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Abstract. A mathematical model for control by repression by an extracellular 
substance is developed, including diffusion and time delays. The model examines 
how active transport of a nutrient can produce either oscillatory or stable responses 
depending on a variety of parameters, such as diffusivity, cell size, or nutrient 
concentration. The system of equations for the mathematical model is reduced to 
a system of delay differential equations and linear Volterra equations. After 
linearizing these equations and forming the limiting Volterra equations, the resulting 
linear system no longer has any spatial dependence. Local stability analysis of the 
radially symmetric model shows that the system of equations can undergo Hopf 
bifurcations for certain parameter values, while other ranges of the parameters 
guarantee asymptotic stability. One numerical study shows that the model can exhibit 
intracellular biochemical oscillations with increasing extracellular concentrations 
of the nutrient, which suggests a possible trigger mechanism for morphogenesis. 

Key words: Reaction-diffusion equations - Repression - Hopf bifurcation - 
Delays 

1 Introduction 

Microorganisms extract many nutrients from their environment to maintain cell 
growth. When the available nutrient has a low concentration relative to intracellular 
concentrations, the cell must employ an active transport mechanism to acquire the 
nutrient. However, active transport of a substance requires a high expenditure of 
energy; hence, a cell which controls this process is more efficient than one which 
cannot. This provides a selective advantage to cells regulating active transport 
mechanisms. In this article a model is developed to study a system of genetic 
repression for controlling the transport of a nutrient across the cell membrane. 

Microbial uptake of iron provides a representative example of the control 
system that is being studied [10, 15, 16]. In aerobic environments iron is mostly 
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available as the ferric or Fe + + + ion which is quite insoluble (10-~s M at neutral 
pH). As an evolutionary response, bacteria have developed siderophores which 
have a strong affinity for Fe + + + (Kin ~- 1030 or higher) and are excreted into the 
environment to chelate with iron, forming a ferrienterochelin complex. In 
Escherichia eoli, this complex binds to the protein FepA on the outer membrane 
to begin transport into the cell. Apparently, products of the f e p B  and f e p C  genes 
are also required to bring the complex into the cell, where ferrienterochelin 
esterase cleaves ferrienterochelin and releases the Fe + + +. The Fe + + + is then 
utilized by the cell or can complex with the constitutive protein product of the  f u r  
gene to produce the iron repressor protein. The iron repressor protein probably 
binds to the promoter region of the genes for production of siderophores and the 
membrane receptors or permeases, including FepA. A similar negative feedback 
system has been observed for the BtuB polypeptide, which is involved in the active 
transport of cobalamin, or vitamin B12, across the outer membrane of E. coli [9]. 
The actual control mechanism for uptake of cobalamin could be either repression 
of transcription initiation or some posttranscriptional control. 

For many nutrients microorganisms have both a low affinity transport 
mechanism, such as facilitated diffusion, and a high affinity transport mechanism. 
E. coli absorbs iron preferentially by passive diffusion when either ferrous ions 
(Fe + +) or ferric citrate are available in suffÉcient amounts [11]. Both prokaryotic 
and eukaryotic organisms exhibit catabolite repression of high affinity glucose 
transport systems when provided with a glucose rich medium [ 17, 19, 21]. Similarly, 
E. coli has a low affinity phosphate transport system (Pit), which is constitutive, 
and a high affinity, phosphate specific transport system (Pst), which is phosphate 
repressible [22, 23]. The model in this paper ignores the complexities involved in 
competing low and high affinity transport systems and focuses on the high affinity 
system where active transport is employed against a concentration gradient. 

The mathematical model parallels a simpler repression model developed by 
Mahaffy and Pao [14]. It is a two compartment reaction diffusion model with 
three biochemical species (see Fig. 1). In the model a permease is required to 
transport the nutrient through the cell membrane. The nutrient diffuses through 
the cytoplasm to the nucleus of the cell (or a nucleoid, in the case of prokary- 
otes) and acts as a repressor or possibly inactivates a gene activator for the 
production of the mRNA necessary for production of the permease. In E. coli, 

~ ~- Nutr ient  
\ (External)  

S t ruc tu ra l  \ (ferrienteroehelin) Genes \ 
• ~ - ~  m R N A  • P e r m e a s e  - -  

T u~ \ % v, e++~ \ 
Operator e 

. ~ Nutr ient  , 

AeUve ~ +++ Represser- ~'~ (Fe ) 

Re~r / - J Gene ~ Aporepressor 
/ .. 

N u c l e o i d  / 

(or Nucleul)/// Call 
. . . .  . ~  C y t o p l a s m  Membrane 

Fig. 1. A schemat ic  for the 
re levant  b iochemica l  reac t ions  in 
the mode l  
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the biosynthesis of iron-regulated membrane proteins [8] and the regulation of the 
btuB gene for the uptake of cobalamin [9] may have significant time lags. Thus, 
the model allows for time lags to occur in the steps of the biochemical reactions. 

Klebba et al. [8] suggest that the regulatory scheme for iron uptake could 
result in oscillations in the production of the membrane proteins. Analysis of the 
mathematical model follows the techniques developed by Busenberg and Mahaffy 
[4, 5]. This scheme transforms a system of delay differential equations and partial 
differential equations into a system of delay differential equations and linear 
Volterra equations with the spatial dependence of the initial conditions exponen- 
tially damped. After this system is linearized about its equilibrium solution and 
the limiting Volterra equations are formed, a local analysis is performed by careful 
examination of the characteristic equation of this time varying system. Analysis 
of this characteristic equation shows that as the diffusivities become sufficiently 
large the local behavior of this model approaches the local behavior of a 
corresponding well mixed model. For certain parameter values the well mixed 
model is shown to exhibit oscillations; hence, the original model also develops 
oscillations. One result of particular significance is the decreasing stability of the 
intracellular concentrations of this repression model with increasing extracellular 
concentrations of the repressor (or precursor to the repressor). This could have 
important ramifications in morphogenesis, as the behavior of the cell could be 
altered as a result of the stability change induced by the presence of an increased 
concentration of some extracellular biochemical species. 

Other analyses are done on the characteristic equation using theoretical and 
numerical studies. In the formulation of the Volterra equations, the diffusion 
operator is characterized, in effect, as a complicated time delay. Previous authors 
(e.g., [11]) have speculated that diffusion should behave in this manner, but this 
formulation shows it is more complicated. The numerical studies show that as 
the diffusivities are decreased, the model becomes less stable, as it would if the 
delay were increased. However, when the diffusivities are sufficiently small, 
Mahaffy et al. [13] have shown that the model is asymptotically stable. Mahaffy 
et al. [13] demonstrated a similar stability for increasing cell size. The bifurcation 
curves generated by the numerical analysis of the characteristic equation graph- 
ically depict all of these results. 

In the next section the mathematical model is presented. In the third section 
the model is analyzed for high diffusivities, and the characteristic equation is 
formulated for further analysis by numerical computations. The fourth section 
contains a series of figures generated by the computer which describe how the 
model behaves for a range of different parameter values. The final section 
presents a discussion of the biological significance of these findings. 

