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We describe an algorithmic approach for determining the geometry of the region of stability for a
finear differential equation with two delays. Numerous applications utilize two-delay differential

equations and require a framework to

assay stability. The imaginary and zero solutions of the

- characteristic equation, where bifurcations in stability occur, produce an infinite set of surfaces
in the coefficient parameter space. A methodology is outlined for identifying which of these
surfaces form the boundary of the stability region. For a range of delays, the stability region
changes in only three ways, starting at an identified initial point and becoming more complex as

one coefficient increases. Detailed

graphical analyses, including three-dimensional plots, show

the evolution of the stability surface for given ratios of delays, highlighting variations across
delays. The results demonstrate that small changes in the delay ratio cause significant changes

in the size and shape of the stability region.

1. Introduction

Models using delay differential equations have ap-
peared with increasing frequency in a variety of ap-
plications. Time delays are introduced into math-
ematical models to account for systems containing
differing processes, such as staggered rates of pro-
duction. Dynamic models with discrete lags have
spanned the scientific literature, from biology to op-
tics. Often there are multiple stages to the model
that require several time delays, such as insects
passing through a series of instar stages. The pop-
ulation of a single species, which is affected by both
regeneration and reproduction time lags, has been
modeled with two constant delays [Braddock & van
den Driessche, 1981, 1983]. Models of interspecies
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competition or parasitoid-host systems use multiple
delays to account for maturation times MacDon-
ald, 1986, 1989; Murdoch et al, 1987]. Epidemic
models require incubation times, which can be mod-
eled with two discrete delays [Cooke & Yorke, 1973;
MacDonald, 1989]. Two delays enter physiologi-
cal models of development and disease such as ery-
thropoiesis [Bélair et al., 1994, cyclic granulopoiesis
[MacDonald, 1980], and cyclical neutropenia [Mac-
Donald, 1979]. Neurological diseases have been
studied with two delay models [Beuter et al., 1993].
In physical systems, multiple time delays in con-
trol loops result in complicated dynamical behavior
as seen in certain optics problems [Marriott et al.,
1989; Mizuno & lkeda, 1989] or robotic control
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problems [Haller & Stépdn, 1991]. In economics, the
optimal production decision for an cligopoly with
information lags has been modeled using multiple
delays [Howroyd & Russell, 1984].

Many deterministic models that include two
time delays produce complicated dynamics. One
etiology for this behavior occurs when parameter
values in the linearized system have two purely
imaginary pairs of eigenvalues. This scenario is
similar to that for the planar Hopf bifurcation, but
causes the bifurcation dynamics to occur on a
two-torus. Guckenheimer and Holmes [1983] (in
Chap. 7.5) illustrate the wvariety of bifurcations
which can occur on a two-torus and state that
chaotic dynamics can occur in nonlinear problems.
Bifurcation analysis examining the two-torus for
two-delay problems with some applications can be
found in Bélair & Campbell [1994], Beuter et al
{1993], and Campbell & Bélair {1993]. Part of the
geometric approach in this paper traces the inter-
sections of two pairs of purely imaginary eigenvalues
(or a zero root of the characteristic equation and an
imaginary pair of eigenvalues) in a linear two-delay
differential equation.

Mathematical analyses of multipie-delay differ-
ential equations are often restricted to special cases
due to the inherent high dimensionality of the prob-
lems. Several studies have analyzed the region of
asymptotic stability for linear delay differential
equations with multiple delays, where the delays
vary over a range of values [Boese, 1993; Cooke &
Ferreira, 1983; Hale et al., 1985; Silkowski, 1979].
These results establish the necessary and sufficient
conditions for the largest cone-shaped regions of
stability independent of the delays. Lyapunov func-
tionals are used to find regions of uniform asymp-
totic stability for a general multiple delay problem
[Busenberg & Cooke, 1984]. However, when the
delays are fixed, the region of stability no longer
retains a convex shape [Bélair, 1987; Hale, 1979;
Stépdn, 1987]. As one parameter varies, a multiple-
delay differential equation can go through a series
of stability switches [Cooke & van den Driessche,
1986).

This paper considers a scalar linear first order
differential equation with two delays. The general
form of this equation is

y(t) + ay(t) + by(t — i) +ey(t —ra) = 0. (L1)
The stability of (1.1} depends on its five parame-
ters and can be determined by locating the complex

roots of the associated characteristic equation:

Ada+be ™ e =), (1.2)

The zero solution of (1.1) is asymptotically sta-
ble if all roots of (1.2) have negative real parts.
Since this characteristic equation is an exponential
polynomial with two different exponential functions
in the eigenvalues A, the analysis is particularly
difficult.

Techniques that locate the roots of (1.2) have
been investigated in a number of special cases. The
one-delay problem {¢ = 0) has been completely
solved by Hayes [1950]. The case a = 0 and 71 = 1
with other specific restrictions has been analyzed
[Nussbaum, 1975; Ruiz-Claeyssen, 1976]. After nor-
malizing one of the parameters, the several authors
characterize the stability region of the four param-
eter problem using two-dimensional projections in
the parameter space. A number of papers [Bélair
& Campbell, 1994; Braddock & van den Driessche,
1981; Hale, 1979] have performed a more complete
analysis of (1.1) for the case ¢ = 0, which is im-
portant in applications. When a # 0, the problem
becomes more difficult to characterize. Bélair [1987]
and Zaron (1987} study the stability region in the
be-parameter space, while Hale and Huang [1993]
give a geometrical description of the stability for
(1.1) in the riry-parameter space.

