.1) is asymptotically stable if all roots of (1.2) have
negative real parts. Since this characteristic equation is an exponential poly-
nomial with two different exponential functions in the eigenvalues, A, the
analysis is particularly difficult. Furthermore, the five-dimensional param-
eter space makes geometric interpretation of the stability region impossible
in general. A scaling of either y or t can be used to eliminate one parameter,
but this still leaves a four-dimensional parameter space to consider.
Techniques that locate the roots of (1.2) have been investigated in a
number of special cases. The one delay problem (¢ = 0) has been completely
solved by Hayes [12]. Several authors [17, 18] have considered the case when
a = 0 and r; = 1 with other specific restrictions. Other authors [8, 14] have
examined extensions of this problem to determine when oscillations occur by
showing the existence of complex roots of the characteristic equation, though
stability is not directly addressed. More recently, there have been several
papers which have performed a more complete analysis of (1.1) [1, 4, 5, 19].
Most of these have been attempts to characterize the stability region of the
four parameter problem using two dimensional projections in the parameter
space. An alternative approach is taken by Hale and Huang [11] who give
a geometrical description of the stability for (1.1) in the ri7o-parameter
space. Finding regions in the parameter space where the solutions of (1.1)



are asymptotically stable is recognized as a difficult problem [1, 6, 11, 9, 12,
17, 19].

This paper examines the stability of (1:1) after one of the delays has
been normalized by a rescaling of time. The analysis considers a range
of values for the second delay and systematically constructs the complete
stability surface in the coefficient parameter space as the coefficient, a, of
the undelayed term in (1.1) is increased. The solutions of the characteristic
equation (1.2) with purely imaginary or zero roots form an infinite set of
surfaces in the coefficient parameter space. The boundary of the stability
region is a surface created from intersecting portions of this infinite set of
surfaces. At this boundary either Hopf bifurcations at various frequencies
occur or there is a zero root crossing. Section 3 provides the basic definitions
and theorems that are used to describe the evolution of the stability surface.
For a given delay, the stability surface comes to a point at some minimum
value of a, then as a increases the stability surface becomes more complex
as higher frequency Hopf bifurcations affect the boundary of the stability
region. However, there are only three ways that new bifurcation surfaces
enter the boundary of the stability region, yielding discernable patterns in its
construction. Three-dimensional graphics illustrate the complete stability
surfaces for several values of the second delay.

A theorem is provided that establishes a minimum region of stability
independent of the delays in the coefficient parameter space. Our analysis
determines how much the actual stability region exceeds this minimum sta-
bility region for a given delay. Section 4 details the evolution of the stability
surface when the second delay is %, showing the complexity of the stability
surface. For example, a small region of stability appears to be disconnected
from the principal stability region in bc-cross-sections, but connectivity of
the complete stability surface is maintained in the 3-dimensional structure.
In addition, we identify particular values of ¢ where the stability surface
extends well beyond the minimum region of stability. This analysis is gen-
eralized in Section 5 to show that small changes in the delay can cause
considerable changes in the stability surface. Section 6 contains a map for
constructing the stability surface over a range of values for the second delay.

In Section 7, numerical methods are used to examine the asymptotic
behavior of the stability region. Some special cases are bounded away from
the minimum region of stability, while most delays result in an asymptotic
approach to the minimum stability region. Our geometric analysis suggests
that certain ordering properties in the infinite set of curves generated by
(1.2) may prevent the region of stability from asymptotically approaching
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the minimum region of stability when r5/7y is rational. This indicates the
sensitivities inherent in mathematical models using differential equations
with two delays. In particular, researchers frequently test their models using
the ratio of delays ro/ry = %, for which the region of stability is shown to
be 68% larger than the minimum region of stability.

The ideas of this paper were first presented at a conference at the Clare-
mont Colleges in honor of Kenneth Cooke in January 1990. The long delay
in producing this paper is due to the geometric nature of the project and
complicated nature of differential equations with two delays.

2 Stability of the One Delay Problem -

In this section we review. the stability analysis of a scalar linear first order
differential equation with one delay. The most general form is given by (1.1)
with ¢ = 0. By rescaling time (7 = t/r1), this delay differential equation
~ can be written: :

(2.1) §(7) + Ay(r) + By(r — 1) = 0,

where A = 7r1a and B = r1b. If ¢(7) is a continuous function defined for
T € [-1,0] and y(r) = ¢(r) for 7 € [-1,0], then there exists a unique,
continuously differentiable solution, y(7), to (2.1) for all 7 > 0 [10].

Eqn. (2.1) has the unique equilibrium solution, y(7) = 0 for all 7. Sta-
bility of the trivial solution is found by analyzing the characteristic equation
for (2.1) which is given by:

(2.2) : A+ A+ Be*=0..

As noted before, the asymptotic stability of (2.1) is equivalent to all solu-
tions, A, of (2.2) having real parts less than zero. Thus, we can divide the
AB-plane into regions where all solutions of (2.2) have negative real parts
so that (2.1) is asymptotically stable, and regions where there is at least one
root with Re A > 0. From stability analysis of ordinary differential equa,-c
tions it is clear that the positive A-axis is part of the region of asymptotic
stability. :

Hale ([10], pp. 168) shows that the spectrum or eigenvalues of (2.1)
have their real parts bounded above. This implies that if one locates the
eigenvalues with maximum real part, then they can be used to determine
the stability of the system. Continuous dependence of the roots of (2.2) on



the parameters A and B indicates that the boundary of the stability set for
(2.1) is a subset of the mapping of the imaginary axis in the A-plane into
the AB-plane. For A = 0, which is where a real root crosses the imaginary
axis, (2.2) is satisfied whenever A4+ B = 0. By connectedness of the stability

region [7], this implies that the region of stability is a subset of the half-plane
A+ B>0.
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Figure 2.1: Region of stability and bifurcation curve for the one delay prob-
lem. The j values show how many eigenvalues have positive real parts.

The remainder of the boundary of the stability set is found by locating
where Hopf bifurcations occur (i.e., when a pair of eigenvalues cross the

imaginary axis). The critical eigenvalues are found by letting A = 4w. This
substitution in (2.2) yields:

iw+ A+ B(cosw — isinw) =0,



or equivalently,

A = —Bcosw,
w

2. = .
(23) B sinw
The equations (2.3) are parametrized by w and are defined on each interval
kr <w < (k+Um, k=...,-1,0,1,...1t is readily shown that

lim B=1=-1lim 4,

w—0 w—0

so the first bifurcation curve begins at the point (—1,1) in the AB-plane.
As
lim B=+o00= lim A,

w—T" W=

it can be seen that this curve asymptotically approaches the line A = B as
w — m~. This provides the other boundary for the stability set of (2.1).
Additional bifurcation curves represent locations where higher frequency
roots cross the imaginary axis, all of which lie outside the region bounded
by the first bifurcation curve and the half line with A = -B, A > -1.
Fig. 2.1 shows the region of stability and includes the images of (2.3) with
21 < w < 37 and 37T < w < 4w, which lie completely outside the region of
stability. In Fig. 2.1, the number of roots of the characteristic equation (2.2)
with positive real part is given by j. More discussion of how j is determined
is given in Section 4.

If the rescaling is not done to (1.1), then stability region for the one delay
problem with ¢ = 0 can be found in a similar manner to the one described
above for (2.1). The shape of the stability region is the same with the

Hopf bifurcation curve intersecting the line @ = —b at the point (—3,1).

y
The parameterization of the Hopf bifurcation curve ranges over the irrllcegxllal
0<w< ﬁ Consequently, the stability region and the interval of w increase
as r, decreases. This information is valuable in examining the cross-section
- of the stability region for the two delay problem when the coefficient of the

normalized delay is zero.

3 Tools and Techniques for Analysis of the Two
Delay Problem

A typical scalar linear first order differential equation with two delays is
given by (1.1). Without loss of generality, one can assume that 71 > 72, so
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the same rescaling of time as presented in the previous section reduces (1.1)
into the four parameter problem:

(31)  §(r)+Ay(r) + By(r - 1)+ Cy(r - R) =0, 0<R<1,

where A = rja, B = b, C = 71¢, and R = ry/r1. As before, if ¢(7) is
a continuous function defined for 7 € [~1,0] and y(7) = #(7), then there
exists a unique, continuously differentiable solution, y(7), to (3.1) for all
T>0.

The trivial solution, y(7) = 0, is the unique equilibrium solution to
(3.1). The characteristic equation, which is used to analyze the stability of
the equilibrium solution, is given by:

(3.2) A+ A+ Be™ +Ce*F = 0.

There are four parameters to consider in the analysis of (3.2). This study
examines the stability region in the three-dimensional space of the param-
eters A, B, and C for fixed values of R. The analytical approach we take
in locating the stability region parallels Bélair [1] and Zaron [19], who use
the D-decomposition partitions of El’sgol’ts [7]. (See Appendix A for more
details.) .

As in the one delay case, our graphical analysis shows that the stability
region is a connected set in the ABC-parameter space for R € (0, 3] though
certain BC-cross-sections have disjoint regions of stability. We predict that
the 3-dimensional stability region is connected for all 0 < R < 1. Clearly, the
positive half-line A > 0 must lie within the stability region. The results for
(3.1) must be consistent with the one delay case, so Fig. 2.1 shows the cross-
section of the stability region when C' = 0 (and with rescaling resembles the
cross-section for B = 0). How do the stability properties of (3.1) extend
to the entire ABC-parameter space? A partial answer is provided by the
following theorem:

THEOREM 3.1 (MINIMUM REGION OF STABILITY). For A > |B|+|C]|, all
solutions, ), to (3.2) have Re A < 0. Thus, the differential equation (3.1) is
asymptotically stable inside the pyramidal shaped region centered about the
positive A-azis independent of R.

The proof of this theorem can be found in Zaron [19]. .

The above result provides a Minimum Region of Stability (MRS). How-
ever, questions remain regarding how much larger the region of stability is



for (3.1) and how this region varies with R. As in the previous section, the
search for the boundary of the region focuses on the image of the imaginary
axis in the A-plane. When )\ = 0, any point on the plane A+ B 4 C = 0 sat-
isfies (3.2). This plane separates the ABC-parameter space into two parts
where the region with A+ B +C < 0 is unstable as it contains a unique real
positive root. Since the plane A + B 4+ C = 0 bounds one face of the MRS
given in Theorem 3.1, one part of the stability region is comprised of this
real root crossing surface The remaining surfaces bounding the stability
region are generated by examining the imaginary roots, A = iw, where Hopf
bifurcations occur. The remainder of this section is devoted to developing
the tools needed to describe the geometry of the complete 3-dimensional sta-
bility surface. The following section has an illustrative example with figures
that show how these tools are applied.

The next step of the analysis is to determine the image of the imaginary
axis in the ABC-parameter space. If A = iw, then (3.2) can be written:

(3.3) A+ Bcos(w) + C cos(wR) + i(w — Bsin(w) — C'sin(wR)) = 0.

By sblitting this into its real and imaginary parts and solving for B and C,
we obtain the following parametric equations:

_ Asin(wR)+w cos(wR)
Bw) = sin(w(1 - R)) ’
_ _ Asin(w) +wcos(w).

(3.4) C(w) sin(w(1 — R))

These equations are defined on the intervals, LJI—IRM < w < 775, j an integer.