2 The mathematical model 

The mathematical model has two distinct compartments as shown in Fig. 2. The 
first compartment labeled co in Fig. 2 represents a nucleoid for a prokaryotic cell 
or a nucleus for a eukaryotic cell and is considered to be sufficiently small so that 
a well mixed assumption can be applied. Thus, the dynamics of the reacting 
biochemical species in this compartment are governed by differential equations 
which have no spatial component. The second compartment given by O\(9 in 
Fig. 2 represents the cytoplasm of the cell. In this compartment both reactions 
and diffusion are considered. 
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Fig. 2. Diagram for the radially symmetric 
cell showing the two compartments and the 
variables for the biochemical species 

There are three biochemical species that are examined. The mRNA, which 
has its production controlled by a repression process, is denoted by ui where 
i = 1, 2, depending on the compartment. In the case of a eukaryotic organism the 
control of the mRNA production is more likely to be the inactivation of a gene 
activator. Between the two compartments the mRNA is assumed to pass by a 
passive process which depends only on the concentration gradient of the mRNA. 
In the second compartment, which has spatial variation in its concentrations, the 
concentration gradient is determined by the concentration of the mRNA near the 
boundary of co. Once in the cytoplasm, the m R N A  is translated t o  produce a 
permease v2. It is assumed that the permease is restricted to the second 
compartment. The permease is needed for active transport of the nutrient, wi, 
across the exterior membrane, ~2, of the cell. The nutrient can then diffuse 
through the cytoplasm and enter the first compartment where it exerts a negative 
control on the production of the mRNA which produces the perrnease. As the 
processes of transcription and translation take a certain amount of time, the 
reactions using these processes are modeled with discrete time delays. 

The reactions for a repression model have been developed by several authors 
[2, 6, 18, 20, 24], and so the details for the actual biochemical reactions used in 
this model are omitted in this discussion. A one-dimensional version of this 
model with an extracellular nutrient and repression has been developed and 
partially analyzed by Harter et al. [7]. With the assumptions made above the 
following model can be written: 

Ul(t) = f ( w l ( t  - -  TI)) -- b l U l ( t )  d- al 1- [u2(x, t) - ul(t)] dSo~, 
da co  

lbl(t) = --63Wl(t) + a3 1 [w2(x, t) -- Wl(t)] d S ~ ,  
do a) 

c~u2 _ n V2u2 _ blU2,  (2.1) 
c~ t - "Jl 

O r 2  __  2 
- ~  --  D 2 V  v2 - bzv2 + g ( u 2 ( x ,  t - T2)), 

c3w2 = D3V2w2 _ b3 w2, 
8t 
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with the boundary conditions: 

63u2(x, t) 
f l l tU2(X,  0 - u~ (0], 

63n 

63u~(x, 0 
- - = 0 ,  fo rxe630 ,  

On 

63v~(x, t) 
O, for x e 63o9 u 63f2, 

63n 

aw2(x, 0 
f l 3 [ W 2 ( X ,  t )  - -  W 1 (t)], 

63n 

63W2(X , t )  
kv2(x, t), for x ~ 630. 

63n 

f o r  X E 63(0, 

f o r  X E Of.O, 

The kinetic constants b i are the decay rates, and a i are the transfer rates. The Di 
are the coefficients of diffusivity, and t ;  correspond to the transfer across 
compartment boundaries. The constant k is a parameter depending on the rate 
of transfer across the exterior membrane and the extracellular concentration of 
the nutrient. The function f (wl)  incorporates the negative control of transcrip- 
tion by the nutrient and is assumed to have the form 1/[1 +K(wl)~]. The 
function g(u2) represents the translation rate and is given by the linear form, 
CoU:. Note that we allow for differing decay rates, b3 and b3, for the nutrient in 
the two compartments. These particular forms are derived from the biochemical 
kinetics using excess substrate assumptions and conservation mass properties. 
For more details see [1, 2, 18]. In addition, a simple time scaling and a phase 
shift can make bl = 1 and leave the equations with only one delay, T = T1 + T2, 
in the nonlinear function f .  

An associated system of equations for a model where the second compart- 
ment is also well mixed can be written as follows: 

tJ 1 (t) = f ( w ,  (t  - -  T ) )  - Ul ( t )  + 51 [u2( t )  - U l ( t ) ] ,  

~21 (t)  = - ~3 w1 (t)  "q- 63 [w 2 (t)  - -  w 1 (t)] ,  

/~2(t) = - - u 2 ( t  ) "~- 54[U 1 (t) - -  u2(t)] , (2.2) 

~2(0 = CoU2(t) - b2/)~(t), 

~12 (t) = /£/)2 (t)  - -  b 3 w 2 (t) -71- o~ 6 [w 1 (t)  - -  w 2 (t)]. 

Let Wl be the equilibrium value for Wl(/) in (2.2). It can be easily shown that wl 
is the unique solution to: 

b2[( 1 + 61)( 1 -]- 64 ) __ 5164][(/)" 3 .ql- 53)(b3 d- 66) - -  5366]w 1 
f ( ~ l )  = 

C O 1£53 64 

From the linearization of (2.2) one finds the characteristic equation for the well 
mixed model, and it is given by: 

(2 + 1)(2 + b2)O], "q- 1 q- 51 + 54)[(2 + ~3 "~- 53)(~ + b3 "q- 56) - °~366] 

- -  C O K53 5 4 f ' ( w  1) e -xr  = 0. (2.3) 
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3 Analysis of the model for high diffusivities 

In order to proceed with a more detailed analysis of the model presented in Sect. 
2, there are several assumptions about the geometry of the cell which are used. 
It is assumed that the cell is modeled by two concentric spheres, where the inner 
sphere (the well mixed first compartment) has radius aR, 0 < a < 1, and the 
outer sphere (the cell membrane) has radius R. With these assumptions Eqs. 
(2.1) can be written as follows: 

~,(t) = f ( w l ( t  -- T)) - -  u l ( t  ) --1- '~1 [u2(Ro ' ,  t) - Ul (t)] , 

wl(t) = --53wl(t) + 73[w2(Ra, t) --wl(t)] , 

0u__22 = 
Ot D1V2u2 - uz, (3.1) 

OP2 2 
- ~  = D 2 V vz - b2 v2 + co u2, 

Ow2 = D3V'2w2 - b3 we, 
St 

for t > 0 and Ra < r < R and with the boundary conditions: 

0u2 (Ro', t) 0u2 (R, t) 
- [31[u2(Ra, t) - u~(t)], = o, 

Or 0r 

0V 2 (Ro', t) 0v 2 (R, t) 
- 0 ,  - -  - 0 ,  

0r 0r 
Ow2(R~,  t) Ow2(R, t) 

Or = [33 [w2 (Ra, t) -- wl (t)], Or - kv2 (R, t), 

1 0  
where V 2 = r-- i Or \ Or J " 

For large diffusivities the qualitative behavior of system (3.1) is expected to 
parallel that of the well mixed model given by (2.2). A stability analysis of the 
linearized models shows that if the leading eigenvalues of the well mixed model 
have real part greater than zero, then the linearization of the reaction diffusion 
model with sufficiently large diffusivities has eigenvalues with real part greater 
than zero. Thus, instabilities in the well mixed model which result in sustained 
oscillations give similar instabilities in (3.1). The following theorem summarizes 
the comparative analysis between (2.2) and (3.1) for high diffusivities: 

Theorem 3.1 Let the parameters ~l, ~3, and tc in system (2.2) be f ixed  and f i x  R 
and a in (3.1). Assume that the diffusivities Di in (3.1) tend to infinity, i = 1, 2, 3, 
and consider 2 such that Re(2)> max{-1 ,  - b 2 , - b 3 } .  Then in the limit, the 
values o f  ,~ which satisfy the characteristic equation for  the linearized diffusion 
model are equal to the solutions 2 o f  the characteristic equation (2.3) for  the well 
mixed model. 