This paper examines the stability of (1.1) after
one of the delays has been normalized by a rescaling
of time {r = t/r;). Without loss of generality, one
can assume that 4 > ro, s0 if A = ria, B = b,
C = ric, and R = r9/r;, then (1.1} reduces to the
four parameter problem:

y(r) + Ay(7) + By(r - 1)

+Cy(r—R)=0, 0<R<1. (1.3)

The analysis considers a range of values for the de-
lay R, and systematically constructs the complete
stability surface in the coefficient parameter space
as the coefficient A of the undelayed term in (1.3} is
increased. The solutions of the characteristic equa-
tion for (1.3) with purely imaginary or zero roots
form an infinite set of surfaces in the coefficient pa-
rameter space. The boundary of the stability re-
gion is a surface created from intersecting portions
of this infinite set of surfaces. At this boundary ei-
ther Hopf bifurcations at various frequencies occur
or there is a zero root crossing. Section 2 provides
the basic definitions and theorems that are used to
describe the evolution of the stability surface and



applies them to the case R = % For a given delay,
the stability surface comes to a point at some min-
imum value of A, then as A increases the stability
surface becomes more complex as higher frequency
Hopf bifurcations affect the boundary of the stabil-
ity region. However, there are only three ways that
new bifurcation surfaces enter the boundary of the
stability region, yielding discernable patterns in its
construction. Three-dimensional graphics iliustrate
the complete stability surfaces for several values
of R.

Sections 3 and 4 use the technigues developed
in Sec. 2 to show how the stability surfaces change
as the delay R varies. This problem is quite com-
plicated as small changes in the delay often elicit
significant variations in the size and shape of the
stability region. Still our methodology shows that
for bounded values of B and A, there are only a fi-
nite number of bifurcation surfaces that are needed
to comstruct the boundary of the stability region.
Local continuity with respect to the parameters al-
lows us to track the evolution of this boundary in
ABC parameter space.

2. An Example — Tools and
Techniques for Analysis of the
Two-Delay Problem

In this section a set of definitions and theorems
are developed to characterize the stability region
for (1.3). The case R = 3 is used to illustrate
these principles and demonstrate the complexity of
the three-dimensional stability region. Later sec-
tions show how the stability surface evolves as R
varies, yet most of the significant features of two-
delay differential equation stability surfaces are ap-
parent when R = 1.

The two-delay differential equation given by
(1.3) is an infinite-dimensional problem. To find
a solution for 7 > 0 initial data must be given over
an interval of time reflecting the past history. If
#{7) is a continuous function defined for 7 € [~1, 0]
and y(7) = ¢(r), then there exists a unique, con-
tinuously differentiable solution y(7) to (1.3) for all
T > 0 [Hale, 1977]. The trivial solution, y(7) = 0,
is the unique equilibrium solution of (1.3), provided
A+ B+C # 0. Stability of the equilibrium solution
can be determined using the characteristic equation
associated with (1.3),

A+ A+Be 4+ Ce M =0, (2.1)
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which contains four parameters. This study exam-
ines the stability region in the three-dimensional
space of the parameters 4, B, and C for fixed values
of R. The analytical approach we take in locating
the stability region parallels Bélair [1987] and Zaron
[1987], who use the D-decomposition partitions of
El'sgol’ts [1966}.

Graphical analysis shows that the stability re-
gion is a connected set in the ABC-parameter space
for R € (0, 3], though some BC-cross-sections have
disjoint regions of stability as has been noted by
other authors [Bélair, 1987; Bélair & Campbell,
1994; Hale & Huang, 1993; Stépén, 1987]. Our work
suggests that the three-dimensional stability region
is connected for all 0 < R < 1. It is clear from (2.1)
that the positive half-line A > 0 must lie within
the stability region. A complete analysis of the sta-
bility region has been performed for the one-delay
case {either B = 0 or C = 0) [Hayes, 1950] and
our results for (1.3) are consistent with these. For
the nondegenerate case, B and € # 0 we exam-
ine the stability properties of (1.3) extended to the
entire ABC-parameter space. A partial answer is
provided by the following theorem:

Theorem 2.1 (Minimum Region of Stability).  For
A > |B|+|C|, all solutions A to (2.1) have Re A < 0.
Thus, the differential equation (1.3} 1s asymptote-
cally stable inside the pyramidal-shaped region cen-
tered about the positive A-azis independent of R.

The proof of this theorem can be found in Boese
[1993] and Zaron [1987].

The above result provides a Minimum Region
of Stability (MRS}, However, questions remain re-
garding how much larger the region of stability is for
(1.3), and how this region varies with R. The search
for the boundary of the region focuses on the image
of the imaginary axis in the A-plane. When A = 0,
any point on the plane A+ B+C = 0 satisfies (2.1).
This plane separates the ABC-parameter space into
two parts where the region with A+B+C < 01is un-
stable as it contains at least one real positive root.
Since the plane A + B + C = 0 bounds one face of
the MRS given in Theorem 2.1, one part of the sta-
bility region is comprised of this real root crossing
surface. The remaining surfaces bounding the sta-
bility region are found by examining the imaginary
roots, A = iw, where Hopf bifurcations occur.

The next step of the analysis is to determine the
image of the imaginary axis in the ABC-parameter
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space. If A = jw, then (2.1) can be written

A+ B cos{w) + C cos(wR)

+i{w — B sin(w) — C sin(wR)) = 0. (2.2}
By splitting this into its real and imaginary parts
and solving for B and C, we obtain the following
parametric equations:

_ Asin(wR) +w cos(wR)
Bw =—"—qwa-m)

(2.3)
A sin{w) + w cos{w)

Clw) = - sin{w(l — R))

These equations are defined on the intervals
%:_«%i <w< -1{”—}—1, j being an integer. As A varies

with w € (w %), Egs. (2.3) generate a

=R
surface in the ABC-parameter space. For fixed

A, (2.3) produces cross-sectional curves where the
eigenvalues of (2.1) cross the imaginary axis in the
BC-plane. A definition clarifies the range of fre-
quencies at which bifurcations occur.

Definition. The jth bifurcation surface (curve) is
the surface (curve) generated by the parametric

(-1)=

equations (2.3} with =%~ < w < ¥, where j

is a positive integer.

Hayes [1950] showed that the stability region
for the one delay problem (C = 0) is completely de-
termined by the first bifurcation curve and the line
A = —B. For the two delay problem (1.3), the first
bifurcation surface and the plane A+B+C =0do
not give the complete stability picture. However,
the first bifurcation surface can be used to bound
the stability region and provides valuable informa-
tion on how to begin the study of the stability sur-
face for R < 3.