As A varies with w € (531—1})%, %), (3.4) generates a surface in the ABC-
parameter space. For fixed A, (3.4) produces cross-sectional curves where
the eigenvalues of (3.2) cross the imaginary axis in the BC-plane. Given

this information we make the following definition:

DEFINITION. The j* bifurcation surface (curve) is the surface (curve) gen-
“erated by the parametric equations (3.4) with L;lﬁ <w < 7¥g, where j is

a positive integer.

When the delay R is rational, the curves gemerated by (3.4) can be
organized into families of bifurcation curves that possess similar properties.
For certain values of the delay there are only a small number of families,
which facilitates the analysis required to locate the boundary of the stability



region. Other delays that have larger numbers of families can be reorganized
and compared to delays with only a small number of families. The method
used to find families of bifurcation curves follows from the calculations below.

For A fixed, take R = £ and j = n — k. From (3.4), it is easy to see

‘that singularities occur at "—;E, i=0,1,... The i bifurcation surface with

ﬂz—;lﬁ <w < ™ satisfies:

sin(2) + w cos( v sin(w) + w cos(w
Bi)=" (”si)nzr%-’) G- (sil&%) =

Now consider the (i + 2j) bifurcation surface with u = w + 2nm, then

Asin() + pcos(¥)  Asin(X4) + (w + 2n7) cos(£2)

Bita;(p)

sin( ln’i ) sin( Jnﬁ ) ’
Cit2;(1) _Asin() +S§:(Lz)n”) cos(w)

These equations show that B;yq;(u) follows the same trajectory as B;(w)
with a shift of 2n7 cos(£2)/ sin(£2) for w € (Ql—__l—});,i%), while Cjyo;(1)
follows the trajectory of C;(w) with a shift of 2n7 cos(w)/ sin(%‘") over the
same values of w. This related behavior of bifurcation surfaces separated by
w = 2nw creates 2j families of curves in the BC-plane for fixed A. Thus,
there is a quasi-periodicity among the bifurcation surfaces when R is ratio-
nal. In particular, when R = % there are only two families of curves in the
B(C-plane. For R = % and R = %, there are four and six families of curves in
the BC-plane, respectively. In the next section, the case R = % is examined
in detail as the special features of this delay, including the limited number of
families of bifurcation curves, simplify the geometric analysis of its stability
region. The organization of the bifurcation curves into families appears to
be especially significant in the asymptotic structure of the stability region
as A becomes large. This is discussed in Section 7.

Fig. 2.1 shows that stability region for the one delay problem is com-
pletely determined by the first bifurcation curve and the line A = —B.
For the two delay problem (3.1), the first bifurcation surface and the plane
A+ B + C = 0 do not necessarily give the complete stability picture. How-
ever, the first bifurcation surface can be used to bound the stability region
and provides valuable information on how to begin the study of the stability
surface for R € (R, %], where Ry ~ 0.0117 is defined in Appendix B. The
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first bifurcation surface intersects the A+ B + C = 0 plane as w — 0. From
(3.4), this occurs when B = (AR+1)/(1— R)and C = —(A+1)/(1 - R),
which is the line

(3.5) A+1 _B-1_

-k~ &~
in the ABC-parameter space.

For some range of A values with w increasing from zero, the first bifur-
cation surface intersects the A+ B + C = 0 plane a second time forming
a curve in BC-space. As A decreases this curve intersects the line (3.5) at
Ao, and the initial point from which the principal stability surface emanates
is determined. For R > Ry, this initial point is the smallest value of A for
~ which (3.1) is stable. When R < Ry, our studies show the existence of an-
other region of stability for A < Ao. This issue is discussed in Appendix B.
The following theorem summarizes our results:

THEOREM 3.2. If R > Ro and A < —(R + 1)/R, then (3.1) is unstable
independent of B and C. Geometrically, the stability surface comes to a
point at

(3.6) (Ao, B, Co) = (—

R+1 R 1 )
R °R-1"R(1-R))’

and for some range of A > Ao, the stability region is bounded by the first

bifurcation surface and the A+ B + C = 0 plane.

PROOF. Substituting (3.4) into the equation A+ B + C = 0, we find

Asin(wR) + weos(wR)  Asin(w) +weos(w)

At — =R m@(i=R)

This is solved for A giving,

;u(cos(w) — cos(wR))

Aw) sin(w(1 — R)) 4 sin(wR) — sin(w)’

w sin (—i—l‘” IJR )

" 9sin (%) sin (3"—2}—2) ’

(3.7)

provided sin(w(1 — R)) # 0 and sin (—“-’—(1—2_—&) #0. It follows that:

R+1

Ap = il_%A(w) =-—F

11



Thus, for A < Ag, the first bifurcation surface lies completely below the
A+ B+ C = 0 plane. Provided all other bifurcation curves in the BC-
plane at A = Ag are simple, the D-decomposition partitions of El'sgol’ts
[7] show that (3.2) has at least one root with Re A > 0. This follows since
below the A + B + C = 0 plane there is a unique positive root and above
the A + B + C = 0 plane there are two complex roots with positive real
part which must have crossed the imaginary axis with 0 < w < —(—lf—R). The
results of Appendix B are used to show that other bifurcation curves are
simple when R > Ry ~ 0.0117.

When A = Ao, then (3.5) shows that Bg = R/(R—1)and Co = 1/R(1—
R). For A > Ao, one edge of the first bifurcation surface emanates along
(3.5) in the A+ B+C = 0 plane. As w increases from zero, Eqn. (3.7) along
with (3.4) is used to determine the other intersection of the first bifurcation
surface with the A + B + C = 0 plane. Appendix A gives a proof that this
portion of the first bifurcation surface lies above the A+ B + C = 0 plane.
As A continues to increase, there is some value of A = A; where another
bifurcation surface (or possibly a section of the first bifurcation surface with
higher values of w, R > %) enters the boundary of the stability region. For
Ry < R < %kand A = A, often the second bifurcation self-intersects and
begins a new region of stability that joins the principal region of stability
described here at a larger value of A. For A € (Ao, A1), the stability region
is bounded by only the first bifurcation surface and the A4+ B+C = 0 plane.
This completes the proof of the theorem.

For each fixed R, we begin our studies with A = Ag, then examine
the evolution of the stability region as A increases. Theorem 3.2 shows
that initially the stability region is enclosed by part of the first bifurcation
surface and a section of the A + B + C = 0 plane. However, as A increases
other bifurcation surfaces enter the boundary of the stability region in several
ways. Below we define three methods by which bifurcation surfaces encroach
upon the boundary of the stability region for B < % In this paper we
consider only the case R < % since the bifurcation curves are simple for these
delays, except possibly over a small range of A values. (See Appendix B for
more details.) When R > %, the bifurcation surfaces typically self-intersect
complicating the analysis. These delays are left for future research.

For most values of A, the curves in the BC-plane generated by (3.4) tend
to infinity parallel to the lines B+C = 0or B—C = 0,asw — 1%%' However,
for certain values of A, the equations given by (3.4) become indeterminate
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at T';ﬂﬁ' Define these transition values of A by A}, where

(3.8) A = -TJ_’T—Rcot(-{-_R—g . j=1,2,..

At a transition the 7*" and (5 +1)% bifurcation curves coincide at the specific
point (B}, C}), where

(1-R )cos(JR7r —]R7rcsc( R)

* i
BJ ( 1) (1 _ R)2 )
(1 - R)cos(3%7) —jr cse(7 25
= = J
(3.9) C; (-1) (- R)2
All along the line,
(3.10) (B- B+ (-1Y(C-C})=0, A=A4;],

there are two roots of (3.2) on the imaginary axis with A= :i:ﬁ_—%i. If the jth
bifurcation surface is on the boundary of the stability region for A slightly

“less than A}, then at A = A}, Eqn. (3.10) becomes part of the stability
~ region’s boundary, and subsequent]y, the (5 + 1)** bifurcation surface enters

the boundary of the stability region: Our studies show that the greatest
local distortions in the stability surface occur near transitions. Appendix A
provides analytical results for Aj.

From Appendix B, the (5 + 1)** bifurcation surface, which enters the
boundary of the stability region immediately after A7, self-intersects for a
range of A values prior to the transition. The small region enclosed by
the self-intersection contains no eigenvalues to (3.2) with positive real parts;
hence, (3.1) is stable within this region. Following A backwards from A7, we
define A® be the value where the area enclosed by the self-intersection goes to
zero. For A € (A AY), there is a protrusion in the stability region or a stable
spur, which joins the region of stability of Theorem 3.2 at A}. In BC-cross
sections the stable spur appears to be disconnected from the pr1nc1pal region
of stability. The 3-dimensional structure maintains connectivity between the
principal region of stability and the stable spur at the transitional value, AJ.

Theorem 3.1 demonstrates that for each A one corner of the MRS is given
by (B,C) = (0,—A). Eqn. (3.5) shows that the first bifurcation surface
intersects the A + B 4+ C = 0 plane at (B,C) = ((AR+1)/(1- R),—(A+
1)/(1 — R)), which diverges from (0,—A) as A increases. Thus, a large
gap develops between the first bifurcation surface and the lower corner of

13



the MRS where another bifurcation surface may join the boundary of the
stability region. We define the transferral value of A = A7 ; to be the value
of A where the j*® bifurcation surface intersects the ith bifurcation surface
at the A + B 4+ C = 0 plane with the j* bifurcation surface entering the
boundary of the stability region for A > A? . This is a second way in which
bifurcation surfaces enter the boundary of the stability region. Often there
is only one transferral value, but for some values of R a distortion of the
bifurcation surface near the A + B + C = 0 plane caused by a transition
results in several transferrals.

The third route through which bifurcation surfaces enter the boundary of
the stability region is a tangency. We define the tangential value of 4 = A} T
to be the value of A at which the j* bifurcation curve becomes tangent to the
i*h bifurcation curve, where the it curve is part of the stability boundary.
As A increases from Afj, the new bifurcation curve is incorporated into
the boundary of the stability region, separating segments of the bifurcation
curve to which it was tangent.

For R < % fixed, we determine the boundary of the stability region in
the BC-plane by examining changes that occur as A increases. From the
initial the point given in Theorem 3.2, additional bifurcation curves enter
the boundary of the stability region by one of the methods listed above,
i.e., a transition (which includes an associated stable spur), a tranferral,
or a tangency. The complete 3-dimensional bifurcation stability surface is
generated by combining these cross-sectional graphs.

4 Example with Delay of R = %

In this section, we describe the stability region for the case R = %,
using the definitions and theorems developed in the previous section. The
3-dimensional stability surface is presented in Fig. 4.1. Our choice of R = %
as the leading example stems from the organization of the bifurcation curves
into four families with a single transition value ASppq =0, forall k=0,1,.
(There are no even transitions for R = 1.) The relative simplicity of thlS
case makes it easier to understand how the stability surface evolves. Many
of the techniques illustrated here are applicable to other delays and with
some modifications are demonstrated in subsequent sections.

The surface is created by fixing values of A and determining the stability
region in the BC-cross-sectional plane. From Theorem 3.2, the stability
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surface for R = 1 comes to a point at

3
(Ao, Bo,Co) = (~4,-1,9) -

The first change in this stability surface occurs at the transitional value of

A. From (3.8),
3T

Al = —5 cot(g) =0.
For A € (Ao, A}) = (—4,0), the stability region given by Theorem 3.2 is
bounded by the first bifurcation surface (blue) and the A4+ B +C = 0 plane
(violet).