The proof of this theorem relies on a technique of reducing the system of 
partial differential equations with delays to an equivalent system of delay 
differential equations with linear Volterra equations which depend only on the 
state variables at the boundary (see [4, 5]). The spatial component occurs only in 
an exponentially damped term depending on the initial conditions. After a 
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change of variables that makes the boundary conditions homogeneous, a varia- 
tion of parameters technique is used with the semigroup operator coming from 
the linear part of the partial differential equation. The spherical geometry is 
necessary for the explicit calculations performed to show the existence of a Hopf 
bifurcation and demonstrate behavior parallel to the well mixed model; however, 
many of the beginning steps which reduce the system of delayed partial differen- 
tial equations to a system of delay differential equations and Volterra equations 
with no spatial dependence can be performed in a more general setting. 

The first step in the analysis of the model is to compute the steady state 
solution. Details of this computation are given in the Appendix. After the steady 
state solution is found, the system of differential equations given by (3.1) is 
translated about this solution for stability analysis of the zero solution. Further- 
more, a change of variables is made so that the boundary conditions become 
homogeneous. If we let variables with an s superscript represent the steady state 
solution, then the following change of variables is used: 

U, (t) = ul (t) -- u], 

Wl( t )  = wx(t) -- w~, 

U2(r, t) = uz(r, t) - u~(r) - Ul(t) ,  

V2(r, t) = v2(r, t) - v~(r), 

WE(r, t) = WE(r, t) -- w[(r)  -- W l ( t  ) - kh(r )V2(R,  t), 

where h must satisfy h ' (R t r )=f lah(RtT)  and h ' ( R ) =  1 to make the last two 
boundary conditions homogeneous. We chose h(r) = ( r -  R a ) E / 2 R ( 1 -  a). With 
this change of variables (3.1) is written as follows: 

/..]1 ( t ) = f ( W l ( t -  T))  - Ul ( t  ) + 71U2(Rtr, t), 

1~, (t) = -- g3 W,  (t) + 73 W2(Ra ,  t), 

~U2 = DIV2U2 -- U2 - f ( W , ( t  - T) )  - 71 V2(ra, t), 
0t (3.2) 

0V2 = D2V2V2 -- b 2 V  2 ']- co(U 2 -4- Ul(t)), 
Ot 

aW2 = D3V2 W2 - b3 W2 -4- (g3 - b3)Wl -- ~3 W2(Rtr, t) 
0t 

for t > 0 and Ra < r < R and with the boundary conditions: 

3Uz (Ra ,  t) 8U2(R,  t) 
Or fla U2( Ra ,  t), Or - O, 

OV2(Rtr, t) t~VE(R, t) 
O, O, 

Or Or 

W 2 (Ra, t) t~ W2 (R, t) 
- r3 Wz(Ra, t), 

Or 8r 

where f (w~) =f(W~ + w~) + ~u~(R~) - (~ + 1)u~. 

=0,  
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The next step of  the analysis is to examine the differential equation for 
U2(r, t). The technique employed parallels that of  Busenberg and Mahaffy [4] in 
that the eigenvalues and eigenfunctions for the homogeneous part of  the U2 
equation with its boundary conditions in (3.2) are found and then a variation of  
constants formula is applied. The eigenvalue equation from the associated 
Sturm-Liouville problem is given by: 

/126 + | + fllRO- 
cotLu(1 - a)] =//[(1 - a) + fllRa]" (3.3) 

The eigenfunction corresponding to eigenvalue // is given by: 

2 x / ~ ( / / c ° s [ / / ( I  - R ) I  - sin[# (1 - R ) I )  

qg(r) - rx//~ x/2(//2 + 1)//(1 - a) - 4//R sin2[#(1 - 0-)] + (//2 _ 1) s in [2 / / (1  - a ) ] "  

As this denominator occurs frequently in our subsequent computations, we 
define the following two expressions which come from the normalization of  the 
eigenfunctions: 

Fnor(Z) = (Z 2 "[- 1)Z( 1 -- a) -- 2Z sing[z( 1 -- a)] 

+ (Z z - 1) sin[z( 1 - a)] cos[K(1 - a)] 

and 

I f  we  
identities we can show that: 

2/~1R~2(1 + / / D  
a ~ n ( R o )  = 

Gnor(#., ill) 
2 2 If we define a.~ = (U2o, 4 . )  and A n - 1 + / / n D I / R  , 

then the variation of constants formula gives: 

U2(r, t ) =  ~ a~¢~(r)e  -A~' 
n = l  

Gnor(Z, fl) -----  (1 -- o')z2(1 + 0- + 0 -2 + X2a 2) + f lRa(z2(2 - a) - 0-) 

+ / ~ 2 g  2~ 2(z 2(1 - . )  - ~). 
define 3~ = (1, ~ b n ) = ~ ,  1. On(r)r2dr, then using some trigonometric 

(3.4) 

where /-720 (r) = U2 (r, 0), 

_ :'it o~Z 6'~dpn(r) e-a"( t -s)[ j~(Wl(S - T))  + ~1U2(RG, 3')] Ms. 
,Jo n = l  

If this equation is evaluated at r = Rcr, then we have a linear Volterra equation 
in Ue(Ra, t) which is given by: 

U2(Ra, t )=  ~ o~u(a,,(Ra) e -A ' t  
n = l  

fo - KU(t -- s, Ro')[jZ(W1 (s - T)) + ~1U2( RO', s)] ds, (3.5) 

where K"(s, r) = ~ =  1 6~c)n(r) e -A,(s~ 
A similar procedure is applied to the V2 equation. The Sturm-Liouville 

problem associated with the V2 equation has insulated boundary conditions, 
which implies that the first eigenvalue, v0 = 0, has its associated (normalized) 
eigenfunction given by: 



Model of repression with external control 677 

~o(r) = ~ -R3(13  r3). (3.6) 

The subsequent eigenvalues are found from the equation: 
V20 " "~ 1 

cot[v(1 - a)] - v(1 - a)" (3.7) 

The corresponding eigenfunctions are given by: 

V / 2 v ( v c ° s l v ( 1 - R ) ] - s i n [ v ( 1 - R ) l )  

~b(r) = r x / ~  ~ 

By orthogonality it is clear that (1, ~bn> =0 ,  n = 1,2, .  .... If we define 
~ = <V20, ~n> and Bn = b2 + v2~D2/R 2, where V2o(r) = V2(r, 0), then the varia- 
tion of constants formula gives: 

