Spring Homework 6 Math 531

5.5.1. (10pts) A Sturm-Liouville problem is self-adjoint when

b
/ [uL(v) —vL(u)]ldz =0,

which occurs when

c. If ¢/(0) — h¢p(0) = 0 and ¢/(L) = 0, then we have u/(0) = hu(0), «/(L) = 0, v'(0) = hv(0),
and v'(L) = 0. Substituting the B.C.s into the conditions above, we have

p(L) [w(L)v' (L) = v(L)w'(L)] = p(0) [u(0)v' (0) — v(0)u’(0)] = p(L) [u(L) - 0 — v(L) - 0] = p(0) [u(0)hv(0) — v(0)hu(0)] = 0.
Thus, these B.C.s give the operator L being self-adjoint.

d. If ¢(a) = ¢(b) and p(a)¢’(a) = p(b)¢'(b), then we have u(a) = u(b), p(a)u’(a) = p(b)u'(b),
v(a) = v(b), and p(a)v'(a) = p(b)v'(b). Substituting the B.C.s into the conditions above, we
have

p(b) [u(b)v’ (b) — v(b)u (b)] — p(a) [u(a)v'(a) —v(a)u/(a)] = u(®)[p(b)v’ ()] — v(B)[p(d)v (b)] — u(a)[p(a)v’ (a)] + v(a)[p(a)u’ ()],
= u(a)[p(a)v’(a)] — v(a)[p(a)u’ (a)] — u(a)[p(a)v’(a)] + v(a)[p(a)u’(a)],
0.

Thus, these B.C.s give the operator L being self-adjoint.

: _ d? d
5.5.5. (10pts) Consider the operator L = 7 + 6 + 9.
a. Apply the operator to ", then we have

rT d2 rT d TT rT
L(e ) = @(6 ) + 6%(6 ) + 9(6 ),

= 72 4 6re™ + 9" = (24 6r+9)e™ = (r+3)%".

b. If L(y) = 0 is a second order DE, then for y = ¢* we have L(y) = (r + 3)?y = 0 (Part a).
For nontrivial solutions, r = —3, and y = e 37 is a solution.

c. Consider z(z,7), then L(z) = 21% +6% 492, so

0 0 [ d?*z 0 [dz 0z
arltGl = 5 (w) 05, <d:c> 95,
= Zzgr t+ 6220 + 92,
d?z, dz,
L(Zr) d.’Ez + 6@ + 92’7»,

= Zrgz + 622 + 92;.

Assuming that all the partial derivatives are continuous, we have z.;. = Zzer and 2y, = Zzp, SO

2 19-1(2).



d. Let z = €™, then % = ze"”. From Part ¢, we have

L (ze'™) = % [L(e")] = % [(7“ + 3)26”'3] .

It follows that

L(ze™) = 2(r +3)e™ + x(r + 3)%™ = "™ (r + 3) 2+ z(r + 3)].

e. From Part d, we have L (ze™) = €"*(r + 3) [2 4 x(r + 3)]. From this expression it is clear
that for all z, if r = —3, we have
L (:ce*&’ﬂ) =0,

-3

so y(z) = xe~>" is another solution to our linear operator L.

5.5.8. (15pts) Consider the 4" order linear operator (often in beam problems)

d4
L=—.
dz*
a. We expand this operator
uL(v) —vL(u) = wu-v® —v.u®,

uv(4) + u/U(S) - u/U(S) — " "+ u(3)v/ o u(3),U/ N u(4)v,
/ / /

(uv(3)> — (") 4 (")~ (u(3)v) = [uv(g) —uv" + a0 — u(g)v} ,
d

= — [uv(g) — v +u"v — u(?’)v] ,

dx

which is an exact differential.
b. We use the Fundamental Theorem of Calculus to integrate and evaluate this exact differential:

d

1 1
[z —orwyas = [ [d<uv<3>—u'vf'+uffvf_u<3>v>] dz.
0 0 £r

— (UU(S) — " + "y — u(3)v)‘1 ‘
0

Thus, we have

1
/0 [uL(v) —vL(uw)]dz = u(Do® (1) =/ ()" (1) +u"(1)v'(1) —u®(1)o(1)

—u(0)0®(0) + ' (0)0" (0) — w”(0)v'(0) + u® (0)v(0).

c. If uw and v are any two functions satisfying the B.C.’s, we have



the expression in Part b becomes:

/1 [uL(v) —vL(w)]dz = 0-v® (1) —u/(1)-040-v'(1) —u®(1)-0
0
—0-v®(0) 4+ 0-0"(0) —u"(0) - 0+ u>(0) -0 = 0.