The first bifurcation surface intersects the A4 +
B + C =0 plane as w — 0. From (2.3), this occurs
when B = (AR +1)/(1— R) and C = —(A + 1)/
{1 - R), which is the line

A+1 B-1
1-R R =-C

(2.4)

in the ABC-parameter space. For a range of 4 val-
ues with w increasing from zero, the first bifurcation
surface intersects the A+ B+ C = 0 plane a second
time forming a curve in BC-space. As A decreases

this curve intersects the line (2.4) at 4g, and the ini-
tial point from which the stability surface emanates
18 determined.

For most values of R € {0, %—], Ap is the smallest
value of A for which (1.3) is stable. A complication
arises from the manner by which the second bifur-
cation surface adjoins this stability surface. When
R < Ry where Rp ~ 0.0117, the smallest value of A
for which {1.3) is stable is less than Ap due to a self-
intersecting bifurcation surface, which is discussed
below.

The following theorem summarizes how we be-
gin our stability study for (1.3)

Theorem 2.2. If R > Ry and A < —(R+ 1}/R,
then (1.9) is unstable independent of B and C. Ge-
ometrically, the stability surface comes to a point
at

(40, Bo, Co) = (-

R+1 R 1 )
R "E-1"RU-R)/)’
(2.5)

and for some range of A > Aqg, the stability region
is bounded by the first bifurcation surface and the
A+ B+ C =0 plane.

The proof of this theorem is found in Mahaffy
et al. [1993].

For each fixed R > Ry, we begin our studies
with A = A4g. Subsequently, the evelution of the
stability region is followed as A increases. Figure 2.1
presents the three-dimensional stability surface for

the case R = i. The initial point from Theorem 2.2

is clearly visigie and occurs at
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2’ E) ‘
The surface is created by fixing the values of A
and determining the stability region in the BC-
cross-sectional plane. Theorem 2.2 states that ini-
tially the stability region is enclosed by part of the
first bifurcation surface (blue) and a section of the
A+ B + C = 0 plane (violet). As A increases with
R < %, there are three modes by which higher
frequency bifurcation surfaces encroach upon the
boundary of the stability region. Each of these
modalities can be seen in Fig. 2.1 and is defined be-
low. Figure 2.1 shows parts of the second, fourth,
and sixth bifurcation surfaces in green, red, and or-
ange, respectively, are also part of the boundary of
the stability region. Details on how these surfaces
enter the stability diagram follow.

(Ao, By, Co) = (— 4,



For most values of A, the curves in the BC-
plane generated by (2.3) tend to infinity parallel
to the lines B4+ C =0or B-C =10 as w —
5. However, for certain values of A, the equations
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Fig. 2.1.  The stability surface for the case H = 5. The top

picture shows the three-dimensional surface for A < 20, while
the bottom picture shows a different angle and A < 5.
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given by (2.3) become indeterminate at £, Define
these iransition values of A by :’1;. where

N j g R .
‘.4_ — = —— . . =1,21...
N m"(l—R)' d

At a transition the jth and (j + 1l}st bifurcation
curves coincide at the point (B}, C7), where

Hw i i
J?) jR’.’I’Lh{_(l Rl

(1-R C{ﬁ(ij
(1) —

(2.6)

Bj= (1-R)? ’
(2.7)
{l—ﬁ':]t‘.ns( 7 )—jr:r:&;{:( 47 )
Cr=—(-1) : 1-1 LK .
K I:]___R}E

Along the line

(B-B})+(-1)JiC-C})=0
there are two roots of (2.1) on the imaginary axis
with A = £+ T"rT‘ If the jth bifurcation surface is on
the l_mundar}f of the stability region for A4 slightly
less than A7, then at A = A7, kq. (2.8) becomes
part of the stability region’s boundary, and subse-
quently, the (7 = 1)st bifurcation surface enters the
boundary of the stability region. Our studies show
that the largest local distortions in the stability sur-
face occur nmr transitions,

For B = 7. all transitions occur at 4 = 0, as
Eq. 12.6] r{'duu_*a to A7 = 0 whenever j is odd.
When j 1s even, A} is mhnit;f. The only transition
directly affecting the boundary of the stability re-
gion 15 Al, which is shown in Fig. 2.1 at the stage
where the green surface (second bifurcation surface]
first enters the stability diagram.

The (j + list bifurcation surface, which en-
ters the boundary of the stability region immedi-
ately after A?, self-intersects for a range of A values
prior to the transition. The small region enclosed
by the self-intersection contains no eigenvalues of
(2.1} with positive real parts; hence, (1.3) is sta-
ble within this region. Proof of the existence of
this stability region can be found in Mahafty et al.
[1993]. Following A backwards from A}, we define
A" as the value where the area enclosed by the self-
intersection goes to zero. For A € {:1?_. A%), there is
a protrusion in the stability region or a steble spur,
which joins the region of stability of Theorem 2.2
at A7 In BC-cross sections the stable spur appears
to be disconnected from the principal region of sta-
hility. The three-dimensional structure maintains
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Fig. 2.2. For R = } and A = ~0.02, the stability region is
bounded by the first bifurcation curve and the line A + B+
(' = 0. A stable spur appears as the second bifurcation curve
self-intersects.

connectivity between the principal region of stabil-
ity and the stable spur at the transitional value A7.

Details illustrating the effects of a transition
with its associated stable spur on the region of sta-
bility are shown in Figs. 2.2-2.5 for the delay R = %
As A approaches the transitional value A7 =0, the
region of stability expands as the first bifurcation
curve is stretched along the line C — B = -3—27'- to-
ward the second bifurcation curve. Similarly, the
second bifurcation curve is drawn toward the first
bifurcation curve for A near A}, causing the second
bifurcation curve to self-intersect as seen in Fig. 2.2.
This self-intersection only exists for A € (A, A]) ~
(—0.117, 0), and encloses another region of stabil-
ity. This region of stability is too small to appear
in Fig. 2.1, but the distortion is clear from the tran-
sition line in black that parallels the level curves in
the top figure (just prior to the second bifurcation
surface shown in green). The stable spur isolates
this portion of the stability region as the second bi-
furcation curve self-intersects, creating a loop whose
area increases as A approaches Aj.