V2(r, t) = e~0~(r) e - e - '  + co e -b2(,-,)Ul (s) ds 
n = 0  

+co  <U2(', s), 0°( ' )  >~'.(r) e -B"('-s) ds. (3.8) 
n = 0  

The linear part of the W2 equation is very similar to that of the U2 equation. 
This implies that the eigenvalue equation and corresponding eigenfunctions are 
easily found and are given by: 

co2a + 1 + fl3Ro" 
cot[co(1 - ~)] - co[(1 - a) +/~3Ra]'  (3.9) 

with eigenfunction: 

x / ~  ( °  c°s Ion (1 - R ) I  - sin [ °  (1 - R ) I )  
¢(r) - 

If we define 6~ = <1, in > = ~ 1" ~.(r)r 2 dr, then using some trigonometric 
identities we can show that: 

2~RG=(1  + o~. ~) 
6~.(R~r) - (3.10) 

Gnor ((Dn, ]~3) 
w 2 2 If we define ~. - ( W 2 o ,  ¢.> and C. =-b s +onD3/R  , where W2o(r) = Wz(r, 0), 

then the variation of constants formula gives: 

W2(r, t) = ~ o~'X~,(r ) e - c . t  
n = l  

+ K~(t - s, r)[(63 - bs)W1 (s) - 73 W2(R~, s)] ds 
0 

-F k <[D3V2 h _b3h] ,~>~(r)e_C. ( ,_ , )V2(R,s )ds  (3.11) 
,J0 n = l  

- k <h, C>~.(r)  e-C"( ' -@'~(R,  s) as, 
t~=l  

where KW(s, r) = ~ =  l 6~ ~.(r) e-C"s. 
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If  (3.8) is evaluated at R and (3.11) is evaluated at Ra, then the following 
system of delay differential equations and linear Volterra equations can be written: 

(],(t) =jZ(W, (t - T))  - Ul (t) + ~1Uz(Ra, t), 

V¢'l(t) ---- --~'3 Wl(t) -[- 73 W2(R(r, t), 

U2(Ra, t ) =  ~ agq~.(Ra) e - ~ . '  
n = l  

- KU(t-s,R~r)[~(Wl(s-T))+71U2(R~,s)]ds, 

fo V2(R, t) = e~O,(R)  e - s , , +  co e -b2( ' - s )U 1 (s) ds 

+Co (U2(' ,  s), ~h.('))~h.(R) e -B- (t-s) ds, (3.12) 
n = 0  

W2(R(r, t ) =  ~ a~ ~.(Ra)  e - c . '  
n = l  

;o + KW(t - s, Rff)[(~" 3 - b 3) W 1 (s) - ~3 W2 (Ro', s)] ds 

+ k  f '  ~ ([D3V2h - b3h], ~ . )~ . (Ra )  e -C . ( t - s )V2(R ,  s) ds 
do 

- k  (h, 4. )¢.(Ro-) e - c . ( ' -  s)~2(R, s) ~s. 

The system of equations (3.12) only has a spatial dependence reflected in the 
terms c~,~, e~, and c~, and these terms are exponentially damped. This suggests 
that standard techniques for analysis of  time dependent systems are applicable. 

The procedure below parallels that of  Busenberg and Mahaffy [4]. The 
system (3.12) is first linearized, and then the limiting Volterra equations are 
found. As shown in Busenberg and Mahaffy [4], the terms containing e~, e~, and 
aw are damped in the limit as t ~ or. This allows us to write the following 
limiting linear system of delay differential equations and Volterra equations: 

(], ( t ) = f ' ( w ~ l ) W  l (t - T)  - U, (t) + 7~ U2(Ra, t), 

W~(t) = -/73 Wl(t) + 73 W2(Ra, t), 

U2(Rtr, t) = -- KU(t -- s, R t r ) [ f ' ( w ~ ) W  1 (s - T) + ~1 U2(Rtr, s)] ds, 

fo V2(R, t) = co e-b~(t-  s)U1 (S) ds -- Co e-S"( ' -~)0,(R) 
.=o (3.13) 

£ 1  6~, e -  A" ( ' -~ ) [ f ' (w~)Wl ( r  - T)  + y~ U2(Rtr, z)](~b,,, ~k,) dr ds, 

W~(R~, t) ; K~( t  - s ,  eo-)[(/~ - b3)Wl(S ) - -  73 Wz(Ro', s)] d s  

+ k <[D3 V2h - b3h], in )~n(Rff) e-C'(~-~)V2(R,  s) ds 

- k (h,  ~, )~n(R~r) e-C,(t-~)122(R, s) ds. 
n ~ |  
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Using standard techniques for time varying systems, we seek a solution to the 
above system in the form of: 

[Ul(t), Wl(t), U2(Ra, t), V2(R, t), W2(Ra, t)] T= [U1, l~z,, 02, 172, W2lre ~'. 

With this substitution the characteristic equation for (3.13) is given by the 
following determinant: 

) .+ 1 - f ' ( w ~ ) e  -aT -71 0 0 
0 2 +63 0 0 -73 

det 0 f ' (w~)  e-~TI1 1 + ~111 0 0 = O, 
--CoI 2 Cof'(wSl)e-'~TI3 C071I 3 1 0 

0 (b 3 - -  ~ 3 ) I 4  0 - k I 5  1 all- ]~314 

where the integrals /s, J = 1 . . . . .  5 are appropriately defined below. As we are 
interested in studying the stability of the system, it suffices to consider only the 
eigenvalues 2 with R e ( 2 ) > m a x { - 1 , - b 2 , - b 3 } .  With this restriction on the 
values 2 the Lebesque dominated convergence theorem can be applied to the 
integrals below and the order of integration and summation can be interchanged 
to yield the following: 

fO °O ~ ~ (~)n(RO') 11 = bUC~n(RCr ) e -(a+A-)s ds = 
.=1 .=1 2 + A n  ' 

12 = e-(~ + b2)~ ds --2 + b z 

I3= e-(X+n")'~O.(R) t~e- (a+A") ' (4m,~l ln)& ds 
n = O  m = l  

n=om=~ (2 +Am)(). +Bn) 

14 = 6 ~ . ( R ~ )  e - (~÷ c°), ds = ~ . ( R ~ )  
n = l  n = l  l~"}-Cn " 

/5 = ([D3 V2h -- b3h], ~n )~.(Ra) e -(a+ c.)s ds 
n = l  

-- ~ (h,~n)~n(Ra)2e-('~+c")~ds 
n = l  

. =1 2 ~ C-~. [(D3V2h' 4. ) - (2 + b3)(h, in(r))]. 

Next we expand the determinant above to give the characteristic equation in 
the following form: 

(2 + 1)(1 + 7~I1)(2 + b" 3 + (2 + b3)7314) - k73cof'(w~) e-~r/s[I 2 - (2 + 1)I3] = 0. 

(3.14) 

This expression is multiplied by (2 +b2), (2 +AI) ,  and (2 + CI). With the 
infinite series representations computed above for the terms/j ,  j = 1 . . . . .  5, we 
can define the following quantities: 
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P(2) = (2 + 1)(2 + b2) 2+A,+v167(o1(R0-)+71.= 2 ~+A.  