Thus, we have that L is self-adjoint with

1
/0 [uL(v) — vL(u)] dz = 0.

d. Very clearly there are many other B.C.’s that result in this operator being self-adjoint. The
most common are “pinned” B.C.’s, where ¢(0) = 0 or ¢(1) = 0, or “clamped” B.C.’s, where
¢'(0) = 0 or ¢'(1) = 0, or “free pivot (no force)” B.C.’s, where ¢"(0) = 0 or ¢"(1) = 0.
Obviously, four appropriate conditions must be satisfied for L to be self-adjoint.

e. Let A\, be eigenvalues with corresponding eigenfunctions ¢, and assume the B.C.’s of Part ¢

for the eigenvalue problem:
d'¢ +Xefp =0
— e“p = 0.
dzt

Let A, # Ay, have associated eigenfunctions ¢, and ¢,,. From the B.C.’s, we have:
1
/0 [¢n - L(¢m) — ¢m - L(n)]dz = 0,
1
or / |:¢n : gb%) - ¢m : ¢£l4)i| dr = 0.
0
However, since ?;T(f = —\e%, it follows that
1
/0 [¢n(—)\mew¢m) _¢m(_)\nex¢n)] dr = 0,

1
()\n—)\m)/o OmPpe” dr = 0.

Since A, and A, are distinct eigenvalues, fol Omdne® dr = 0, which shows that the eigenfunc-
tions, ¢; are orthogonal with respect to the weighting function o(z) = €*.

5.5.11. (15pts) Consider the linear operator L = p(x)% + T(l’)% + q(x), we examine:

b b b b b
/ v- L(u) de = / (vpu” 4+ vru’ + vqu) dx = / uvp dx + / vor dx + / uvq dz.
a a a a a

Using integration by parts on the first integral gives:
b X b
/ u"vp de = u'vp|, —/ o' (vp’ +v'p) du,
a a

b
= [u'vp — u(vp’ + v'p)] ‘Z + / u(vp” +20'p" +v"p)du.
a



Using integration by parts on the second integral gives:

b b
/ u'vr do = uvr]l; — / u(vr’ +0'r) da.
a a

We combine these results to give:

b b 2 2
d“v dp dv d*p dr
. L = —_— 27 —_ —_— —_—
/a v- L(u) dx /a u [pde + < T 7") 7t (dx2 pr q) v] dx

where

. d? dp d d’p dr
L=pga+ <2d:z ‘T@)) T (wz - dﬁ‘ﬂx))
dv du dp

b
/ [uL*(v) — vL(u)] dz = H(z)|".
From these expressions we find that the operator L is self-adjoint (L = L*) if and only if

dp dp
2% —r(z) =r(x) or e r(x)

and H(b) — H(a) = 0. Since p’ = r, the latter condition reduces to

p(b) (u(b)v’(b) — v(b)u' (b)) — pla) (u(a)v'(a) — v(a)u'(a)) = 0.

and

Thus, we can write:

b. Assume that the B.C.’s on u satisfy:

du du
u(0) =0 and %(L) +u(L)=0 or %(L) = —u(L),

then for self-adjointness we need H (L) — H(0) = 0 (assuming p’ = r). These conditions imply:

H(L)—H(0) = p(L) (u(L)v'(L) = v(L)u'(L)) = p(0) (u(0)v'(0) — v(0)u'(0))
= p(L)u(L) (v'(L) +



5.8.5. a. (8pts) Consider the heat equation:

ou_ 2
ot ox?’
with B.C.’s and 1.C’s
%(O,t) =0 and g—Z(L,t) = —hu(L,t), and wu(z,0)= f(x).