At the transition, A3 = 0, the first and second
bifurcation curves meet at the point (Bf, C7) =
(37/4, 97/4) as seen in Fig. 2.3. Along the line
C-B= %’5, which is derived from (2.8), the purely
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-10 : l '
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B

Fig. 2.3. For R = % and Al = 0, a transition occurs. The
stability region of Theorem 3.2 is bounded by the first bifur-
cation curve and the lines B+ C =0 and C — B = & The
stable spur is bounded by the second bifurcation curve and
the line € ~ B = &% and joins the first region of stability at
the point {B7, C7).

imaginary solutions A = i 3 satisfy (2.1). The
region of stability from Theorem 2.2 is bounded by
parts of the first bifurcation surface, the A+ B+C =
0 plane, and the line C — B = 3F. The stable
spur is bounded by the second bifurcation surface
and the line C — B = 3. The regions of stabil-
ity from Theorem 2.2 and the stable spur join at
the point (B}, C}). Subsequently, the ends of the
first and second bifurcation curves swap positions
near w = 377’ Figure 2.4 shows how the first and
second bifurcation curves comprise the boundary of
the stability region for A slightly larger than Aj.
For a range of A > A} = 0, the stability region
is bounded by sections of the first bifurcation sur-
face (blue), the second bifurcation surface (green},
and the A + B + C = 0 plane. A magnified three-
dimensional picture of the transition A and its as-
sociated stable spur is shown in Fig. 2.5,

Theorem 2.1 demonstrates that for each A one
corner of the MRS is given by (B, C) = (0, —A).
Equation (2.4) shows that the first bifurcation suz-
fice intersects the A+ B+ C = 0 plane at (B, C} =
((AR+1)/(1 — R), —(A +1)/(1 — R)), which di-
verges from (0, —A) as A increases. Thus, a large
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Fig. 24. For R = } and A = 0.02, the stability region is
bounded by the first and second bifurcation curves and the
line A+ B+C =10,

gap develops between the first bifurcation surface
and the lower corner of the MRS where another
bifurcation surface may join the boundary of the
stability region. We define the transferral value of
A= A, to be the value of A where the jih bifur-
cation surface intersects the ith bifurcation surface
at the A+ B+ C = 0 plane with the jth bifurcation
surface entering the boundary of the stability region
for A > A7 ;. This is a second way in which bifur-
cation surfaces enter the boundary of the stability
region. Often there is only one transferral value,
but for some values of R a distortion of the bifurca-
tion surface near the A 4+ B 4+ C = 0 plane caused
by & transition results in several transferrals.

When R = { there is a transferral Aj ,, where
the first bifurcation surface, the fourth bifurcation
surface (red), and the A 4+ B + C = 0 plane in-
tersect at the point (A, B, C) = (7.1, 5.0, —=12.1}.
Subsequently, the fourth bifurcation surface enters
the boundary of the stability region, and for a range
of 4 » Af,, the stability region is bounded by sec-
tions of the first, second, and fourth bifurcation sur-
faces and the A + B + ¢ = 0 plane. These are the
only surfaces needed for the top stability surface in
Fig. 2.1.

The third route through which bifurcation sur-
faces enter the boundary of the stability region is
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Fig. 2.5. The stability surface for R = 1 with 4 €
[-0.3, 0.1]. This figure magnifies the region which contains
the transition, A7, and its associated stable spur.

a tangency. We define the tangential value of A =
Af , to be the value of A at which the jth bifurca-
tion curve becomes tangent to the ith bifurcation
curve that is already part of the stability bound-
ary. As A increases from A] . the new bifurcation
curve is incorporated into the boundary of the sta-
bility region, separating segments of the bifurcation
curve to which it was tangent,

When B = 3, the sixth bifurcation curve
(orange) becomes tangent to the second bifurcation
curve near (A, B, ') = (30.7, —12.0, 33.8). Sub-
sequently, the sixth bifurcation surface enters the
houndary of the region of stability for 4 > A}, ~
30.7. The next change in the stability surface oc-
curs at A = A}, =~ 50.4 where the eighth bifur-
cation surface becomes tangent to the fourth bi-
furcation surface. This point of tangency is near
(A, B, C) = (504, 187, —54.1). As A increases
further, additional tangencies oceur, injecting more
of the even bifurcation surfaces into the boundary
of the stability region.

For a fixed R < %1 we determine the hound-
ary of the stability region in the BC-plane by ex-
amining changes that occur as A increases. From
the initial point given in Theorem 2.2, additional
bifurcation curves enter the boundary of the sta-
bility region by one of the methods listed above,
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i.e., a transition (which includes an associated sta-
ble spur), a transferral, or a tangency. The com-
plete three-dimensional bifurcation stability surface
is generated by combining these cross-sectional
graphs. For any fixed value of 4, there are a finite
number of the bifurcation surfaces that generate the
boundary of the stability region. Thus, by combin-
ing BC cross-sections we can completely character-
ize the region of stability in ABC-parameter space
for any delay R < %

3. The Stability Region for R near 1

The key to developing the three-dimensional stabil-
ity region is determining the junctures where
changes in the stability surface occur. When two
bifurcation surfaces meet on the stability surface,
they share the same {4, B, C) value and two pairs
of purely imaginary eigenvalues A = tw, each sat-
isfying (2.3) for a given A. As noted in the intro-
duction, if {1.3) is the linearization of a nonlinear
problem, then these junctures could lead to compli-
cated dynamics [Campbell & Bélair, 1993; Gucken-
heimer & Holmes, 1983]. Numerically, the two pairs
of eigenvalues are found by Newton's method and
are followed in 3-dimeasions by slowly increasing A.
Once the w values are found for the ends of a bifur-
cation curve in the BC-cross-sections, Eq. (2.3} are
used to generate this segment along the boundary
of the stability region. The most difficult aspect of
constructing the three-dimensional stability surface
is determining which bifurcation surfaces comprise
the boundary of the stability region and the values
of A at which they enter.