× 
n ~ 2  

(3.15) 

and 

k¢.  + C,)  
=  3c0f'(w ) k¢1(R0-) 1 + _ ] n ~ 2  

( 3 ( 3 ] ' )  2 ~ 67On(R)(~b1'On)(A-'bb2) 
x )~+Al - ( ; t+ l ) \R3( l_0 -3 )+  = 1 2 + B n  

~ 3(6'~)2(~+A1) ) ]  
-t-m~ 2 R3(1 __0-3)(2_t_Am ) -k- ~, ~ 6U~In(R)((/)m' ~ln)(J'-'l-Al)(~'+b2) 

= ,=1 ,.=2 (2+A,.)(2+Bn) ' 

(3.16) 

where we use the information that ~ko(R)(q~,., fro) = 36~,,/R3( 1 - 0-3) and define: 

e, = (D3V 2h, ~n > - -  (~  "q- b 3 ) ( h ,  ~n >" 

With these definitions we can write the characteristic equation for (3.13) in the 
form: 

P(2) - Q(2) e - a t =  0. (3.17) 

In order to compare the well mixed and diffusion models, (2.2) and (3.1), the 
kinetic parameters must be compared. Clearly the decay rates, bl, and production 
rate, Co, are the same for either model. In addition, the transfer rates in the first 
two equations of each model must match, which implies that el = 71 and ~3 = ~3" 
The volume of the first compartment is 4~zR30-3/3. and the volume of the second 
compartment is 4~z_R3(1- 0-3)/3, Using this information and a mass balance 
between the related chemical species we see that the transfer rates for (2.2) can 
be related by e4 = o-3~xl/( 1 - 0 " 3 )  and 0~ 6 = 0-3~X3/(1 - - 0 - 3 ) .  Finally, we must relate 
the parameters for transfer across the compartment boundaries in the diffusion 
model to the transfer rates in the well mixed model. By the law of conservation 
of mass and the divergence theorem we see that: 

~12V2=~4(Ul-U2)V2= f f f v  D1VZu2dV=Dl f f  s Vu2"ndS 
2 Ra 

= D l f l l ( U l ( t )  - -  u 2 ( / ) )  IIdS : D 1 / ~ l ( U  1 - u 2 ) 4 ~ R 2 0  -2, 
dds Ra 

where I12 = 4zcR3(1 - o3)/3. Thus, 0~ 4 = 3D1Bla2/R(1 -- 0-3). Similarly, we find 
o~ 6 = 3D3f130-2/R(1 - -  o "3) and x = 3D3k/R(1 - o '3) .  These relationships among the 
parameters are used in both the theoretical comparisons of the models below and 
in the numerical results in the final section of the paper. 

Proof of Theorem 3.1 The proof centers around a careful analysis of each of the 
terms given in (3.15) and (3.16). Since all of the terms in (3.15) were analyzed in 
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Busenberg and Mahaffy [4], only a summary of the pertinent results will be 
given. 

Let the diffusivities D~ tend to infinity. As/3gD~ and kD3 remain finite,/31,/33, 
and k must tend to zero. Similar to Busenberg and Mahaffy [4] we can use the 
eigenvalue equations (3.3) and (3.9) and the Maclaurin series expansions for sine 
and cosine to show that for #1 and col small: 

- 
/3,R- +o(u 4) 

(3.18) 
co (1 - o b  o ( c o 4 ) .  

/33R - 3cr2 

With (3.18) used in (3.4) and (3.10), it is easy to see: 

lim 3 ~ b l ( R O "  ) = 1 (3.19) 
p 1 ---~ 0 

We use (3.18) and the mass balance 

and lim ~ ~v ~ 1 (Ro)  = 1. 
o91~o 

r e l a t i o n s  t o  s ee  t h a t  as  D ~ ,  D 3 ~ oo: 

a n d  D 3 c o ~  ~ 3D3/~3R°'2 
(1  - or3) = c~6" 

D 2,,, 3Dlfll Rtr2 
lktl = (1 - a3) = ~4 (3.20) 

From (3.3) and (3.9) one can show that p ,~(1-a)>(n-1)rc  and 
con(1 - a) > (n - l)rc, which when combined with (3.4) and (3.10) yields: 

2f f lR(1  - -  o)  2f13R(1 - o-) (3 .21)  
16u(an(Ra)] < ( n -  1)2~r 2 and ]fiw~,(Ra)[ < ( n -  1)2re 2 " 

Assuming Re(2) > max{ -1 ,  - b 2 ,  -b3} , we can use (3.21) to show: 

+ AI)  /31R(1 - G) 

2 + A .  < 3 

and 

n~ 2~ 6W¢n(Ra)(2 + C1) /33R(1 - G) 
2 + Cn < 3 

Thus, as/31 and/33 tend to zero, we find that the infinite sums in (3.15) vanish. 
We combine this information with the limiting formulae given by (3.19) and 
(3.20) to see that as the diffusivities, De, tend to infinity the limiting form of the 
expression (3.15) has the following form: 

(2 + 1)(2 + b2)(2 + 1 + tX 4 "t- 71)[(2 + b'3)(2 "[- b 3 + ~6) -t- (2 -~- b3)Y3]. (3 .22)  

Next we study the terms of Q(2) in (3.16), which differ substantially from the 
ones studied in Busenberg and Mahaffy [4]. The inner product for en is expanded 
and gives: 

2R(sin[con(1 -- a)] - con cos[con(1 -- a)])G(2) 
Cn(Ra)e,, = co~a(l - -  o-)Fnor((_On) , (3.23) 

where 

G(2) = (2 + b3)[con3(1 - a)] + (2 + C,) 

× [(2 - f13 Ra)(co, cos[co, (1 - a)] - sin[co, (1 - a)]) - 2o9, a]. 
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As before the eigenvalue equation (3.9) can be applied to eliminate the trigono- 
metric functions and yields: 

(0.(2 + C.)(0) ] + 1)(2 - tiaRa) 
~n(Rff)g'n=--2R ~k ~-n2(--1 - - ~  G--n o r - ~ n  ~ ~ 

+ [(2 + b3)(0)](1 - a) - 2o') - 2D30)2.a/R2]H(n)~ 
~ ( - i  ~ ~--~-~-nor (-~n ~ fl-~ / ,  (3.24) 

where 

H(n) = ( - 1) n - IN/(0)2 -[- 1)(0)~a 2 + I + 2f13R0. + f12R20"2). (3.25) 

When n = 1, 0)t (1 -0 . )  is small and we can apply the Maclaurin series expan- 
sions for sine and cosine to (3.23) to give: 

~l(Ra)~, 3D3 + O(0)~). (3.26) 
R (  1 - -  0. 3) 

For n ~> 2, (3.24) can be used for our analysis. For R and 0. fixed we consider 
D 3 large which implies t3 is small. Ignoring the terms with 1/3, we find from 
(3.25) that: (2°,) H(n) ~ ( - 1 /"-  'x/(0)~ + 1)(0)~ 0.~ + 1) ~ ( - 1) n - '  0).0. + 5 + ~ + O(1/0)I). 