As A approaches the transitional value A7 = 0, the region of stability
expands as the first bifurcation curve is stretched along the line C — B = 37”
toward the second bifurcation curve. Similarly, the second bifurcation curve
is drawn toward the first bifurcation curve for A near A}, causing the second
bifurcation curve to self-intersect as seen in Fig. 4.2. This self-intersection
only exists for A € (A7, A}) ~ (—0.117,0), and encloses another region of
stability. This region of stability is too small to appear in Fig. 4.1, but the
distortion is clear from the transition line in black that parallels the level
curves in the top figure (just prior to the second bifurcation surface shown ‘
in green). The stable spur isolates this portion of the stability region as the
second bifurcation curve self-intersects, creating a loop whose area increases
as A approaches A}. Though the BC-cross-section in Fig. 4.2 shows the two
stable regions to be disjoint, connectivity is maintained in the 3-dimensional
ABC-parameter space via the transition.

At the transition, A} = 0, the first and second bifurcation curves meet
at the point (B},Ct) = (37/4,97/4) as seen in Fig. 4.3. Along the line
C-B= 521, which is derived from (3.10), the purely imaginary solutions
A= :1:2'371T satisfy (3.2). The region of stability from Theorem 3.2 is bounded
by parts of the first bifurcation surface, the A+ B+C = 0 plane, and the line
C — B = 2. The stable spur is bounded by the second bifurcation surface
and the line C — B = 37" The region of stability from Theorem 3.2 and the
stable spur join at the point (B}, CT). Subsequently, the ends of the first
and second bifurcation curves swap positions near w = 37" Fig. 4.4 shows
how the first and second bifurcation curves comprise the boundary of the
stability region for A slightly larger than Aj. For A € (A}, Af 4) ~ (0,7.1),
the stability region is bounded by sections of the first bifurcation surface
(blue), the second bifurcation surface (green), and the A+ B+ C = 0 plane.
A magnified 3-dimensional picture of the transition, A}, and its associated
stable spur is shown in Fig. 4.5.
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Figure 4.2: For R = % and A = —0.02, the stability region is bounded by
the first bifurcation curve and the line A+ B+C = 0. A stable spur appears
as the second bifurcation curve self-intersects.

At the transferral value A = Af 4, the first bifurcation surface, the fourth
bifurcation surface (red), and the A+ B +C = 0 plane intersect at the point
(A, B,C) ~ (7.1,5.0,—12.1), where the fourth bifurcation surface enters the
boundary of the stability region. For A € (4} 4, AQ,G), the stability region is
bounded by sections of the first, second and fourth bifurcation surfaces and
the A+ B + C = 0 plane.

At A = Abg ~ 30.7, the sixth bifurcation surface (orange) becomes
tangent to the second bifurcation surface and subsequently joins the bound-
ary of the stability region for A > AE,G. This point of tangency is near
(A,B,C) = (30.7,-12.0,33.8). The next change in the stability surface
occurs at A = Afg ~ 50.4, where the eighth bifurcation surface becomes
tangent to the fourth bifurcation surface. This point of tangency is near
(A,B,C) = (50.4,18.7,-54.1). As A increases further, additional tangen-
cies occur, injecting more of the even bifurcation surfaces into the boundary
of the stability region.
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Figure 4.3: For R = 1 and A} = 0, a transition occurs. The stability
region of Theorem 3.2 is bounded by the first bifurcation curve and the
lines B+ C =0and C — B = %’5 The stable spur is bounded by the
second bifurcation curve and the line C — B = 37” and joins the first region

of stability at the point (B}, CY).

The results of the one delay problem in Section 2 show that the first -
bifurcation surface and the A + B + C = 0 plane always contribute to the
boundary of the stability region near C = 0 for A > Ag. Our analysis using
2-dimensional cross-sections with increasing values of A establishes that the
boundary of the stability region for R = % only adds bifurcation curves from
the second and fourth families. The curves of the first and third families
do not affect the stability region except for the first bifurcation curve. See
Appendix C for the derivation of these claims. This methodology allows us
to completely characterize the region of stability in ABC-parameter space.
In Section 7, we establish that the region of stability for R = 31.; remains
bounded away from the MRS of Theorem 3.1. Our numerical studies show
that the size of the stability region is proportional to A, provided A is
sufficiently large, with the cross-sectional shape essentially unchanged as A
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Figure 4.4: For‘R = % and A = 0.02, the stability region is bounded by the

first and second bifurcation curves and the line A + B +C =0.

increases.

The transitional values of A are found by determining the value of A7
which make B(wy) and C(w}) indeterminate. This occurs when wi = 3—?,
and Eqn. (3.4) shows that

. J 2
It follows that A3 = 0 for j odd and Aj = oo for j even. Thus, all transitions
occur at A = 0, affecting only the first and second bifurcation surfaces as
depicted in Fig. 4.3. For delays other than R = %, transitions occur at
various values, 43, 7 =1,2,...and, as will be shown later, can significantly
complicate the boundary of the stability region.

The behavior of the four families of bifurcation curves over a range of
values of A and w determine the geometry of the stability region. Fig. 4.6
shows a representative cross-section in the BC-plane, demonstrating the
typical shapes of each family group. Familial characteristics are detailed
below with the derivations contained in Appendix C.

19



?
«Stable Spur
| W
o \
- {1/

|
I ary
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Figure 4.6: Cross-section in the BC-plane of the first 20 bifurcation curves
for R = % and A = 50. The four families of bifurcation curves are easily
seen with the first, second, third, and fourth families represented by blue,
green, orange, and red, respectively. The dotted line is the border of the
Minimum Region of Stability.
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From (3.5), the first bifurcation curve begins at the point (B,C) =
(‘%‘-3-, —Q(%l), then as is shown in Appendix C, along this curve both B
and C increase monotonically for A > 0. As noted above from the study
of the one delay problem, this curve passes through the Hopf curve given
in Fig. 2.1 for each value of A. This indicates that as A increases, the first
bifurcation curve approaches the vertex of the MRS where C = 0 and B = A.
Asw — — , the first bifurcation curve becomes parallel to the line B—C = A.
Other members of the first family of bifurcation curves are generated with
values of w € (6kn,6km + 377'), where k = 1,2, ..., and are depicted in blue
in Fig. 4.6. Members of this family begin near the line B4+ C = —A. As w
increases, these curves eventually cross the first bifurcation curve at points
increasingly farther away from its intersection with C' = 0, reversing their
initial order as seen in Fig. 4.6. Asw — 6k7r+§27—', members of the first family
of curves become parallel to the line B—C = A such that a constant distance
of 67 is maintained between the tails of the first family of bifurcation curves.
By examining Fig. 4.6 and given the structured ordering described above,
one can readily see that this family does not influence the stab1l1ty region
except through its first member.

The third family is nearly a reflection of the first famlly, but does
not possess any member that corresponds to the first bifurcation curve.
The members of this family of curves are generated by (3.4) with w €
(6km + 3m,6kT + 97"), where k = 0,1,2, ..., and are depicted in orange in
Fig. 4.6. These curves begin near the line B + C = A and have a crossing
pattern similar to the first family’s pattern, lying entirely outside the region
of stability. The third family of curves mimicks the first family of curves,
becoming parallel to the line B — C = —A4 as w — 6kw + 2F.

The second and fourth families of bifurcation curves exhibit more inter-
esting properties and are the most significant contributors to the boundary
of the region of stability. From the one delay problem with B = 0 the first
bifurcation curve passes through the scaled Hopf curve of Fig. 2.1 for A < 0.
For A > 0, the second bifurcation curve creates the remainder of the stabil-
ity boundary and approaches the vertex (0, A) of the MRS in the BC-plane
as A — +00. The green arcs in Fig. 4.6 are the second family of bifurcation
curves. As w decreases to 6kw + 37’“, these curves become parallel to the line
B—C = 0 with the lower numbered members of the family closer to this line.
As w increases, each family member reaches a peak above the MRS, after
which they asymptotically approach the line B+ C = A as w — 6k7 + 37
for k = 1,2... Again the asymptotic order of the curves is maintained with
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lower numbered members of the second family closer to the line B+ C = A,
as shown in Fig. 4.6.

The reason the second family’s behavior is significant in determining the
boundary of the stability region stems from the loss of curve ordering near
the maximum of each curve. Fig. 4.6 shows the deformation of curves near
the extremum that induces a sequence of intrafamilial tangencies as A in-
creases. In this way several bifurcation curves of the second family enter the
boundary of the region of stability. The first such intersection occurs when
the second and sixth curves (the first and second members of the second
family) become tangent near the point (4, B, C) = (30.7,—-12.0,33.8).

The fourth family of bifurcation curves (w € (6kr + 2,6(k + 1)7)) is
basically a reflection of the second family. While the second bifurcation
curve provided the boundary along B + C = A, the fourth family lies below
the A+ B + C = 0 line, and all members asymptotically approach this line
for w — 6(k + 1)7w. It is the fourth bifurcation surface that undergoes a
transferral with the first bifurcation surface near Af 4 = 7.1. The similarity
of the fourth family curves to those in the second family is depicted in
Fig. 4.6, including the intrafamilial intersections that lead to tangencies,
the asymptotic limits, and order preservation as discussed above.

For any fixed value of A there is only a finite number of second and
fourth family bifurcation curves that lie on the boundary of the stability
region. After a finite number of curves have intrafamilial intersections, the
remaining infinite number of curves in the second and fourth families are
order preserving. Hence, these curves do not play any role in determining the
boundary of the stability region. Since the number of curves on the boundary
of stability region is finite for each cross-section in the BC-plane and because
this number increases with A, we are able to completely characterize the
stability region below any given value of A. This allows us the generate the
3-dimensional stability surface portrayed in Fig. 4.1.

5 Changes in the Stability Region for R near %

This section examines the local changes in the stability region that occur
as R increases or decreases from % For a certain range of A values and small
variations in R, the structure of the stability region closely resembles the
case R = % studied in the previous section. However, there are important

1

differences for values of R near 3 as shown below. Our discussion in this
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section focuses on changes in the stability region for R € [0.31,0.35].

For R near %, the initial point on the boundary of the stability region,
(Ao, Bo, Co), is found using Theorem 3.2. The initial value Ao increases
smoothly with increasing R, while By and Cy both decrease. The theorem
also shows that initially the stability surface consists only of parts of the
first bifurcation surface and the A+ B 4+ C = 0 plane. It is easily seen that
small changes in the delay result in only minor changes in the stability region
when A is near Ag. Fig. 5.1 shows how little Ag changes for R € [0.31,0.35].

The first change in the stability surface of Theorem 3.2 for R € [0.31, 0.35]
is the tramsition, A}. Prior to A}, the second bifurcation surface self-
~ intersects creating a stable spur on the interval (A7, A}), which joins the
stability surface of Theorem 3.2 at A%. The length of the interval (A7, A7)
decreases from 0.159 for R = 0.31 to 0.092 for R = 0.35, indicating that the
stable spur is a minor part of the stability surface. Differentiating (3.8) shows
that A} increases monotonically with R, but the change in A is very small
as shown in Fig. 5.1. Consequently, Figs. 4.2-4.5 are representative of the
geometry of the stability surfaces near A} for R € [0.31,0.35]. Immediately
after the A} transition, the stable spur disappears in BC'-cross-sections, and
the stability region is bounded by the first and second bifurcation surfaces
and the A+ B + C = 0 plane.