This section examines local changes in the sta-
bility region as R increases or decreases from % For
a certain range of A values and small variations in
R, the structure of the stability region closely re-
sembles the case R = } shown in the previous sec-
tion. However, there are some significant differences
for particular values of & near ;51; Our discussion in
this section illustrates the complexity of the sta-
bility surface by focusing on delays in the interval
R € [0.31, 0.35]. It shows how to construct the sta-
bility surface in ABC parameter space by tracking
the transitions, transferrals, and tangencies.

Figure 3.1 provides an overview of changes in
the stability region boundary as a function of A,
listing the type of change in each case. The fig-
ure shows that there is little change in the initial
point (Ag, By, Cy) on the boundary of the stabil-

ity region for R € [0.31, 0.35]. On this interval the
first change in the stability surface is the transi-
tion A}, which also exhibits little variation over the
given delays. Prior to AJ, the second bifurcation
surface self-intersects creating a stable spur on the
interval (A}, A7), which joins the stability surface
emanating from Ag at A]. The length of the inter-
val (A}, A}) decreases from 0.159 for R = 0.31 to
0.092 for R = 0.35, indicating that the stable spur is
a minor part of the stability surface. Consequently,
Figs. 2.2-2.5 are representative of the geometry of
the stability surfaces near Aj for R € [0.31, 0.35].
As A increases, Fig. 3.1 shows that for most
values of B € [0.31, 0.35] the next change in the
stability surface is the tranferral Af 4, as is the case
when R = % However, near R ~ {1,311 this trans-
ferral no longer occurs due to another transition,
A%. As R decreases from %, the value A} decreases
with the tramsition occurring along the line given
by {2.8), which can be shown to lie below the A +
B + C = 0 plane. This decrease in A} causes the

<1
A
=30 i i 1
0.5 G.32 0.33 0.34 .35
R
Fig. 3.1. This figure shows the values of Ao and the various

transitions, transferrals, and tangencies for R € [0.31, 0.35},
which affect the geometry of the stability region for 4 < 100.
Note that some transitions are omitted for clarity.
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Fig. 3.2. When R = 0.32, a reverse transferral occurs ai

A, = 45.0. This figure shows the first five bifurcation sur-
faces. Note that the MRS is shown bounded by the dotted

lines,

fourth bifurcation surface to extend out further for
its transferral value as it smoothly approaches (2.8).
Near R ~ 0.311, A} has sufficiently stretched the
fourth bifurcation surface so that the first trans-
ferral does not occur until after A. For a range
of R < 0.311, the fifth bifurcation surface becomes
the first transferral, A ;. Prior to this transferral,
there is another change in the stability surface when
R < 0.311 due to the second transition, Aj.

For R € (0.311, 0.325), the stability surface
changes in a manner quite different from the case
R = % Rather than the next change being the
tangency Agﬁ, as A increases, the next change in
the stability surface is the reverse transferral A .
where the first bifurcation surface displaces the
fourth bifurcation surface. (See Fig. 3.2.) In the
case R = 0.32, the fourth bifurcation surface is
incorporated into the stability region boundary at

{4 = 8.86, then leaves the boundary at Aj; =~
45.0. The geometry of this reverse transferral de-
parts from that in the example of R = § presented
in Sec. 2 where all curves that join the boundary of
the stability region remain part of it.

As A increases further, the second transition,

3, causes the next change in the stability surface
and results in the third bifurcation surface becom-
ing part of the boundary. The resulting distortion
in the shape of the stability surface is depicted in
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Fig. 3.3. When R = 0.32, a transition occurs at A3 = 49.43.
This figure shows the first five bifurcation surfaces and the
line at the transition, (B — B3} +{C —C3) =4,

Fig. 3.3. The transitions A} and AJ are very close in
value for the given range of R. For example, when
R = 0.32, A% ~ 49.4 and A} ~ 47.7. These tran-
sitions cause the stability region to extend along
the B 4+ C = +A lines that bound the MRS and
significantly increase the size of the region of sta-
bility for a range of A values. All stability surfaces
with R € [0.31, §) are affected by A} and have sim-
ilar distortions. In addition, these transitions have
associated stable spurs on the interval (A}, A3) as
the third bifurcation curve self-intersects. These
stable spurs are much smaller than the ones associ-
ated with A?. For example, A5 — A} ~ 4.88 x 107
at R = 0.31 and decreases to ~ 2.63 x 104 when
R = 0.32. Figure 3.4 shows the next change in the
boundary of the stability region as the transferral
Af 5 occurs.

The discussion above shows that for R < % even
small changes in the delay R may induce a signifi-
cantly different set of bifurcation surfaces to bound
the stability region. Most of these changes result
from an even transition or series of even transitions,
5;» that cause distortions along the B+ C = +A4
lines and do not occur when R = % Figure 3.1
can be used to determine which changes occur as R
varies. This figure shows that the evolution of the
stability surface for R € [4, 0.35] and A < 100 is
much less dramatic.
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S0 how do the odd transitions affect the bound-
ary of the stability region? To examine this issue
we consider £ = 0.35 and A < 230. Figure 3.5
shows how A};, Af ,, and A, vary with R. For
R = 0.35, a tangency oceurs at Ag ;) = 144. As A
increases, a transition occurs at A7, ~ 216, which
causes the 11th bifurcation surface to be replaced
by the 12th bifurcation surface. This is a smooth

100

=18

—50 “:
—100 i
=100 —5C C 50 100
B
Fig. 34, When R = 0.32, another transferral occurs at
Als = 50.4. This figure shows the first five bifurcation
surfaces.
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Fig. 3.5, This figure shows the interaction between the

transition A7, and the tangencies Ag,, and Af,, for
R € [0.34, 0.355).

transition parallel to the line B — ¢ = A4 and re-
sults in little noticeable change in the geometry of
the stability region. Thus, the odd transitions near
R = % affect which bifurcation surface is on the
boundary of the stability region according to our
definitions, but have little influence on the geom-
etry of the region or the value of the eigenvalues
involved in the Hopf bifurcation. The only effect
of the A}, transition is to swap the 11th and 12th
bifurcation surfaces in the boundary of the stability

region.
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Fig. 3.6, This figure shows two perspectives of the three-
dimensional stability surface when R = 0.31 and A < 100.
The top view is generated by looking at the stability surface
from a point near the A-axis with A large. The bottom view
is generated by viewing the stability surface from a point with
a large B value.