Again ignoring the terms with f13 and substituting the above expression for H(n), 
we find: 

/t 2 2 0.2+ 1"~ 
(0-)2( 1 -- 0.) -- 0.) ~(Dn 0" - [ - ~ )  

{.(Ra)e, ~- 2R( - 1)" - 1 ( 2  21- b3) 0)4( 1 -- 0.)2(0)]0.2 + 0.2 + (7" dr- 1) 

-4R0.(2 + Cn) 

(o)2 + 1) + (--  1)"-l(0),2a + 0-2 + 1 ~ 

0)~(1 -- 0.)2(0)2a2 + 0 -2 + 0. + 1) 

It is easily verified that: 

a2+l~ 0)](1 +0.) + 1 + ~ ]  l + a  

< - a n d  < - -  (0)20.2 + o.2 + a + 1) 0. ((020. 2 -at- 0 .2 -]- O" "{- l)  0 -2 

The eigenvalue equation (3.9) gives the inequality: 

(n - 1)~ 
(.O n > - - ,  

1 - - a  

so with the above approximations we see that: 

2R(1 - 0.) I 1 - 0.2)]2 +__ C, !-] [~n(R0.)gn[~0.~ -----~-'~2 [ 2 + b 3 1 + 2 ( ~ - 1 )  2rc2 J '  n~>2. 

For R e ( 2 ) > - b 3 ,  12 + C1[/12 + c . [  < 1. With this we can form the following 
bound: 

~n ( R a ) e , , ( 2  + C 1)  + C1 ] 
o = :  ° = :  + c , , I  (3.27) 

< M112 + b31 + ME 12 + Cx l, 
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where 

and 

M1 2R(1-0")  1 - 

M2 4R(1 - 2 a ) ( 1 - a  2) ~ 1 
- -  n 4 .  0.7~4 n = 1 

From (3.24) and the balance laws computed before the beginning of this proof 
we obtain: 

( 3kD3 ) 
lim k~l(Ra)el-- lim \ R ( ~ _ ~ 3 )  + O(o)12) = x. (3.28) 

D 3 ~ C O  D3--~ co 

Thus, with (3.27) and (3.28) and provided the imaginary part of 2 is bounded, 
we find: 

( ~" k~n(Ra)sn(2+Cl)) = K, lira k~l(Ra)el + (3.29) 
D3~co ,=2 2 + C, 

where x is a fixed parameter from the well mixed model. (Recall: k ~ 0 as D3 ~ m.) 
It remains to analyze the last factor in (3.16). We must show that the infinite 

sums in this factor tend to zero as the D;s tend to infinity and the term with 6 
tends to one. As stated before, t~U~lo(R)(~m, ~o)=  3(•u)2/R3( 1 _0-3), which 
from the expression for 6~, gives: 

3((~,Un) 2 6fl~R2a2(sin[#m(1 -- a)] -- #m cosLum(1 - -  0")])  2 

R3(1 _ 0"3)  #3( 1 - -  0 . 3 ) F n o r ( ~ m ,  i l l )  
(3.30) 

6tiER20"4(1 + #~) 

- #2( 1 -- a3)Gnor(/~,,, i l l ) "  

By using the expressions (3.18) derived from the Maclaurin series expansions in 
(3.30), we can see that 3(57)2/R3(1 - 0"3) = 1 + O(/~2). By expanding Gnor(/Zm, ill) 
and using pm(1 -- a) >~ (m -- 1)1r, we can show: 

co 3(6~)2(2 + A , )  ~< Z 6fl~R20"4( 1 +#2m)12 + A l l  

m~_- 2 R ~ ----~(~ +-A,.) ,,,=2#2(1--0"3)Gnor(#m, flx)12+Am[ 

6f12R2a2(1-a) 2 ~ 1 
~< 

Clearly, this expression tends to zero as fll-o 0. 
The next step is to examine 6u¢n(R)(gam, ~b,). By expanding the inner 

product we can show: 

2 2 4 2  2 1),,x/(vZ 1)(v20"2 + 1) 4fl~R 0" v.(#,n + 1)(-- + 
~U ~ln(R) ( (Orn, I]ln ) -- (iA2 2 

--vn)Gnor(#m , fll)Gnor(Yn, O) ( 3 . 3 1 )  

As we have noted before, #,,(1 - a) -*(m - 1)r~, and Vn(1 -- a) -*nu. To analyze 
the term in the denominator, [./2 __ v 2, suppose /~m(1 - a) --- ku and 
v,(l - 0") ~ ku. Using the formulae (3.3) and (3.7), we perform a Taylor's series 
expansion about krc. It can be shown that ~t , , (1 -a )=ku+(1-0" )2 /  
0"kn +fl lR(1 -a)/krc .-I-O(1/kaTz 3) and v,(1 -0") =krc +(1  -a)E/0"klz +O(1 /  
k37r 3) for fll R sufficiently small. Thus, ( l a2 -v2 ) (1 -a ) z=2 f l lR (1 - -a )+  
O(1/k27z2), when m - 1 = n = k. As this case gives the smallest denominator, we 
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see that ]/t~ - v2[~> 2fl~R/(1 - a) > 2fllR, for m/> 2 and n/> 1. With the above 
approximation and (3.31) we see that: 

[(~u ~[In( R )  < ~m,  ~1 n >[ < 

2fll R _< 2fll R 
~< ~ 2 m ( 1  - -  0-) 2 ~ ( m  - -  1)2re 2" 

If  we assume that Re(h) > m a x { - 1 ,  -b2}, then: 

2 2 4 2 2 1)x/(v  2 1 ) ( v ~ o . 2  1) 4fllR a 1;n(lA m -J- -~- -~- 

2fllRanor(#m, fll)Gnor(Vn, 0) 

m ~>2, 

n~ ~2 
1 2 + B , , I > D z v ] / R R > D 2 \ ~ _ a j  , n>/1. 

We apply this to the double sum in (3.16) and find: 

~. ~ ~u~l(R)<~m, ~ln>(2 -b A1)(2 q- b2) 

, =/Tlm=2 & (2 + Am)(2 +Bn) 

 12+A1112+b21 0.>l 
n =  1 m = 2  [2 -~ Am ][2 + B, } 

2fl, R(1--rr)4 ~ 1 ~ 1 
~< [2 +A1][2 +62] -]9~-~z~- ~ , = l  ~ m = 2  ( m -  1) 4. .  

Assuming that the imaginary part of 2 is bounded, we can easily see that the 
above expression tends to zero as D1, D2 ~ oo. A similar argument shows that 
the remaining infinite sum in (3.16) also tends to zero as D2"~ oO. 

To complete the analysis of (3.16), assume D i d o  o, i = 1, 2, 3, and that 
Re(h) > ma x{ -1 ,  -b2, -b3}. With the above results showing that the infinite 
sums vanish, (3.20) and (3.28) demonstrate the following: 

lira Q(2) = coxy3cqf'(wD. (3.32) 
Di~ oo 

Using truncated Maclaurin series expansions with the mass balance relations, 
we can follow the steady state calculations in the Appendix and demonstrate 
that as D ; ~  aD, the steady state, w~, of the diffusion model approaches the 
steady state, @1, of the well mixed model. From the limiting forms of Eqs. (3.15) 
and (3.16) given by (3.22) and (3.32), and as ~; = ai, we see that for large 
diffusivities the characteristic equation of the diffusion model approaches 
the characteristic equation (2.3) of the well mixed model. The conclusion of 
Theorem 3.1 follows. This shows that the qualitative behavior of (2.1) with high 
diffusivities Di, i = 1, 2, 3, should be similar to the behavior of the well mixed 
model (2.2). 