As A increases, Fig. 5.1 shows that for most values of R € [0.31,0.35]
the next change in the stability surface is the tranferral, Af 4, as is the case
when R = 1 . However, near R ~ 0.311 this transferral no longer occurs due
to another tran51t10n, A%. As R decreases from 3, the value A} decreases
with the transition occurring along the line given by (3.10), which can be
shown to lie below the A+ B +C = 0 plane. This decrease in A} causes the
fourth bifurcation surface to extend out further for its transferral value as it
smoothly approaches (3.10). Near R = 0.311, A} has sufficiently stretched
the fourth bifurcation surface so that the first transferral does not occur until
after A}. For a range of R < 0.311, the fifth bifurcation surface becomes
the first transferral, Af 5. Prior to this transferral, there is another change
in the stability surface when R < 0.311 due to the second transition, A3.

For R € (0.311,0.325), the stability surface changes in a manner quite
different from the case R = % Rather than the next change in the stability
surface being the tangency, A} g, as A increases, a reverse transferral, A7,
appears where the first bifurcation surface displaces the fourth bifurcation
surface. (See Fig. 5.2.) In the case R = 0.32, the fourth bifurcation sur-
face is incorporated into the stability region boundary at Af , ~ 8.86, then
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Figure 5.1: This figure shows the values of Aq and various transitions, trans-
ferrals, and tangencies for R € [0.31,0.35], which affect the geometry of the
stability region for A < 100. Note that some transitions are omitted for

clarity.
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Figure 5.2: When R = 0.32, a reverse transferral occurs at A%; ~ 45.0.
This figure shows the first five bifurcation surfaces.

leaves the boundary at A7 ; ~ 45.0. The geometry of this reverse transferral
departs from the example of R = é presented in Section 4 where all curves
that join the boundary of the stability region remain part of it.

As A increases further, the second transition, A3, causes the next change
in the stability surface and results in the third bifurcation surface becoming
part of the boundary. The resulting distortion in the shape of the stability
surface is depicted in Fig. 5.3. The transitions A3 and A} are very close in
value for the given range of R. For example, when R = 0.32, A3 ~ 49.4 and
A} =~ 47.7. These transitions cause the stability region to extend along the
B + C = £A lines that bound the MRS and significantly increase the size
of the region of stability for a range of A values. All stability surfaces with
R e [0.31,%) are affected by A% and have similar distortions. In addition,
these transitions have associated stable spurs on the interval (4%, A%) as the
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Figure 5.3: When R = 0.32, a transition occurs at A} ~ 49.43. This
figure shows the first five bifurcation surfaces and the line at the transition,

(B - B})+ (C - C3) =0.

third bifurcation curve self-intersects. These stable spurs are much smaller
than the ones associated with A%. For example, A — A} ~ 4.88 x 10™* at
R = 0.31 and decreases to A3 — A} ~ 2.63 x 107* when R = 0.32.

Fig. 5.4 graphs the next change in the boundary of the stability region as
the transferral A 5 occurs. For R € [0.31, 0.311) the sequence of changes in
the stability region are simpler as the fourth bifurcation surface never enters
the boundary of the stability region via a transferral, as seen in Fig. 5.1.

For R € [0.325,0.35], the next change in the boundary of the stability
region after A7, is the tangency A§,6. On this interval the next change
depends on which subinterval is considered. For 0.329 < R < 0.35 and
A < 100, Fig. 5.1 shows that the stability surface undergoes a series of

tangencies similar to the ones discussed for R = % However, for lower
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Figure 5.4: When' R = 0.32, another transferral occurs at Af 5 ~ 50.4. This
figure shows the first five bifurcation surfaces.

values of R, once again several transitions affect the geometry of the stability
surface. For example, consider R = 0.326, where A} s ~ 40.4, A5 ~ 90.6,
and A% ~ 88.0. (Note that A} is not shown in Fig. 5.1; however, it lies
close to and below Aj.) As A increases toward A3 and Aj, the second
and sixth bifurcation surfaces extend along the line B + C = A, and the
tangency surface disappears at A6 9 = T4.4. After the reverse transferral at
i1 ~ 88.2, the transition at A7 ~ 90.6, and the appearance of the new
transferral surface at Af 5 ~ 91.1, the tangency that disappeared reappears
at A%, ~ 92.6 with the third and seventh bifurcation surfaces taking the
place of the second and sixth bifurcation surfaces. Each of these events
causes different bifurcation surfaces to join the boundary of the stability
region, hence different eigenvalues cause the Hopf bifurcation.
The discussion above shows that for R < % even small changes in the de-
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lay R may induce a significantly different set of bifurcation surfaces to bound
the stability region. Most of these changes result from an even transition or
series of even transitions, A3;, that cause distortions along the B+C = 1A
lines and do not occur when R = % As seen in Fig. 5.1, the evolution of
the stability surface for R € [£,0.35] and 4 < 100 is much less dramatic.

So how do the odd transitions affect the boundary of the stability region?
To examine this issue we consider R = 0.35 and A < 250. Fig. 5.5 shows
how Aj;, Ak 1o, and A} 4, vary with R. For R = 0.35, a tangency occurs at
Ag11 ~ 144. As A increases, a transition occurs at A}, ~ 216, which causes
the 11tR bifurcation surface to be replaced by the 12 bifurcation surface.
This is a smooth transition parallel to the line B — C' = A and results in
little noticeable change in the geometry of the stability region. Thus, odd
transitions near R = % affect which bifurcation surface is on the boundary
of the stability region according to our definitions, but have little influence
on the geometry of the region or the value of the eigenvalues involved in the
Hopf bifurcation. The only effect of the A7, transition is to swap the 11tk
and 120 bifurcation surfaces in the boundary of the stability region.

The key to developing the 3-dimensional stability region is determining
the junctures where changes in the stability surface occur. When two bifur-
cation surfaces meet on the stability surface, they share the same (A, B, C)
value, and two pairs of purely imaginary eigenvalues, A = iw, each satisfy-
ing (3.4) for a given A. Numerically, the two pairs of eigenvalues are found
by Newton’s method and are followed in 3-dimensions by slowly increas-
ing A. Once the w values are found for the ends of a bifurcation curve in
the BC-cross-sections, then (3.4) is used to generate this segment along the
boundary of the stability region. Thus, the most difficult part of the prob-
lem is determining which bifurcation surfaces comprise the boundary of the
stability region and the values of A at which they enter. Fig. 5.1 provides
an overview of changes in the stability region boundary as a function of 4,
listing the type of change in each case. Figs. 5.6-5.10 show the 3-dimensional
structure of the stability regions for R = 0.31, 0.32,%, 0.34,0.35, respectively,
and A < 100. These graphs are plotted using several colors to emphasize
the similarities and differences in their stability regions.

As a supplement to the discussion above, a comparision is made among
the 3-dimensional graphs presented in Figs. 5.6-5.10, indicating the signifi-
cance of the color coded surfaces. For reference, the A + B 4+ C' = 0 plane,
where a real root crosses the stability surface, is always shown in violet. All
of the graphs begin at the point (Ao, By, Co), which we noted varies very
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Figure 5.5: This figure shows the interaction between the transition Af; and
the tangencies A} 1, and Af,; for R € [0.34,0.355].

little for R € [0.31,0.35], and is clearly visible in each of the side perspec-
tives. From this initial point the blue first bifurcation surface rises above
the A+ B + C = 0 plane, then is soon joined by the green second bifurction
surface via the transition A}. The graphs are drawn with a small small black
line segment at A}, but distortions due to transitions are diminished given
the scale of the drawings. Also, because of the scale of the graphs, stable
spurs are too small to be visible.

Graphically, the five stability surfaces resemble one another in the early
stages in their evolution due to the continuity between delays. However, the
3-dimensional graphs clearly show dissimilarities between the cases R < %
and R > 1, though some geometric resemblence is maintained. For the
sequence of graphs in Figs. 5.8-5.10, the next change in the stability surface
following the A} transition is the transferral, Af 4. This transferral appears
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in the figures as the red 4*h bifurcation surface enters the stability surface
above the A+ B+C = 0 plane and encroaches upon the blue first bifurcation
surface. After Af,, the only changes seen in the stability region for A <
100 are surfaces appearing through tangencies, which are caused by higher
frequency Hopf bifurcations. Looking at the top graphs in Figs. 5.8-5.10, we
see that the sequence of tangencies, A} ¢, A}, Af 1o, and Af ;, (the latter
not appearing for R = 0.35), alternates with first the orange 6*2 bifurcation
surface appearing in the upper left portion of the stability surface, then
the blue 8" bifurcation surface in the lower right portion, then the green
10* bifurcation surface again above and to the left, and finally the red 12t®
bifurcation surface in the lower right portion of the stability surface.

The sequence of changes as seen by our color coding is the same for
Figs. 5.8-5.10, although for R = 0.35 it can be seen that by A = 100 the
stability boundary is nearly a square, indicating its approach to the MRS.
In fact, the cross-sectional area at A = 100 is. only 7.96% larger than the
MRS for R = 0.35, while it is 27.1% larger for R = 3.

For R < %, the most prominent change in the 3-dimensional stability
surface is A3, which occurs near A = 30 for R = 0.31 and A = 50 for
R = 0.32. In the top graphs for Figs. 5.6 and 5.7, the transition A3 is recog-
nizable in the replacement of the green 2°d bifurcation surface with the red
3" bifurcation surface in the upper right portion of the stability surface. As
A increases, the 3™ bifurcation surface expands and displaces more of the
27d hifurcation surface. For R = 0.31 and R = 0.32, all of the even transi-
tions occur near A3, which induces a different set of bifurcation surfaces to
enter the stability region boundary through transferrals and tangencies as
indicated by the variation in the color coding.

A unique feature for R = 0.32 among the depicted graphs is the appear-
ance of the red 4" bifurcation surface due to a transferral at Af 4 ~ 8.86
that terminates in a reverse transferral near A7; = 45.0. In both Figs. 5.6
and 5.7, the transition, Aj, introduces a new transferral, Af 5, with the or-
ange 5P bifurcation surface displacing the first bifurcation surface. As noted
earlier in this section, the transitions, A3 and A}, cause the stability surface
to extend out along the planes B + C = £ A. In the side view of Figs. 5.6
and 5.7 these transitions result in noticeable bulges in the stability surfaces.
After the transferral, A 5, the remainder of the changes in the stability sur-
faces for R = 0.31 and 0.32 and A < 100 are sequences of tangencies, Agy-,,
Ay, Ab 11, Ab 3, and AY; ;5 (the last two only appear in Fig. 5.7). Again
the tangencies appear in an alternating pattern between the upper left and
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lower right portions of the stability surface in the top figures with different
colors indicating which odd numbered bifurcation surfaces are involved.

Ignoring the color coding which signifies the particular bifurcation sur-
faces on the boundary of the stability region at A = 100, we observe that
Fig. 5.6 has more similarities in the shape of its stability region with Fig. 5.10
than any of the other stability surfaces. At R = 0.31 and A = 100, the sta-
bility surface is only 11.1% larger that the MRS. Thus, as R increases or
decreases from R = % (at least locally), the stability region appears to ap-
proach the MRS asymptotically in A. This phenomenon is described in
Section 7 in more detail.

This section has demonstrated a methodology used to construct the
boundary of the stability region as R changes over a limited range of values
by applying the concepts developed in Section 3. In the next section we
extend this process for a larger range of R values. Most significantly, we
have shown that for a bounded region of R and A, there are only a finite
number of bifurcation surfaces that need to be considered in the construc-
tion of the stability region boundary and that local continuity with respect
to the parameters allows us to track the evolution of the boundary.