Start with separation of variables, u(z,t) = ¢(x)g(t), so

og' =ko'g or ===\
Let h > 0 and consider the SL problem:
¢" +Xp =0, with B.Cs ¢’(0) =0 and ¢'(L)+ h¢(L) = 0.

If A = —a? < 0, then ¢(z) = cjcosh(az) + casinh(az). If ¢/(0) = 0, then co = 0. For
¢'(L) + he¢(L) = 0, then ¢1(asinh(aL) 4+ hcosh(aL)) = 0, which implies ¢; = 0 (for h > 0)
and only the trivial solution exists. Similarly, if A = 0, then ¢(z) = c1x + co. With ¢/(0) = 0,
then ¢; = 0. The B.C. ¢'(L) + h¢(L) = hea = 0 shows that co = 0, which again leaves only the
trivial solution.

If A =a? > 0, then ¢(z) = c¢; cos(ax) + czsin(ax). If ¢’(0) = 0, then c; = 0. For ¢'(L) +
he(L) = 0, then ¢;(—asin(aL)+hcos(aL)) = 0. This has nontrivial solutions when tan(aL) =

Z—ﬁ. Thus, we have eigenfunctions:

¢n(x) = cos (@x) ,

where the eigenvalues A, solve the transcendental equation:

tan <\F)\L) = \;ZXLL

5 I I I I |
—y = tan (\/XL)
—y=n1/ (VA1)




The temporal equation is g/ = —kM,g, which has the solution, g, (t) = a,e™*nt,

The superposition principle gives:
(o]
u(z,t) = Z ane” F 't cos <\/ )\nx) .
n=1

Applying the I.C. yields:

o0
u(z,0) = Z an cos \/ Apz = f(x).
n=1
By the orthogonality of ¢(x), we obtain the Fourier coefficients:

I I@dn@) e J f(@)cos (VAr) da
foL o7 (x) do fOL cos? (\/Eaj) dx

n

b. (12pts) If A < 0 (non-physical case), then similar to Part a, there are eigenfunctions:

¢n(x) = cos (@x) ,

where the eigenvalues A, solve the transcendental equation:

tan <\F)\L) = \;ZXLL
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If \ = —a? < 0, then ¢(z) = cjcosh(az) + casinh(az). If ¢/(0) = 0, then co = 0. For
¢'(L)+h¢(L) = 0, then ¢q(asinh(aL)+ hcosh(aL)) = 0. If asinh(aL) + h cosh(aL) = 0, then
tanh(al) = —%. This equation has a unique solution, producing a negative eigenvalue. The
graph below shows a typical intersection from the equation above.
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Thus, we have one negative eigenvalue A_; with corresponding eigenfunction:

¢_1(x) = cosh (\/T_lx) .

As before, the temporal problem has the solution:
g(t) = e Mkt n=-1,1,2, ..
Numerically, we find the first five eigenvalues, A_1, A1, A2, A3, and A\y. These eigenvalues are

A_1 = —1.439229 A1 = 7.830964 Ao = 37.469707
A3 = 86.822635 A4 = 155911544

We apply the superposition principle to obtain the solution:
w(z,t) = a_1e 1% cosh <\/T,1:U) + i ane *"* cos (mx) .
n=1
The I.C. gives:
u(z,0) = f(x) = a_; cosh (mx) + i ap, cos (mm> .
n=1

From the orthogonality of the eigenfunctions, the Fourier coefficients satisfy:

fOL f(z)coshy/—A_12 dx

L = —
o fo f(‘r)¢n($) dx _ fOLcosh2 \/f)\_lxdx n=-L
n L o L f(x) cos Vanw dx
fo ohwyde | hfes B sy

5.8.8. a. (bpts) Consider the BVP:
" +Xp=0, with ¢(0)—¢'(0)=0 and o¢(1)+¢'(1)=0.