For certain parameter values the well mixed model has characteristic values 
with positive real parts. Thus (2.2) can exhibit an oscillatory behavior. The 
techniques developed in [12] can be used to determine exactly where the Hopf 
bifurcation for (2.2) occurs. It follows from Theorem 3.1 that if the diffusivities 
De are sufficiently high then (3.1) can exhibit oscillatory behavior or undergo a 
Hopf  bifurcation to small amplitude periodic solutions. 
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4 Bi furcat ion  curves 

The characteristic equation given by (3.17) is used to determine the critical delay, 
T, where a Hopf bifurcation occurs with respect to one of the parameters. The 
method of evaluating the critical delay uses a modification of the technique 
developed in [12] which handles the characteristic equation (2.3) of the well 
mixed model. The numerical scheme examines (3.17) for 2. along the imaginary 
axis where the Hopf bifurcation occurs. The scheme relies on finding a value 
along the imaginary axis where the magnitude of P(2) is equal to the magnitude 
of Q()~). Subsequently, the arguments are adjusted by the delay T so that (3.17) 
is satisfied. 

P(;~) which is given by (3.15) has a leading power of )~ equal to five, as is seen 
in (2.3) for the well mixed model. Q(2) acts more as a perturbation of the 
constant multiplying e -~ r  in (2.3). Thus, the magnitude of P(2) increases more 
rapidly than the magnitude of Q(2). If  IP(0) l IO(0)[, then there can be no Hopf  
bifurcation and (3.1) is locally asymptotically stable. If [P(0)[ ~< IO(0)l, then a 
bisection technique can be used to find when Ie(iv*)] = ]O(iv*)l for some v* > 0. 
The critical delay is given by: 

T = arg(P( iv* ) )  - arg(O( iv  *)) 

V* 

In Fig. 3 the bifurcation curve is computed with the diffusivities, Di, 
i = 1, 2, 3, as the bifurcation parameters. The diffusivities are all taken to be 
equal in this computation. The dashed line shows the value where the Hopf 
bifurcation occurs for the corresponding well mixed model (2.2). The curve in 
Fig. 3 demonstrates that when the diffusivities are high the asymptotic behavior 
of the reaction diffusion model (3.1) is the same as the corresponding well mixed 
model (2.2), which agrees with the result of Theorem 3.1. As the diffusivities 
decrease, Fig. 3 shows that first the diffusivities act like an increased delay 
causing (3.1) to become more unstable. This agrees with our intuitive under- 
standing that the diffusion process is increasing the time for the biochemical 
species to reach the point where their reactions occur. Figure 3 shows that as the 
diffusivities become very small, the processes of decay become dominant and 
(3.1) becomes stable. 

4 

3 

0 
0.0 

Region of Instability 

Well Mixed Model 

~ o d e l  

Region of Stability 

o15 11o 11~ 
Diffusivities,  D i 

2.0 

Fig. 3. Graph of the bifurcation curves 
for the models showing the critical 
delay, T, versus the diffusivities, D i 



686 J.M. Mahaffy et al. 

8 

~6 

~4 
¢D 

i 

00.0 0.5 2.0 

/ 
/ /  

Region Instability 

Region of Stability 

110 1.5 
Radius, R 

Fig. 4. Graph of  the bifurcation curves 
for the models showing the critical 
delay, T, versus the cell radius, R 

As the radius, R, of the cell becomes large, one expects that the biochemical 
species are diluted so that the probability of decay dominates the probability of 
reactions; hence, the models in (3.1) and (2.2) become asymptotically stable. 
Figure 4 demonstrates this result clearly. In addition, this figure shows that (3.1) 
becomes stable more rapidly than the well mixed model (2.2) with increasing R. 
This result is to be expected, as the increasing radius magnifies the delay effects 
of the diffusion process. The bifurcation curve in Fig. 4 parallels the results of 
Fig. 3. We observe the effects of diffusion first destabilizing the model (3.1) more 
than (2.2) with the bifurcation curve of the diffusion model dropping below the 
bifurcation curve o f  the well mixed model. Then as the decay processes begin to 
dominate, the bifurcation curve of the diffusion model rises more rapidly with 
increasing R. 

The transfer rate constant ~ in the well mixed model reflects the permeability 
of the cell membrane to the external nutrient and the concentration of the 
external nutrient. Figure 5 shows that as x decreases, the models are increasingly 
stable. (Recall that x and the transfer rate k are related by x = 3D3k/R( 1 - 0"3).) 
This result is biologically the most significant, as increases in the external 
nutrient concentration could affect a cellular response by producing intracellular 
oscillations of the nutrient concentration. However, if the results of Fig. 4 and 
Fig. 5 are combined, it follows that a larger cell would require a higher 
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. . . . . . . . . .  l[~.ll.. Mixed Model 

Diffusion Model 
R e g i o n  of S t a b i l i t y  

2:0 41o 61o 8:o 
Transfer Rate r 

Fig. 5. Graph of  the bifurcation curves 
for the models showing the critical 
delay, T, versus the transfer rate of  the 
well mixed model, 0 0.0 10.0 
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concentration of external nutrient to produce oscillations. This demonstrates that 
smaller cells would be more sensitive to environmental changes. 

5 Discussion 

Active transport of a substance across the cellular membrane is an important 
biological process. We have considered a mathematical model of this process 
with genetic control by negative feedback. The model consists of two distinct 
compartments with diffusion allowed in the compartment representing the cyto- 
plasm. The model also includes time delays for processes such as transcription 
and translation. The qualitative behavior of this model is examined for several of 
the parameters assuming radial symmetry. 

This model shows that the techniques of Busenberg and Mahaffy [4, 5] can 
be extended to more complicated systems. For a certain class of models these 
methods can reduce a system of partial differential equations with delays to a 
system of delay differential equations and linear Volterra equations which no 
longer have any spatial dependence. This allows analysis of the system using 
standard methods for time varying systems. In particular, local analysis can be 
used to find where a Hopf bifurcation occurs. This analysis provides information 
on parameter ranges where the mathematical model changes from a region of 
stability to one where the model exhibits oscillations. An adaptation of the 
techniques developed in Mahaffy [12] allows the construction of bifurcation 
curves which can be interpreted in terms of their biological parameters. 

As expected, the result of Theorem 3.1 shows that when the diffusivities are 
large, the qualitative behavior of the mathematical model with diffusion ap- 
proaches that of a corresponding well mixed model. More significantly, the 
technique for proving the result produces a characteristic equation which can be 
analyzed in more detail. The results of Mahaffy et al. [13] which establish 
stability results for this model show that detailed analysis can be significantly 
more complicated. However, the characteristic equation is readily analyzed 
numerically and provides several interesting results. 