6 Extensions of the Geometric Analysis for R < %

In Section 4, the stability surface for (3.1) with R = % was analyzed, and
in the subsequent section the evolution of the stability surface for a range
of R values near R = % and A bounded was developed. Herein we extend
the analysis of the previous section to delays in the range 0 < R < % for
a bounded domain of A. We identify some generic properties of stability
surfaces and discuss variations in the construction of the stability region
boundary. Extensive numerical studies have established that new bifurca-
tion surfaces enter the boundary of the stability region only through transi-
tions (with associated stable spurs), tangencies, or transferrals as defined in
Section 3. Fig. 6.1 shows the first transition, tangency, and transferral that
affect the boundary of the stability region for R < % and A < 100.

In Section 5, the transition A} for R € [0.31,0.35] was shown to be
the first change affecting the boundary of the stability region given by The-
orem 3.2, which consists of the first bifurcation surface and the A+ B+C =0
plane. In fact, we can show numerically that A% is the first change in the
stability' boundary for all Ry < R < 0.47. Recall that the transition A}
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Figure 6.1: This figure shows the values of Ag, A}, and various transferrals

and tangencies for R € (0,

region for A < 100.
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2

], which affect the geometry of the stability

37



has an associated stable spur extending over the range A € (A%, A}) due to
the self-intersection of the second bifurcation surface. Thus, as A increases
from Ag the stability region gains an additional area of stability at A = AJ,
with BC cross-sections showing disjoint stability regions. Numerical studies
show that the length of these stable spurs decreases as R increases.

Fig. 6.1 shows that A} increases monotonically in R, with asymptotes
at R=0and R = %— This figure does not include other transitions which
may affect the boundary of the stability region. Nevertheless, the influ-
ence of these transistions can be surmized from the figure. Even numbered
transistions cause the asymptotes in the transferral and tangency curves,
partitioning the figure into a set of continuous curves. Each transferral pair,

Y2n» A% 2nt1, is circumscribed by even transistion asymptotes and is bi-
sected by an odd transistion at the point indicated by a diamond. Lying
above every adjacent transferral pair are two tangency curves, also bisected
by odd transistions at the diamond. As R decreases from %, the transferral
and tangency curves narrow with the minimum of each curve increasing as
R — 0. Moreover, higher frequency transitions decrease the gaps between
transferral and tangency curves, as can be seen from the period of the cotan-
gent function in (3.8). When R is small, tangencies and tranferrals do not
occur until A becomes large. As a result, when R is near zero a large number
of transitions contribute to the boundary of the stability region.

In order to illustrate effects that transitions have on the boundary of the
stability region as R varies, we examine several examples from R € (0, %] At
R = %, there are no transitions, and the stability region is comprised of only
two families of bifurcation curves. A transferral occurs at Aj , ~ 2.61, after
which all other changes to the stability region are the result of tangencies
with the first occurring at Af ; ~ 16.6.

In Section 5 we saw that for the delays R = %, 0.34,0.35, A7 is the only
transition that influences the boundary of the stability region for A < 100,

“while both A% and A} influence the boundary of the stability region for

R = 0.31 and 0.32. Appendix B demonstrates that these transitions have
associated stable spurs. The length of the interval (A7, A}), where the stable
spurs occur, ranges from 0.092 for R = 0.35 to 0.159 for R = 0.31. For
R € [0.31,0.35], stable spurs appear over a limited interval of A values,
and their enclosed volume is relatively small compared to the the stability
region beginning at Ao as seen in Fig. 4.5. An additional effect induced by
transitions can be seen in the case R = 0.32, where A} causes a change in
the transferral ordering through a distortion of the stability region along the
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A+ B+ C = 0 plane. _

~ Further from R = %, a distinctly different sequence of events occurs
in the construction of the boundary of the stability region. In the case
R = 0.1 with A < 100, there are no tangencies though a transferral oc-
curs at Af ;7 = 91.7. On the other hand, there are eight transitions, A} =
-9.59, —8.32, —6.05, —-2.46, 3.08,12.09,29.12,76.72, « = 1,...,8, which af-
fect the boundary of the stability region. Each transition causes a new
bifurcation surface to enter the boundary of the stability region, increasing
its geometric complexity. The stable spurs associated with the transitions,
Ar,i=1,...,8, have interval lengths (A?, A¥) of 0.688, 0.449, 0.277, 0.156,
0.076, 0.029, 0.007, and 0.001, respectively. Thus, stable spurs are smaller
for higher frequency transitions. Unlike previous cases discussed, the stable
spur originating from A} when R = 0.1 is relatively large compared to the
stability surface emanating from Ag. The length of the interval (A7, AY) is
49% of the length of the interval (Ao, A7), so locally this stable spur repre-
sents a significant portion of the stability region. This is shown in Fig. 6.2
for a cross-section at A = —9.6. Nevertheless, given the scale of Fig. 6.2,
the area of the stable spur relative to the entire stability region is still quite
small. An estimate of the total area of stability is approximately i— square
unit.

Transitions, especially the even ones, have the greatest effect on the
geometry of the stability region and the eigenvalues that determine stability,
although transferrals and tangencies also contribute to the composition of
the stability region. For example, when 0.47 < R < %, the first change in the
stability region is a transferral, as seen in Fig. 6.1. As R decreases, the figure
shows that the first transferral occurs for increasingly higher bifurcation
surfaces due to intervening transitions. For most values of R € (0,%], there
is only one transferral that impinges on the boundary of the stability region.
This figure does not illustrate the reverse transferrals which occur as a result
of even transitions distorting a bifurcation surface along the A+ B+C =0
plane, but these would appear in the figure at the jump between A7 ,, and
A3 941 due to A3 as R decreases. In Section 5, this situation was described
in detail for R = 0.32 with Figs. 5.2-5.4 depicting changes in the geometry
of the stability region. ' '

The markers on the transferral curves in Fig. 6.1 indicate odd transitions
which determine the particular bifurcation surface involved in a transferral.
The figure shows that the change in A with respect to R is continuous for odd
transitions along these transferrals. As a result, the geometric appearence
of the stability region is maintained as A passes through an odd transition.
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Figure 6.2: A magnified BC cross-section at A = —9.6 when R = 0.1
showing that the area of the stable spur can approach the size of the stability
region emanating from Ap.

For example, when R = 0.351, A} causes the fourth bifurcation surface to
replace the first bifurcation surface as one of the surfaces intersecting the
A+ B+ C = 0 plane, while at R = 0.352, it is the third bifurcation surface
which enters the boundary of the stability region. However, Af 4 ~ 6.09 at
R = 0.351, and Af; ~ 6.00 at R = 0.352, showing little change in the A:
value. ' :

A pattern can also be discerned from Fig. 6.1 for tangencies. The figure
shows two curves lying above each transferral curve which mimic its shape.

. Thus, the first tangency always occurs after the first transferral. As noted

in Section 5, there are cases near even transitions where a surface enters
and leaves via a tangency and then reappears on a higher frequency bifur-
cation surface, often with distortions in the shape of the stability region.
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Like transferrals, odd transitions result in a change in the number of the
bifurcation surfaces involved in a tangency, but the change in A, where the
tangency occurs, is continuous in R. Unlike transferrals, after the appear-
ance of the first tangency, many more follow. As R approaches %, tangencies
play an increasingly important role in shaping the boundary of the stability
region for a given bounded A.

The analysis of this section has shown that there is not a predictable
pattern in the evolution of the stability surface for R € (0,%). However,
we have discovered some guiding principles using numerical schemes for
determining the region of stability for any delay Rp < R < % The initial
point Ag as given by Theorem 3.2 is always the genesis of the stability region.
The location of critical A values where transitions occur can be found from
(3.8). When transitions involve one of the surfaces on the boundary of the
stability region, changes in the geometry of the region occur. Prior to a
transition, surface self-intersection adds stable spurs to the stability region.
The relative size of the stability region due to a stable spur increases as
R — 0. Figs. 5.1 and 6.1 can be used to locate transferrals and tangencies
and determine which curves are on the boundary of the stability region for
a given R. In addition, these figures indicate the sensitivity of the stability
region to perturbations in R for bounded values of A. A characterization of

“the stability region when A is unbounded is the topic of the next section.

7 Asymptotics

In Section 5, the 3-dimensional stability surfaces of Figs. 5.6-5.10 showed
that the region of stability is larger than the MRS given in Theorem 3.1 for
A < 100. In this section we examine the behavior of the stability region
for R € (0,3] when A is large. Numerical studies indicate that for most
delays the region of stability appears to asymptotically approach the MRS,
although certain rational delays result in larger stability regions. Specifically,
we show which rational values of R produce the largest regions of stability
as A — +o0. '

Fig. 2.1 reveals how the first bifurcation curve of the one delay problem
approaches the A = B, C = 0 edge of the MRS as A becomes large. Simi-
larly, a rescaling shows a set of bifurcation curves approaching the A = C,
B = 0 edge of the MRS. The set of bifurcation surfaces along this edge as
A increases is a progression from the first bifurcation surface to the mth
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bifurcation surface, where m is the least integer greater than or equal to
l;RB. Though the stability region approaches the MRS, the asymptotic be-
havior of the entire stability surface is highly dependent on R and may not
approach all faces of the MRS.

To illustrate differences in the asymptotic behavior of the stability region
for (3.1), we consider the delays R = 0.5 and 0.49. In a cross-section at
A = 100, Fig. 7.1 shows the boundaries of the stability regions for B =
0.5 and 0.49, which are constructed from the first 10 and 16 bifurcation
curves, respectively. At A = 100, the stability regions for R = 0.5 and
0.49 appear similar in the general shape and positioning of the bifurcation
curves as might be expected from the continuous dependence of (3.2) on
R. Furthermore, the respective stability regions for R = 0.5 and 0.49 are
approximately 67.9% and 60.7% larger than the MRS at A = 100. However,
unlike the delay R = 0.5, the transition A} and several other transitions

~ appear when A < 100 for R = 0.49. These transitions cause the upper

portion of the stability region to be formed by the even bifurcation curves
for R = 0.49, while the upper portion of the stability region for B = 0.5 uses
only odd bifurcation curves. Though the shapes of the bifurcation curves are
similar, their orientation is reversed in these two examples, indicating that
the respective Hopf bifurcations occur at different locations on the imaginary
axis. Thus, despite the geometric similarities of the stability regions in.
Fig. 7.1, the frequencies at which stability is lost are dissimilar, revealing a
divergence in the construction of stability surfaces for these delays.

Eqn. (3.4) shows that as w increases the bifurcation curves generated
from two distinct delays will diverge even when the difference between the
delays is small. As a result, the location in the BC-plane of the nth bi-
furcation curves for two nearby R values may be quite different. Consider
Fig. 7.2 in which the stability regions for R = 0.5 and 0.49 at A = 400 are
composed of the first 38 and 26 bifurcation curves, respectively. Since a
large number of bifurcation surfaces are required to construct the boundary
of the stability regions for these examples, it is not surprising that geometric
disparities emerge. Numerical integration at A = 400 indicates that relative
to the MRS the area of the stability region for R = 0.5 is still approximately
67.8% larger, while the area of the stability region for R = 0.49 is only 7.5%
larger. Thus, the shape of stability region at R = 0.5 persists as A increases
with two nearly symmetric areas extending well beyond the MRS along the
faces B+C = A and B—C = A. On the other hand, the stability region for
R = 0.49 is nearly coincident with the MRS at A = 400. The variation be-
tween between Figs. 7.1 and 7.2 demonstrates the sensitivity of the stability
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’ Figure 7.1: The top figure shows a cross-section of the BC-plane at A = 100

for R = 0.5 with the first 10 bifurcation surfaces bounding the stability
region. The bottom figure is a similar cross-section for R = 0.49 with the
first 16 bifurcation surfaces bounding the stability region.
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region to the delay R as A changes.