Figures 3.6-3.10 show the three-dimensional
structure of the stability regions for R = 0.31, 0.32,
1. 0.34, 0.35 respectively and A < 100. These
graphs are plotted using several colors to empha-
size the similarities and differences in their stability
regions in the coefficient parameter space.

Comparing the three-dimensional graphs pre-
sented in Figs. 3.6-3.10, we note that for reference
the A4+ B 4+ C = 0 plane, where a real root crosses
the stability surface, is always shown in violet. All
of the graphs begin at the point { Ay, By, Cy), which
exhibits little variation for R € [0.31, 0.35] and is
clearly visible in each of the side perspectives. From
this initial point the blue first bifurcation surface

25 50 75 00 125

¢

-25

—T75 _.?_G

Fig. 3.7. This figure shows two perspectives of the three-
dimensional stability surface when R = 0.32 and A < 100,
The perspectives are similar to the ones used in Fig. 3.6
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rises above the 4 + B + € = () plane, then 15 soon
joined by the green second bifurcation surface via
the transition 4}, The graphs are drawn with a
small black line segment at AJ, but distortions due
to transitions are diminished given the scale of the
drawings. Moreover, in order to display a large por-
tion of the stability surface, stable spurs are too
small to be visible.

Graphically, the five stability surfaces resemble
one another in the early stages in their evolution
due to the continuity between delays. However, the
three-dimensional graphs clearly show dissimilari-
ties between the cases R < % and R > § for larger

75 W0 125

50

C
25

%; ~]5 -0 -25 0

Fig. 3.8,
dimensional stability surface when i = % and A < 100, The
perspectives are similar to the ones used in Fig. 3.6.

This figure shows two perspectives of the three-
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values of A, even though some geometric resem-
blance is maintained. For the sequence of graphs
in Figs. 3.8-3.10, the next change in the stabil-
ity surface following the A7 transition is the trans-
ferral A7 4. This transferral appears in the figures
as the red 4th bifurcation surface enters the sta-
hility surface above the A + B + C = 0 plane and
encroaches upon the blue first bifurcation sur-
face. After Aj,, the only changes seen in the sta-
bility region for A < 100 are surfaces appearing
through tangencies, which result from higher
frequency Hopf bifurcations. Looking at the top
graphs in Figs. 3.8-3.10, we see that the sequence
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Fig. 3.9, This figure shows two perspectives of the three-
dimensional sl,a.l':ri]it.}' surface when H = 0.34 and A4 < 100,
The perspectives are similar to the ones used in Fig. 3.6.

of tangencies, A} 5. Aj g, Af g, and Af o (the last
not appearing for B = 0.35), alternates with first
the orange 6th bifurcation surface appearing in the
upper left portion of the stability surface, then the
blue 8th bifurcation surface in the lower right por-
tion, then the green 10th bifurcation surface again
above and to the left, and finally the red 12th bi-
furcation surface in the lower right portion of the
stability surface,

The sequence of changes as seen by our color
coding is the same for Figs., 3.8 -3.10, although for
R = 035 it can be seen that by 4 = 100 the
stability boundary i1s nearly a square, indicating
its approach to the MRS, In fact, the cross-
sectional area at A = 100 is only 7.96% larger

Fig. 3.10. This figure shows two perspectives of the three-
dimensional stability surface when £ = 0.35 and A4 < 100,
The perspectives are similar to the ones used in Fig, 3.6.



than the MRS for R = 0.35, while it is 27.1% larger
for R = %

For B < %, the most prominent change in the
three-dimensional stabiiity surface is A3, whick oc-
curs near A = 30 for R = 0.31 and near A = 50 for
R = 0.32. In the top graphs for Figs. 3.6 and 3.7,
the transition A} is recognizable in the replacement
of the green 2nd bifurcation surface with the red 3rd
bifurcation surface in the upper right portion of the
stability surface. As A increases, the 3rd bifurca-
tion surface expands and displaces more of the 2nd
bifurcation surface. For R = 0.31 and R = 0.32,
all of the even transitions occur near Aj, which in-
duces a different set of bifurcation surfaces to enter
the stability region boundary through transferrals
and tangencies as indicated by the variation in the
color coding.

A unique feature for R = 0.32 among the de-
picted graphs is the appearance of the red 4th bi-
furcation surface due to a transferral at Af , ~ 8.86
that terminates in a reverse transferral near Aj, =
45.0. In both Figs. 3.6 and 3.7, the transition, A,
introduces a new trapsferral, Af ;, with the orange
5th bifurcation surface displacing the first bifurca-
tion surface. As noted earlier in this section, the
transitions A5 and A} cause the stability surface to
extend out along the planes B + C = £A. In the
side view graphics of Figs. 3.6 and 3.7, these transi-
tions result in noticeable bulges in the stability sur-
faces. After the transferral A 5, the remainder of
the changes in the stability surfaces for B = 0.31
and 0.32 and A < 100 are sequences of tangen-
cies, A4, Abg, A%y, Af;a, and Aly 15 (the last
two only appear in Fig. 3.7). Again the tangen-
cies appear in an alternating pattern between the
upper left and lower right portions of the stability
surface in the top figures with different colors indi-
cating which odd-numbered bifurcation surfaces are
mvolved.