As the diffusivities vary, the bifurcation curve of Fig. 3 shows several distinct 
behaviors. As noted above, high diffusivities give a qualitative behavior similar 
to that of the corresponding well mixed model. As the diffusivities are decreased, 
the bifurcation curve produces a range of decreasing stability which corresponds 
to the intuitive idea that diffusion acts as a time delay. However, when the 
diffusivities become sufficiently small, the biochemical species are unable to 
diffuse sufficiently through the cell before they decay, which results in increasing 
stability. Mahaffy et al. [13] prove that for diffusivities below some critical value, 
(3.1) is stable independent of the transcription-translation delay. The results 
shown in Fig. 3 are very similar to the results of Busenberg and Mahaffy [3, 5] 
for a simpler model with autorepression. This suggests a generic property for the 
diffusivity coefficient in this type of model where it destabilizes the model up to 
a point by acting like a time delay, then stabilizes the model as decay processes 
begin dominating the transport by diffusion. 

As the cell grows, the radius increases and allows more time for the 
biochemical species to decay before they reach either the cellular membrane or 
the nucleus. This is very similar to the situation described above where the 
smaller diffusion rates prevent the reactions necessary for oscillatory behavior. It 
can be proved that there is a critical radius above which (3.1) is asymptotically 
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stable [ 13]. Figure 4 shows that the region of stability increases monotonically 
with increasing R; however, Busenberg and Mahaffy [3] showed in a related 
model that this is not always the case. The general shape of Fig. 4 agrees with 
the results of Busenberg and Mahaffy [3, 5] for the simpler autorepression model. 
Again this indicates that for the most part increasing cell size has a stabilizing 
effect on this class of cell models. 

Our final result concerns the behavior of the model (3.1) in response to 
changes in extracellular concentration of the nutrient. Biologically, this could 
have important implications. The delay of the model is fixed, so if one follows a 
horizontal path in the bifurcation diagram of Fig. 5, then as the concentration of 
the external nutrient increases from zero, the model could pass from a region of 
stability to a region where the model displays oscillatory behavior. This oscilla- 
tory behavior could result in a signal for the cell to modify its response. If  the 
external nutrient were a morphogen, then the increased concentration and 
resulting instability could cause the cell to undergo a developmental change or 
morphogensis. 

A Appendix 

In this section a summary of the calculations necessary for obtaining the steady 
state solution for the reaction-diffusion model is presented. To find the steady 
state solution, the time derivatives in (3.1) are set equal to zero. The result is a 
system of two algebraic equations and three boundary value problems which are 
given by the following: 

f(w~) = u~ ( 1 + ~)1 ) - -  ])1 u~(Ro), 

(~3 "[- b'3)W~ = ~3 w~(Ro'), 

DIWu~ - u~ = 0, (A.1) 

O2 V2v~ -- b2v~ = -COUP, 

D3V2w~ -- b3w ~ = O, 

with boundary conditions 

du~(R,r )  du~(R)  
- ~,  (u~(RG) --  u~), "YT-r --  O, 

O, - - - 0 ,  
dr dr 

dw~(gcO d w ~ ( g )  
= f l3(w~(Ra)  -- w~), ~ - kv~(R) ,  

where 

2 1 d d 

Define 62 =bi/D~, i = 1, 2, 3 (b = 1), then solve for u~, v~, and w~ with the 
boundary conditions. 
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The  equat ion for  u~ with its bounda ry  condit ions is found to have the 
following solution: 

u~(R~) = ~ cosh[61R(1 - or)] - - ~  sinh[61R(1 - e)] - qlA1, (A.2) 

for  A 1 defined below and ql an appropr ia te ly  defined constant .  Let  
al = R81(1 + fllRcr - cr) and a2 = (R2a6~ - 1 - fllRe), then the constant  A l is 
given by: 

fll R30"281 u~ 
A 1 - 

al cosh[81 R( 1 - tr)] + a2 sinh[81R(1 - tr)] 

= q2u], (A.3) 

where q2 is an appropr ia te ly  defined constant .  

Let  v~h(r) = (1/r)(Bl cosh[82(R - r)] + B 2 sinh[82(R - r)]), then with the vari- 
a t ion of  constants  fo rmula  and the bounda ry  conditions,  the following equat ions 
for  B 1 and B 2 can be obtained: 

B1 (cosh[82R( 1 - a)] + 82Ra sinh[82R( 1 - ~)]) 

= -B2(s inh[82R(1  - tr)] + 8zRtr cosh[82R (1 - tr)]) 

a n d  

) B1+82RB2 = D ~  2 ~ s i n h [ 8 1 ( R - r ) ] - c o s h [ 8 1 ( R - r ) ]  s i nh [82 (R- r ) ]  dr 

_ 1 - r ) ] )  cosh[Sz(g +82RfR~(cosh[81(R-r ) ]  0--a-a~sinh[81(R _ - r)] dr) .  

The t w o  equat ions above  can be rewritten as: 

B1 = - - q a B 2  (A.4) 

and 

B1 + 82RB2 = - q 4 A l ,  (A.5) 

by defining q3 and q4 appropr ia te ly .  
Let  w~(r) = (1/r)(C1 cosh[83 (R - r)] + C2 sinh[83 (R - r)]), then the bounda ry  

condit ions yield the following equations: 

(( 1 + f13 Ro) cosh[83 R( 1 - a)] + 8 3 Ro" sinh[83 R( 1 - tr)])C1 

(( 1 + f13 Rtr) sinh[83 R( 1 - tr)] + 83 R a  cosh[83 R( 1 - tr)])C 2 = f13 R2tr2W~l 

and 

1 ) 
C~ + 83 RC2 = - kRB1 + ~ JR~ R cosh[81 (R - r)] - ~ sinh[81 (R -- r)] 

× sinh[82(R - r)] dr. 

To  simplify the no ta t ion  we write the first o f  these equat ions as follows: 

C1 + p5C2 = qsw~l, (A.6) 
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and the second equation can be defined: 

C1 + 63RC2 = -kRB1 + q6A1, (A.7) 

for the appropriately defined Ps, qs, and q6. The solution for w~ substituted into 
the equation for dw~/dr yields: 

Rtr(73 + ~3)w~ = ~)3(C1 cosh[63R(1 - tr)] + C2 sinh[63R(1 - tr)]), 

which can be written as: 

C1 +p 7C 2  = q7w~l, (A.8)  

for P7 and q7 appropriately defined. 
With some algebraic manipulations Eqs. (A.2-8)  can be combined into a 

single nonlinear equation in w~ as given below: 

= ,(!1 + 71 - ~lqlq2)(q3~_+ k-R~3q4~6-f2R~7---~5)-- 62R)[pTq5 - Psq7 + 63R(q7- qs)]/, w~. f(w~l) 

If the coefficient of w~ on the right hand side of the above equation is positive, 
then from the definition of the function f there is a unique solution to this 
nonlinear equation which can be readily found by Newton's method. The 
positivity of the coefficient on the right hand side has not been proved. From the 
equations above it is clear that once one has computed w~, then it is easy to 
obtain the complete steady state sblution for (3.1). 
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