We conjecture that the large area of stability beyond the MRS for R =
0.5 is primarily due to the small number of bifurcation curve families (in
this case two). The high degree of familial ordering with only two basic
shapes prevents the bifurcation curves from asymptotically approaching the
MRS. It is less clear why the basic shape of the region of stability remains
the same, increasing proportionally with A. In addition, the process which
preserves an almost linear relationship between the number of bifurcation
curves on the boundary of the stability region and A, remains an open
question. Further research is needed in these areas.

Using the discussion of curve periodicity in Section 3, we find that there
are 102 bifurcation curve families for R = 0.49. Nevertheless, the shape and
organization of the bifurcation curves in Figs. 7.1 and 7.2 for R = 0.49 are
similar to the two families of R = 0.5. The bifurcation curves for R = 0.49
drift in a counterclockwise direction clustering into what appears to be a
four families structure. As A increases and more bifurcation curves are
added to the boundary of the stability region, the bifurcation curves for
R = 0.49 asymptotically approach the MRS, departing from the geometry
of two family structure of R = 0.5. We conjecture that the familial ordering
of the bifurcation curves will restrict the asymptotic approach of R = 0.49
from reaching the MRS, though this has not yet been demonstrated. In
practical applications, the region of stability for R = 0.49 can be considered
asymptotically coincident with the MRS. '

It is both the family structure and orientation of bifurcation surfaces
that determine the asymptotic shape of the stability region for a given delay
R. As a measure of the asymptotic approach of the region of stability to the
MRS, we define the bulge ratio, br(A) = X/Y, where X is the maximum
distance between the boundary of the region of stability and either of the
lines B+C=0o0orB—-C=0andY = A/\/§ is the distance between the
boundary of the MRS and either of the aforementioned lines. The bulge
ratio gauges variations in the size of the stability region relative to the MRS
as the parameters A and R are changed.

In the previous sections, we demonstrated that transitions cause local
distortions in the shape of the stability region, often adding significantly
to the volume of the stability surface. Asymptotically, transitions remain
important in determining the size of the stability region and the rate at
which it appoaches the MRS. Ignoring any contribution from stable spurs,
we observe that the maximum distention of the stability region at the A7
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for R = 0.5 with the first 38 bifurcation surfaces bounding the stability
region. The bottom figure is a similar cross-section for B = 0.49 with the
first 26 bifurcation surfaces bounding the stability region.
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transition occurs at (BF,CY). (For example, see Fig. 4.3 and Fig. 5.3.) At
A%, Eqns. (3.8) and (3.10) can be used to find the bulge ratio,

|B; - (-1)iC3]
4

(7.1) - Hng% ec(-i )——2—81n( ]

br(A) =

This equation proves useful in examining the asymptotic properties of the
stability region.

First we analyze the sensitivity of the bulge ratio to changes in A for
several delays near R = 0.5. The results for 5 < A < 500 are shown
in Fig. 7.3. The case R = 0.5 is clearly an anomaly with its bulge ratio
rapidly approaching a limit of two. That is, there is always a point on the
boundary of the stability region that remains at least twice as far from the
lines B4+ C = 0 or B— C = 0 as is the MRS. The other delays shown
in Fig. 7.3 have bulge ratios similar to R = 0.5 for moderate values of A
as expected by continuity of (3.2), but their bulge ratios peak near three
at A}. (Recall that A7 = +oo for R = 0.5.) Eqn. (7.1) can be used to
verify that br(A]) — 3 as R increases to 0.5. For the delays studied near
R = 0.5, there are other transitions outside the stability region prior to A7.
As a result, for A > A} many of the bifurcation curves for these delays are
oriented differently from the bifurcation curves for R = 0.5. In this way,
the stability region for R < 0.5 and A > A} diverges from the special case
R = 0.5, with the stability region for these delays appearing to approach
the MRS for large A.

The analysis above identifies two factors contributing to the unusually
large region of stability for R = 0.5. First, the two families of bifurcation
curves do not permit sufficient geometric variation for the stability region
to approach the MRS. Second, given any A > 0 there exists some R € (3, 5
with A = A*, which from (7.1) satisfies br(A) > 3. When 4 > A} for
R < %, the bifurcation curves have a different orientation, and the bulge
ratio decreases as the two family ordering disappears. It is the confluence of
these factors that keeps the stability surface bounded away from the MRS
when R = % for all A, with its cross-sectional shape resembling the one
pictured in Fig. 7.2 for large A.

A similar argument can be made for several other specific delays. The

delays R = 1 and R =  follow R = ] in having the smallest number of

+ bifurcation curve families with four and six, respectively. Fig. 7.4 presents
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Figure 7.3: Graph of the bulge ratio versus A for several delays near R = 0.5.

cross-sections of the stability region at A = 400 for R = % and R = -}4-
showing the organization of the families of bifurcation curves. These figures
only present the bifurcation curves that have an impact on the boundary
of the stability region. For R = %, the boundary is comprised of the first
bifurcation curve, the second family (2,6,10,...), and the fourth family
(4,8,12,...); while for R = %, the first bifurcation curve, the third family
(3,9,15,...), and the sixth family (6,12,...) create the boundary of the
stability region. As in the case R = %, the construction of the stability
region boundary is dominanted by two families for both R = % and R = %.
Numerical studies show that the bulge ratio for R = £ tends to 1.414 as A
becomes large, with its stability area about 26.6% larger than the MRS. For
R = %, the bulge ratio tends to 1.237, and numerical integration yields a
stability area about 14.7% larger than the MRS.

In each of the aforementioned cases, transitions appear to affect the
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size of the stability region asymptotically in A. From (3.8) it follows that
A3 — 400 as R increases to Equation (7.1) can be used to show that
br(A%) — 2 as R increases to 1. Similarly, as R increases to 1, A3 — +o0
and br(A%) — 1.667. As was seen for R = I, the transitions A} and A}
create distentions in the boundary of the stability region for R near % and %
with this local bulge occurring for higher values of A as R increases to either
% or %. Thus, the highly structured ordering of the bifurcation curves and
the effects of the transitions described above appear to prevent the stability
regions for R = % and % from asymptotically approaching the MRS.

When R = %, é, or %, the bifurcation curves again organize into a small
number of highly ordered families of which only two families along with
the first bifurcation curve are on the boundary of the stability region for A
sufficiently large. The bulge ratios for R = -é—, %, and % tend to 1.155,1.111,
and 1.084, respectively, with stability areas 9.41%, 6.57%, and 4.90% larger
than their respective MRS. As in the previous cases, the transitions Aj_;
result in local distortions in the stability regions for R less than but near ;1;,
with the bulge ratio at the transition from (7.1) given by br(A}_,), which
is decreasing in n. Again, it appears that the peak in the bulge ratio due to
these transitions and the highly ordered curve families prevent the stability
regions of these rational delays from asymptotically approaching the MRS.

A numerical study of the bulge ratio versus R at A = 1000 is presented
in Fig. 7.5, where computation of the bulge ratio is undertaken at intervals
of R = 0.002. If data were collected continuously in R for Fig. 7.5, then as
R increased, the bulge ratio would increase to about three for R ~ 0.4995
(since AX(R) = 1000), and subsequently decrease to about two when R = %,
which is the largest value that appears in the figure. Because of the grid
generating the data points, many of the peaks caused by transitions are lost
in the figure. The graph in Fig. 7.5 shows the largest asymptotic bulge ratios
in descending order are R = %—,%, —1—,% and %, each of which was discussed
above. In fact, at A = 1000 there are transitions just prior to each of these
values of R resulting in bulge ratios which exceed those for R = . As noted
above this is a local phenomenon, so that as A increases the bulge ratio peak
due to the transition A%_; occurs at R values closer to L, with transition
peak heights nearly constant.

One interesting peak that appears in Fig. 7.5 and was not discussed above
is the one at R = —g— The asymptotic bulge ratio approaches 1.110 with a
stability region that is 7.17% larger than the MRS. From Section 3, we find
that R = % has only six families of bifurcation curves, the same number as

R = %, yet its asymptotic bulge ratio is significantly lower. The variation
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Figure 7.4: The top figure shows the cross-section of the stability region for
R = % when A = 400, while the bottom figure shows the cross-section of the
stability region for R = % when A = 400. The top figure requires a collection
of the first 44 bifurcation curves, while the bottom figure requires some of the
first 45 bifurcation curves to construct the boundary of its stability region.

49



in bulge ratios is due in part to differences in the organization of bifurca-
tion families on the boundary of the stability region between R = % and
R = %. We note that for delays near R = % there are no transitions for bi-
furcation curves on the boundary of the stability region. This demonstrates
the importance of both the structure of the bifurcation curves families and
the set of transitions on the stability region boundary in determining the
asymptotic bulge ratio. Additional work is needed on problems of this type.
Extending the reasoning given in this section for specific rational de-
lays in the interval (0,3 ), we consider any delay, rational or irrational, over
the same interval. Since all rational delays have a finite number of bifur-
cation curve families, we conjecture that rational delays will have stability
regions larger than the MRS though generally the deviation will be quite
small asymptotically. If the delay, R, is irrational, by Section 3 it will have
no families of bifurcation curves. Without a specific curve ordering from
families of bifurcation curves, we conjecture that irrational delays will have
stability regions which are asymptotically coincident with the MRS.

8 Discussion

Our work has outlined a methodology for identifying and characterizing
the stability region in the coefficient parameter space of the two delay dif-
ferential equation given by (3.1) when R < 1. For most delays, the stability
region begins at a specific point given by Theorem 3.2, which is easily seen
in the 3-dimensional figures, and is bounded by part of the first bifurcation
surface and the A + B + C = 0 plane. Along the former a Hopf bifurcation
occurs, while the latter exhibits a loss of stability as a real root crosses the
imaginary axis in the eigenspace. Increasing the coefficient of the undelayed
term, A, we discovered only a limited number of ways in which changes to
the boundary of the stability region occur.

The most significant changes resulted from transitions, A}. If the gt
bifurcation surface is part of the boundary of the stability region when A <
A7, then at A7, there is a degeneracy as two bifurcation curves meet at
a point, and a Hopf bifurcation occurs with eigenvalues A = :i:lj;—”Ri along
part of the line given by (3.10). At the transition a stable spur from the
self-intersection of the j 4 15* bifurcation surface joins the stability region.
Subsequently, the 7 + 15t bifurcation surface enters the boundary of the
stability region. At a transition the asymptotic limits of the two bifurcation
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Figure 7.5: Graph of the bulge ratio versus R at A = 1000.

surfaces involved swap positions, causing a major distortion in the boundary
of the stability region.

For R < %, we observed only two other ways in which new bifurcation
surfaces could enter the boundary of the stability region, transferrals and
tangencies, as defined in Section 3 and illustrated in Section 4. By studying
how the bifurcation surfaces could enter the boundary of the stability re-
gion, we were able to develop numerical methods to trace when a transition,
transferral, or tangency affected the boundary for a given value of R. With
this information we generated the complete stability region for bounded val-
ues of A over a range of R values. In Section 5, we presented a series of
3-dimensional plots showing how the stability regions vary with R, often
observing significant changes when R is perturbed slightly. In Section 6, we
provided information for finding the boundary of the stability region when
Re (0,%]. In addition, we demonstrated the significance of transitions and
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their associated stable spurs as R decreases. Our analysis shows that the
shape and size of the stability region is very sensitive to changes in the
parameters, especially R.