Ignoring the color coding which signifies the
particular bifurcation surfaces on the boundary of
the stability region at A = 100, we observe that
Fig. 3.6 has more similarities in the shape of its
stability region with Fig. 3.10 than any of the other
stability surfaces. At R = 0.31 and A = 100, the
stability surface is only 11.1% larger than the MRS.
Thus, as R increases or decreases from R = < (at
least locally), the stability region appears to ap-
proach the MRS asymptotically in A. An analysis
of the asymptotic behavior of the stability region
of (1.3) can be found in Mahaffy et al. [1993] and
Mahaffy et al. {1994].
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4. Extensions of the Geometric
Analysis for B < %

1n the previous section the evolution of the stability
surface for (1.3) over a range of R values near R = %
and A bounded was developed. Herein we extend
the analysis of the previous section to delays in the
range 0 < R £ %— for a bounded domain of A. We
identify some generic properties of stability surfaces
and discuss variations in the construction of the sta-
bility region boundary. Extensive numerical studies
have established that new bifurcation surfaces enter
the boundary of the stability region only through
transitions (with associated stable spurs), tangen-
cies, or transferrals as defined in Sec. 2. Figure 4.1
shows the first transition, tangency, and transferral
that affect the boundary of the stability region for
R < % and A < 100.

In Sec. 3, the transition 47 for R € [0.31, 0.33]
was shown to be the first change affecting the
boundary of the stability region” given by Theo-
rem 3.2, which consists of the first bifurcation sur-
face and the A + B + C = 0 plane. In fact, we can
show numerically that A} is the first change in the
stability boundary for ali Ry < R < 0.47. Recall
that the transition A} has an associated stabie spur
extending over the range A € (A}, A]) due to the
seif-intersection of the second bifurcation surface.
Thus, as A increases from Ag the stability region
gains an additional area of stability at A = AP with
BC cross-sections showing disjoint stability regions.
Numerical studies show that the length of these sta-

- ble spurs decreases as F increases.

Figure 4.1 shows that A] increases monotonic-
ally in R, with asymptotes at R = 0 and R = %
This figure does not include other transitions which
may affect the boundary of the stability region.
Nevertheless, the influence of these transitions can
be surmised from the figure. Even numbered tran-
sitions cause the asymptotes in the transferral and
tangency curves, partitioning the figure into a set
of continuous curves. Each transferral pair, Af oy,
Af apo1, 18 circumscribed by even transition asymp-
totes and is bisected by an odd transition at the
point indicated by a diamond. Lying above every
adjacent transferral pair are two tangency curves,
also bisected by odd transitions at the diamond. As
R decreases from %, the transferral and fangency
curves narrow with the minimum of each curve in-
creasing as R - 0. Moreover, higher frequency
iransitions decrease the gaps between transferral
and tangency curves, as can be seen from the
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Fig. 4.1. 'This figure shows the values of Ao, A3, and various transferrals and tangencies for R € (0, %], which affect the

geometry of the stability region for A < 100.

period of the cotangent function in (2.6). When
R is small, tangencies and tranferrals do not occur
until A becomes large. As a result when R is near
zero, an increasing number of transitions affect the
boundary of the stability region before any other
changes occur.

In order to illustrate the effects that transi-
tions have on the boundary of the stability region
as R varies, we examine several examples from R €
(0,3 At R = %, there are no transitions. A
transferral occurs at Af, o 2.61, after which all
other changes to the stability region are the result
of tangencies with the first occurring at Af ; >~ 16.6.
Figure 4.2 shows a BC cross-section at 4 == 100
with the ten bifurcation curves that contribute to
the boundary of the stability region. The upper
lobe uses only odd curves, while the bottom lobe is
constructed from the even bifurcation curves. We
note that this stability region is 67.9% larger than
the MRS. A more detailed study of the asymp-
totic behavior appears in Mahafy et al. [1994] and
shows that this enlarged stability region remains for
R=1.

For R € (%, %), there is only one transition that
directly affects the boundary of the stability region.
On this interval the associated stable spurs are rel-
atively small. As noted in the previous section, it

is these transitions that locally create the largest
distortions in the stability region.

As R decreases from %, there are more transi-
tions that affect the construction of the boundary
of the stability region. In the case R = 0.1 with
A < 100, there are no tangencies though a transfer-
ral occurs at Af ;7 = 91.7. On the other hand, there
are eight transitions, A7 = —-9.59, —8.32, —6.05,
—~2.46, 3.08, 12.09, 29.12, 76.72,i =1, ..., 8, which
affect the boundary of the stability region. BEach
transition causes a new bifurcation surface to enter
the boundary of the stability region, increasing its
geometric complexity. The stable spurs associated
with the transitions, A7, ¢ = 1,..., 8, have inter-
val lengths (A7, A%) of 0.688, 0.449, 0.277, 0.156,

0.076, 0.029, 0.007, and 0.001, respectively. Thus,

stable spurs are smaller for higher frequency tran-
sitions. Unlike the cases previously discussed, the
stable spur originating from A} when R = 0.1 is rel-
atively large compared to the stability surface ema-
nating from Ag. The length of the interval (4%, A7)
is 49% of the length of the interval (Aq, A7), so lo-
cally this stable spur represents a significant portion
of the stability region. This is shown in Fig. 4.3 for
a cross-section at A = —9.6. Nevertherless, given
the scale of Fig. 4.3, the area of the stable spur
relative to the entire stability region is still quite
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Fig. 4.2. This figure shows a cross-section of the BC-plane
at A = 100 for R = 0.5 with the first 10 bifurcation surfaces
bounding the stability region. The dotted lines show the
MRS.
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Fig, 4.3. A magnified BC cross-section at A= ~9.6 when
R = 0.1 showing that the area of the stable spur can approach
the size of the stability region emanating from Ag.

small. An estimate of the total area of stability is
approximately % square unit.