One picture that emerged from our analyses was the difference in the
regions of stability for low order fractional delays such as -;— and % These
delays exhibit atypically large stability regions which persist as A — oo.
We showed that near these fractional delays there is an accumulation of
transitions that distort the regions of stability of delays nearby (for example,
compare Figs. 5.7 and 5.8). In Section 7, we performed a series of numerical
experiments to demonstrate how much larger the regions of stability were
for certain delays. For most delays as A increased, the region of stability
rapidly approached the Minimum Region of Stability given in Theorem 3.1.
However, when R = %, the region of stability remained almost 68% larger
than the MRS. Other delays such as % and % also have enlarged stability
regions, which seem to reflect the dominant effects that transitions have in
determining the stability region. Thus, the size of the stability region can be
very sensitive to variations in R. This sensitivity to variations in R should
be recognized when characterizing stability properties of a mathematical
model with two delays.

This paper answers many questions on the complicated nature of the
stability of (3.1). Yet, there are many questions that remain to be addressed.
We limited this work to the range of R < 1 since the bifurcation curves are
simpler. Over this range the bifurcation curves rarely self-intersect which is
not the case when R > % We have noted that transitions create the most
significant changes in the region of stability and observed that as B — 0
transitions occur more frequently with larger stable spurs. More studies are
needed for small values of R. Qur studies on the asymptotic limits as A — oo
in Section 7 were primarily numerical, so additional analytical work should
be performed. Nevertheless, our results provide a framework for studying
applications utilizing differential equations with two delays.
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A Appendix: D-Decomposition Partitions

This appendix identifies the region of stability for (3.1) by applying the
D-decomposition method discussed in El’sgol’ts [7]. The image of the imag-
inary axis for (3.2) is a countable set of curves in the BC-plane for each
value of A and comprises the boundary of the D-decomposition partitions.
When R < % all of these curves are simple, except when a stable spur forms.
Crossing a bifurcation curve results in the gain or loss of two eigenvalues with
positive real part. The D-decomposition method uses this information to
determine the number of eigenvalues with positive real part in each portion
of the BC-plane partitioned by the bifurcation curves. Fig. A.1 diagrams a
cross-section in BC-space of the first bifurcation surface when R = % and
A = =2, which is near the initial point of Theorem 3.2.

S T

| .
-5 ' 0 5
B

=5

Figure A.1: Example illustrating the D-decomposition method. Shown is
the case where R = % and A = -2.

The line in Fig. A.1 is the projection of the A+ B+ C = 0 plane where a

real root of (3.2) occurs. The other curve in the figure is generated from (3.4)
as the parameter w increases from 0, showing part of the first bifurcation

53



surface. The range shown in Fig. A.1 is sufficiently restricted so that it
does not include any additional images of the imaginary axis, i.e., the other
bifurcation surfaces lie outside the region shown. Crossing the projection of
the A+ B+C = 0 plane to the left or down creates a real positive root, while
crossing the curve projecting the first bifurcation surface into either Region
III or IV generates two complex conjugate roots of (3.2) with positive real
parts. Thus, Regions II, III, and IV have one, two, and three roots of (3.2)
with positive real parts, respectively, and Region I is the region of stability
with all solutions of (3.2) having roots with negative real parts.

Equation (3.5) gives the initial point at which the first bifurcation surface
and the A + B + C = 0 plane coincide as w — 0. To show that the first
bifurcation surface proceeds above the plane as seen in Fig. A.1, we must
demonstrate that B + C > —A for B and C given by (3.4) and w slightly
greater than zero. This is equivalent to

A(sinwR — sinw) + w(coswR — cosw) > —Asin(w(1 — R)).

By taking the first two terms of the Maclaurin series expansion for the sine
and cosine functions and dropping higher order terms, the above expression
reduces to A > —(R + 1)/R = Ag. Thus, for A > Ao, the first bifurcation
surface begins by rising above the A + B + C = 0 plane. To complete the
proof that the first bifurcation curve is as pictured in Fig. A.1, we must
show that it returns to intersect the A 4+ B + C = 0 plane. However, until
A = A3, we see that (B(w),C(w)) — (—00,—0) as w — (7Z5)~, which
implies that the first bifurcation curve intersects the A + B + C = 0 plane
a second time. Therefore, the boundary of the stability region in the BC-
plane is circumscribed by the first bifurcation curve and the A+ B+C =0
plane for some range of A > Ag (assuming there are no stable spurs in this
cross-section). '

The 2-dimensional analysis on the BC-cross-sections extends easily to
the 3-dimensional ABC-parameter space. The bifurcation surfaces defined
in Section 3 form boundaries that partition the 3-dimensional parameter
space into regions with the same number of eigenvalues with positive real
part. By carefully following changes in the boundaries of the BC-cross-
sections, the 3-dimensional structure of the stability region (no eigenvalues
with positive real part) is found as A varies. This is shown to be a connected
set in our geometrical analysis.
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B Appendix: The Transistion A} and The Exis-
tence of Stable Spurs |

Theorem 3.2 provides the initial point of the bifurcation surface over a
range of the delay R. As A increases, the first bifurcation surface and the A+
B+ C = 0 plane bound the stability region in the BC cross-sections as seen
in Fig. A.1. In this appendix we show that for R < %, there is a transitional
value, A%, given by (3.8). For A > Aj at least one additional bifurcation
surface bounds the stability region, which differs from the one delay problem.
Prior to the transition at A}, the second bifurcation curve self-intersects
capturing a region of stability distinct from that given by Theorem 3.2. The
collection of these BC cross-sections join the principal region of stability at

1, forming what we define as a stable spur. Furthermore, every transition
on the boundary of the stability region has an associated stable spur.

When R < % and A < A3, (3.4) shows that

lim _(B(w),C(w)) = (~o00,~00);

w=(rZx

while for A > A7,

lim _(B(w),C)) = (+0,+00).

w— Ey -

This demonstrates a dramatic change in the first bifurcation surface and
indicates that a transition occurs at A}. In particular, when A = A] and
w = 7R, the real part of (3.3) is zero for any B and C. The imaginary part
of (3.3) is satisfied when:

(B.1) B-C-= 1—ir—Rcsc (ﬁ%) ,

which generates a line in the BC-plane at A = A}. As w — %5, Eqn. (3.9)
with 7 = 1 gives the value of the point (Bf,C{) where the first bifurcation
curve terminates and the second bifurcation curve begins. The line given
by (B.1) becomes a boundary in the D-decomposition partition of the space
at A = A}. (See Fig. 4.3 as a representative cross-section of this transi-
tion.) Below (B}, C}) there are two more eigenvalues with positive real part
above (B.1) than below this line, while above (B, CY) there are two fewer
eigenvalues when passing from below (B.1) to above this line.
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The graph in Fig. 6.1 shows that A9 < A} for all 0 < R < 1. For
% <R< %, it is clear that A9 < A} as Ag < 0 and A} > 0. The expression
Ap < A7 is equivalent to

1— R?

R : R

(B.2) cos (T—lR) <~ sin (l—_"ﬁ) .

For small R, the Maclaurin series expansion for cosine and sine readily verify
this inequality. Let z = %, then (B.2) can be written

zcosz < (14 R)sinz, 0<z<

no| N

- The derivative of = cos z is less than cos z for 0 < # < § which demonstrates

that (B.2) is valid for 0 < R < % and proves that Ag < A} forall 0 < R < 3
It is easy to see that A} — oo as R — 1.

For R < %, the bifurcation curves generated by (3.4) are usually simple
curves in the BC-plane. An exception is seen in Fig. 4.2, where a loop devel-
ops in the second bifurcation curve. Fig. 4.5 shows the 3-dimensional stable
spur that results as the 2-dimensional cross-sections of loops in the second
bifurcation curve grow from a point at A} and join the principal region of
stability at the transition value, Aj. Below, an algorithm is provided for
computing the initial point of the stable spur at a given transition value of
A for any R € (0,3).

Fig. 4.6 depicts a typical cross-section of bifurcation curves in which
C(w) is monotone for the first and third families of curves. In the second and
fourth families, C'(w) has a single extremum. That is, the equation dC/dw =
0 has no solutions for the first and third families and only one solution for the
second and fourth families. This schema breaks down when considering the
second bifurcation curve in Fig. 4.2, which shows that dC/dw = 0 has two
solutions. Specifically, we find that the second bifurcation curve is monotone
in C until A = A7, then it has two extrema for A € (A, A]). For A > A7,
there is another extremum at which C reaches its maximum value and the
second bifurcation curve is again simple.

Using (3.4), we can compute dC'/dw:

ac _ - sin(w(1 — R))[A cosw + cosw — wsin w]
dw sin?(w(1 — R))
+(1 — R)cos(w(l — R))[Asinw +w cosw]'

sin?(w(1 — R))
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Using basic trigonometric identities on the numerator of this expression, we
define the following function:

(B3) f(w) = %([A(2 — R)+ 1]sinwR — (AR + 1)sinw(2 — R)
+w(2 — R) coswR — wR cosw(2 — R))

Note that the function f also depends on the parameters A and R. Com-
puting dC/dw = 0 is equivalent to f(w) = 0. To study the zeroes of f, its
derivative is needed and is given by:

(B.4) f'(w)= ([AR(Z — R) + 2]sinw + wR(2 — R) cos w) sinw(l — R).

When f/(w) = 0, we can solve (B.4) to yield:

wR(2—- R)

(B5) tanw = —m.

The length of the interval for the j** bifurcation curve is 1Z5. Since R €
(0, —12;], this interval has a length between 7 and 2. For any given bifurcation
curve the number of solutions to (B.5) is either one or two, which implies
that f(w) has either one or two extrema. Next we examine the endpoints of
the 5t bifurcation curve.

Let w = _1%%’ then (B.3) gives:

(B-6) f(:%) = A(l—R)(=1)sin 5% + jm(=1) cos 1%,
(—l)j(A—A’;')(l— R) sin {5, ﬁ ¢ Z,
N ,
(=1)jm cos 17, is € Z,
where A} = —1’;—"R cot Ij_—”R is the 7 transition. To simplify our discussion we

concentrate our analysis on the first stable spur which arises from the second
bifurcation curve with A slightly less than Aj. Finding the other stable spurs
uses very similar techniques. For the first stable spur we examine

f(iZ5) = (Al - A)(1 - R)sin 125

and

1IN

W= =

2r ) — (A—A*)(l—R)Sin%a R
f(m)—{__%r, ? 1-R R
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Since sin ;25 < 0 for R € (0,3), f(7Z5) is negative if A < A} and positive
if A> A* For A near A%, it can be shown that f(72%;) < 0 as A} < A} for
0O<R<1i andA*>A*for3<R< 5

From (B 4) it is easy to see that f'(w) =0 at w= —’_L Consider f’(w)

in a neighborhood of the endpoints. Let w = ﬁ be a point near the initial
w value for the second bifurcation curve, then

(&) = (AR(2 — R) + 2)sin 1”% £ R(2— R) cos = ) sinw™,
~ [(A A}R(2 — R)sin = + 2sin ——] sin 7t

For A— A} < R(2— R)/2, this expression is positive for a range of w > 775

Near the other endpoint we examine a point w = 122—;%. The expression
fl(E%) ~ [(A A3)R(2 — R)sin 22 4 2sin 227 ] sin 27~

is positive for |43 — A| > R(2— R)/2 and A near A}.