Transitions, especially the even ones, have the
greatest effect on the geometry of the stability re-
gion and the eigenvalues that determine stability.
However, transferrals and tangencies also contribute
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to the composition of the stability region. For ex-
ample, when 047 < R < %, the first change in the
stability region is a transferral, as seen in Fig. 4.1.
As R decreases, the figure shows that the first trans-
ferral occurs for increasingly higher bifurcation sur-
faces due to intervening transitions. For most val-
ues of R € (0, %], there is only one transferral that
impinges on the boundary of the stability region.
This figure does not illustrate the reverse transfer-
rals which occur as a result of even transitions dis-
torting a bifurcation surface along the A+B+C =0
plane, but these would appear in the figure at the
jump between Af o, and Af 4,4, due to A3, as R
decreases. In Sec. 3, this situation was described
in detail for R = 0.32 with Figs. 3.2-3.4 depicting
changes in the geometry of the stability region.

The markers on the transferral curves in Fig. 4.1
indicate odd transitions, which determine the par-
ticular bifurcation surface involved in a transfer-
ral. The figure shows that the change in A with
respect to R is continuous for odd transitions along
shese transferrals. As a result, the geometric ap-
pearance of the stability region is maintained as
A passes through an odd transition. For example,
when R = 0.351, A} causes the fourth bifurcation
surface to replace the first bifurcation surface as
one of the surfaces intersecting the A+ B+ C =0
plane, while at R = 0.352, it is the third bifurcation
surface which enters the boundary of the stability
region. However, Aj, ~ 6.09 at R = 0.351, and

i3 = 6.00 at R = 0.352, showing little change in
the A value.

A pattern can also be discerned from Fig. 4.1
for the tangencies. The figure shows two curves ly-
ing above each transferral curve which mimic its
shape. Thus, the first tangency always occurs after
the first transferral. As noted in Sec. 3, there are
cases near even transitions where a surface enters
and leaves via a tangency and then reappears on
a higher frequency bifurcation surface, often with
distortions in the shape of the stability region. Like
transferrals, odd transitions result in a change in
the number of the bifurcation surfaces involved in a
tangency, but the change in A, where the tangency
occurs, is continuous in R. Unlike transferrals, af-
ter the appearance of the first tangency, many more
follow. As R approaches %, tangencies play an in-
creasingly important role in shaping the boundary
of the stability region for a given bounded A.

The analysis of this section shows that there is
no predictable pattern in the evolution of the sta-
bility surface for R € (0, %] However, by following
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transitions, transferrals, and tangencies, we have
discovered some guiding principles using numerical
schemes for determining the region of stability for
any delay R < %

5. Discussion

QOur work has outlined a methodology for identify-
ing and characterizing the stability region in the co-
efficient parameter space of the two-delay differen-
tial equation given by (1.3) when the ratio of delays
R< % For most delays, the stability region begins
at a specific point given by Theorem 3.2, which is
easily seen in the three-dimensional figures, and is
bounded by part of the first bifurcation surface and
the A -+ B+ C = 0 plane. Along the former a Hopf
bifurcation occurs, while the latter causes a loss of
stability as a real root crosses the imaginary axis
in the eigenspace. Increasing the coefficient of the
undelayed term, A, we discovered only a limited
number of ways in which changes to the boundary
of the stability region occur.

The most significant changes resulted from
transitions, denoted by Aj. If the jth bifurcation
surface is part of the boundary of the stability re-
gion when 4 < A, at A} a degeneracy occurs as
two bifurcation curves meet at a point inducing a
Hopf bifurcation with eigenvalues A = £i ;" along
part of the line given by (2.8). At the transition, a
stable spur from the self-intersection of the (j-+1)st
bifurcation surface joins the stability region. Subse-
quently, the (j + 1)st bifurcation surface enters the
boundary of the stability region. A major distor-
tion in the boundary of the stability region occurs
during a transition as the asymptotic limits of the
two bifurcation surfaces invoived swap positions.

For B < é—, we observed only two other ways
in which new bifurcation surfaces could enter the
boundary of the stability region, transferrals and
tangencies, as defined in Sec. 2. By studying the
way bifurcation surfaces enter the boundary of the
stability region, we were able to develop numeri-
cal methods to trace the evolution of the stability
region for a given value of R and bounded values
of A. As noted in the introduction, our numerical
routines follow transferrals and tangencies when the
two-delay differential equation has two purely imag-
inary pairs of eigenvalues. Along these intersections
a nonlinear problem would use the bifurcation anal-
ysis from a two-torus, as seen in Guckenheimer &
Holmes [1983], which could result in complicated
dynarmics.

In Sec. 3, we presented a series of three-
dimensional plots showing how the stability regions
vary with R, often observing significant changes
when R is slightly perturbed. In Sec. 4, this meth-
odology for characterizing the stability region of a
linear differential equation with two delays was ex-
tended to the interval (0, %] In doing so, we demon-
strated the significance of transitions and their asso-
ciated stable spurs as R decreases within the stated
interval. OQur analysis shows that the shape and size
of the stability region is very sensitive to changes in
the parameters, especially E.

This paper provides an algorithmic approach to
determining the stability of (1.3). Our analysis has
revealed the complex nature of the stability surface,
yet has not addressed several important issues. We
limited this study to the range of R < %— since the
bifurcation curves are then simpler. Over this range
the bifurcation curves rarely self-intersect, which is
pot the case when R > % We have noted that
transitions create the most significant changes in
the region of stability and observed that as R — 0
transitions occur more frequently with larger stable
spurs. More studies are needed for small values of
R. In addition, the asymptotic behavior of stability
regions has not been examined. Elsewhere [Mahafly
et al., 1993, 1994] we have shown that for particu-
lar values of R the asymptotic region of stability
approaches the Minimum Region of Stability, while
for other ratios of the delays the stability region
always remains larger than the MRS,

Clearly the characterization of the stability
region for a two-delay differential equation is a
formidible task. We view the resulis contained
herein as a framework within which applications
utilizing differential equations with two delays
can be studied.
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