The above information shows that if A is sufficiently close to A}, then
the graph of f begins by increasing to some maximum, then decreasing to a
minimum, after which it increases and obtains a negative value for f({¥%
When A is farther from A}, one of these extrema might disappear or the
final endpoint might not be negative. There is a range of A with A < Aj
such that f remains negative for all w € [-J—R,%%], or equivalently, the
second bifurcation curve is monotonically decreasing in C. As A increases
to A} < A3}, there exists an wp, with f(w,) = f(wp) = 0, where the stable
spur begins. For A € (A4}, A}), the graph of f for w € [1Zg, 1] begins
negative, then increases to a positive maximum before ending with a negative
value. Thus, dC/dw has two roots in this interval which causes a loop in
the second bifurcation curve. For A > A% (yet sufficiently close), the graph
of f starts positive, then becomes negative, which indicates that the second
bifurcation curve increases to a maximum and then decreases as pictured in
Fig. 4.6. Thus, our calculations show that there is always a stable spur at a
transition for R < 3.

To find the initial point of a stable spur for any R and j, an algorithm
was developed that solved (B.3) and (B.4) simultaneously equal to zero for
w and the parameter A The value A = Ap determines where the stable
spur begins, and w = w gives the frequency of the bifurcation at this point.
The numerics lead to several observations. First, the (j 4+ 1)5* stable spur
is shorter than the j* for any given R. Secondly, the length of the stable
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spur increases with decreasing R. Thus, A} is the beginning of any stability
region generated by stable spurs. Numerically, we find that A} < Ao for
R < 0.0016. This implies that as A increases, the stable spur, bounded
solely by the second bifurcation curve, forms the first region of stability.
Subsequently, another region of stability emanates from A and is bounded
by the first bifurcation curve and the A + B + C' = 0 plane. We have not
conducted studies for these small delays, so the significance of stable spurs
in this region is unknown. For R > Rg = 0.0017, the stability region begins
at Ag and is summarized in Theorem 3.2.
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C Appendix: Detailed Curve Analysis for R = %

The bifurcation curves shown in Fig. 4.5 with R = 313- have four character-
istic shapes and a periodic curve ordering which partitions the curves into
four families, as discussed in the text. This distinct ordering facilitates the
construction of the stability region.

In this section, a detailed analysis of the shapes of the curves that com-
prise the four families shown in Fig. 4.5 is undertaken. A rotation of 45° will
simplify the analysis of the families of curves, so we introduce the following
change of coordinates:

—A cos (ﬂ%—&) + wsin (i(l%']ﬁ)

X =B+C= COS(W!I;R!) ?
_ _ Asin(—L—l“’l;R)+wcos(—(—l‘”1;R)
(Cl1) Y =B-C= o (2]

These equations are derived from (3.4) after some trigonometric simplifica-
tions. With R = %, Eqn. (C.1) yields:

—A cos (%‘”) + wsin (2:%)
cos (%)
Asin (2—:;"-) + wcos (%“’)

@

sin (3)

X =

?

(C.2) Y =

The equations given in (C.2) allow us to obtain analytical results for the
bifurcation curve families. To prove certain results, the slope of the curves in
the rotated coordinate system are required. Maple™ was used to compute
the following;:

2Asin®% — 3sin % cos & 4 w(2sin® ¥ + 1) cos —‘g)

- 2w — Wgin 2w 3 2w
A(2cos? % 4 1) — 3cos g sin 5 — 2w cos® 5

(C.3) % = ( cot? «.
Fig. C.1 shows the four bifurcation curve families in the rotated coordi-
nate system for R = % The formulae above are used to show some of the
properties intrafamilial members share.

Consider the first family of bifurcation curves. These curves are formed
by examining 6km < w < 6km + %,ﬂ, k = 0,1,... The following limits are
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\

Figure C.1: The four families of bifurcation curves for B = % in the rotated

coordinate systems.
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readily obtained from (C.2):
lim A X(w)= —A,

w—Bkmrt
wlir& Y(w)=24+3, w-—»6%11€1}i-11)7r+ Y(w)=+oo, k=0,1,..
and
m X(w) =400
w—Bkm+37 /2~
lim Y (w) = -6kr —37/2, k=0,1,..

w—Bkmw+37/2~

Equation (C.3) can be used to show that dY/dX < 0 for A > 0 on the
interval 6kT < w < 6kT + %’5, k = 0,1,... This follows as the denominator
is clearly negative on this interval and the numerator can be shown to be
positive. The numerator is clearly positive for 6kr + 3—;’- L w < 6km + %’1,
k =0,1,... On the remaining interval, let z = % and define

f(z) = —sin(z) cos(2z) + z(2 sin®(z) + 1) cos(z).

It follows that f(0) = 0 and f'(z) > 0 for 0 < < %. Thus, the numerator
is positive over the desired interval, and the monotonicity of the first family
of curves is shown.

From the one delay problem we know that the first bifurcation curve
passes closest to the point (X,Y) = (4, A). The asymptotic limits above
show that each member of the first familiy must intersect the other members
of this family at least once, but from the location of the first bifurcation curve
this intersection requires that X > A. This places all members of this family
except for the first bifurcation curve away from the boundary of stability.
Notice that the second bifurcation curve (the leading curve of the second
family) intersects the first bifurcation curve near (X,Y) = (4, A). Thus, it
becomes part of the boundary of the stability region for A > AJ.

A similar result can be obtained for the third family of bifurcation curves
where 6k7+37 < w < 6km+ 97", k = 0,1,... This family is nearly a reflection
of the first family of bifurcation curves. The following limits are obtained
from (C.2):

lim X(w)=A4, lim Y(w)=-00, k=0,1,..
w—6kn4-371t w—6kr437t
and
lim X(w) = —o0, lim Y (w) = 6kr+97/2, k=0,1,..
w—Bkr+97 /2~ w—Bkn 49 /2™

62



In arguments similar to the ones for the first family of bifurcation curves,
(C.3) yields dY/dX < 0 for A > 0 on the interval 6kr < w < 6k7m +
37/2,k = 0,1,... The monotonicity and positioning of these curves preempts
them from joining the boundary of the stability region as seen in Fig. C.lc.
In particular, this family lies outside the region bounded by the second
bifurcation curve and the real root crossing, the B + C = X = —A line.
The second and fourth families of curves are the most important in
determining the boundary of the region of stability. The second family of
bifurcation curves is defined on the interval 6k7 + 37" < w < 6km + 37,

k =0,1,..., and satisfies the following limits:

lim X(w) = —o0, lim Y(w) = —6kr—-37/2, k=0,1,..
w—6Bkn+3m /2t w—6kr+37w /2t
and
im X (w)= A4, lim Y(w)=4o00, k=0,1,..
w—Bkw+4+37— w—Bkm+3n—

Equation (C.3) shows that as w — 6km + 37”-'_, -5—}/(- — 0; while as w —

6km + 377, % — —o00. Furthermore, the numerator of the leading factor
in (C.3) approaches 24 + 3 as w — 6km + 37”+, while it approaches —6k7 —
37 as w — 6kr 4+ 37~. Thus, there is one sign change in the numerator
demonstrating that these bifurcation curves have % = 0 at some point in
the interval. The denominator of the leading factor in (C.3) tends towards
—A as w — 6k1 + 3—2"-+, while it approaches 12kw + 67 as w — 6k7 + 37,
Again there is one sign change, which in this case shows that the bifurcation
curve becomes vertical and turns around. This distinctive shape is depicted
in Fig. C.1b. It follows that each member of this family begins by decreasing
to a minimum value of Y, then proceeds to a maximum X value before
turning back and asymptotically approaching X = A.

We have shown that each member of the second family of bifurcation
curves has an reflected “L” shape. From this geometry, more complicated
intra-familial interactions can occur than are seen in either the first or third
families. The second family contributes bifurcation curves to the boundary
of the stability region for increasing values of A as successive curves meet
in tangencies. In the text we noted that for A > 30.4, the sixth bifurcation
curve enters the boundary of the stability region along with the second
bifurcation curve. The 10* bifurcation curve becomes tangent to the 6
near A = 80. Thus, the second family, unlike the first or third families,
has a sequence of surfaces which form the boundary of the stability region
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through curve deformations which induce tangencies. Even though second
family curves deform to become part of the boundary of the stability region,
their characteristic shape persists.

Consider the behavior of successive curves at the Y-intercept. When
X = 0 with A > 0 fixed, each bifurcation curve has a unique Y-intercept.
From (C.2) it follows that

w
(C.4) Y = W, where wtan(%‘") = A,

for w over the proper interval. For the second family of bifurcation curves,
where (6k + 2)7 < w < (6k + 3)7, (C.4) can be used to see that for k large,
w — (6k + )7 yielding Y — —(6k + $)7. Thus, the bifurcation curves of
the second family pass through the third quadrant almost as parallel lines
separated by 6 for large w. This gives a clear ordering of the curves for
w sufficiently large separating this section of the second family curves away
from the region of stability. As a result, for any fixed value of A only a finite
number of second family curves are part of the boundary of the stability
region.

The behavior of the tangent curves can be seen at the Y-intercept as
higher numbered second family curves (6, 10, 14 ...) become tangent and
then pass inside of the lower numbered curves. To see this, observe that the
equation for Y in (C.4) has both its numerator and denominator increasing
in w which allows the ordering of the curves to reverse for some of the
initial family members. In fact, as A increases more family members may
swap positions leaving a higher bifurcation surface on the boundary of the
stability region. Let 2k be the highest numbered bifurcation surface on
the boundary of the stability region, then for large A our numerical studies
indicate that 2%k increases almost linearly with A. Furthermore, the ratio
of the maximum Y -intercept to —A tends to 1.299, which demonstrates the
persistence of a bulge in the stability region beyond the MRS for large A.
The existence of an aysmptotic bulge in the stability region is examined in
detail in Section 7 of the text.

Similarly, when ¥ = 0 with A > 0 fixed, the unique X-intercept = X
is found by solving

w

0 A ey

where  wcot(%) = A,

with w € ((6k + 2)m, (6k + 3)) for the second family of bifurcation curves.
From (C.5) it can be shown that X — (6k+2)7v/2 asw — (6k+2)r. Thus,
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the bifurcation curves of the second family have an asymptotic separation
of 67v/2 along the X-axis before returning to asymptotically approach the
line X = A as w — (6k+3)7, as was seen about the Y-intercept. Again this
provides a clear ordering of the curves for w sufficiently large. A fortiori,
within this family only the second bifurcation curve lies on the boundary
of the stability region in the first quadrant with tangencies occurring in the
fourth quadrant.

An argument similar to that used for the second family can be applied
to the fourth family of curves, demonstrating that this family behaves as
in Fig. C.1d, mimicking the tangency and parallelism discussed above. The
tangencies of the fourth family occur in the second quadrant with the curves
becoming parallel to X = —A asw — 6(k+1)7. Fig. C.1d shows a tangency
between the 4" and 8! surfaces enlarging of stability region.

There are three primary conclusions that can be drawn by combining
the results above. First, when A is fixed only a finite number of bifurcation
curves determine the boundary of the stability region. This follows from
the ordering of the curves and the intra-familial intersections which can
occur. Second, the region of stability is a connected set in ABC —parameter
space. This can be seen from analysis with the D-decomposition partitions
of El’sgol’ts [7]. Lastly, there is a bulge in the region of stability due to the
intra-familial interactions among second and fourth families of bifurcation
curves. In Section 7 of the text we report numerical results demonstrating
that this bulge persists for delays other than %, though most delays yield
stability regions that are nearly conincident with the Minimum Region of
Stability for A sufficiently large.
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