The Rayleigh quotient gives




However, since ¢/(1) = —¢(1) and ¢'(0) = ¢(0), we see that
—06'[y = —0(1)8"(1) + $(0)6"(0) = 6*(1) + 6*(0),

so it follows that

#*(1) + ¢%(0) +f0 2dx>0
foqde:v o

If A\ = 0, then the expression above implies that ¢’ = 0 or ¢ is constant. The B.C.’s show that
if ¢ is constant, then gb(:n) = 0, so is not an eigenfunction. Thus, it follows that A > 0.

A=

b. (5pts) Let L = 2 and ¢, and ¢, eigenfunctions with eigenvalues A, and A, for n # m. It
follows that

L[¢n] + An =0 and L[Cbm] + An®m =0,

SO

1
/0 (¢m(L[¢n] + )\ngbn) - ¢n(L[¢m] + )\m¢m)) dz =0,

or 1
[ @nLin] = 60Li0m] + = Ao do = 0.

So integrating by parts gives
1

d
[%dx% bn <z>m

n / ¢n¢m der = 0
1
bm(1)61(1) = Sn(1)6" (1) = 6m(0)61(0) + Bn(0)0"(0) + (An — Am) /O o dx = 0.

Since the B.C.’s satisfy ¢/(1) = —¢(1) and ¢'(0) = ¢(0), the expression above reduces to

(A — ) /01 Ondm dr =0 or /01 Ondm dx = 0.
Therefore, ¢, and ¢,, are orthogonal.
c. (Ipts) We solve ¢” + Ap = 0 (with A > 0). The general solution is
¢(x) = c1 cos <ﬁx) + ¢ sin (\5@;) , so ¢'(x) = —c1V Asin (\&CC) + caV/A cos (\&:L‘) .
The B.C. ¢(0) — ¢’(0) = 0 gives ¢; — cav/A = 0 or ¢; = c2v/A. The other B.C. ¢(1) +¢'(1) =0

o cz\f)\cos (\F)\) + co sin (ﬁ) — ¢coAsin (\f)\) + cz\f)\cos (\f)\) = 0.

Combining terms gives
co [2\5005 (\ﬁ) + (1 —A)sin (\f)\)} =0,

which for nontrivial solutions yields 2v/\ cos (ﬁ) + (1= X)sin (ﬁ) =0 or
2V )\
tan (ﬁ) = )\_\fl

Below is a graph of the right and left hand functions of v/A with intersections producing the
square root of eigenvalues.



T T I
—y:tan(\/X)
—y=2/A/ (-1

2

s 6 8 10 1
VAL

If f(VA) = &g) and g(v/A) = tan+/\ are the right and left hand functions for the eigenvalue
equation, then f(z) = g(z) at = 0, which is not an eigenvalue. All subsequent intersections
occur after the vertical asymptote at z = 1. We have 0 < VA1 < §, 7 < VA2 < 37”, 2 <

VA3 < 2Z,... Furthermore, we readily see that limﬁ_)oof(\f)\) = 0. It follows that

2n —1
(n—1)7r<\/)\n<(n2)7r, n>1,

and for large n

Vn > (n—1)7.

d. (6pts) Consider the heat equation:
ou_ P
ot 0z%’

and B.C.’s u(0,t) —uz(0,t) = 0 and u(1,t) +uz(1,t) = 0. Separation of variables with u(x,t) =

¢(z)h(t) gives:

with I.C.  wu(z,0) = f(x),

h/ 1
LAY
kh 0]
This produces the SL problem:
6" +26=0,  with ¢(0)—¢'(0)=0 and ¢(1)+¢’(1)=0,

where ) satisfies the equation tan (ﬁ) = ié From Part ¢, we produced the eigenfunctions:

on(x) = \/xcos (\/Ex) + sin (mx) ,

which were orthogonal according to Part b.
The time-dependent problem is readily solved:
h' + \kh =0, S0 h(t) = ce M,

The superposition principle gives:

u(z,t) = Z ane Pnte, (z).
n=1



To satisfy the 1.C. we need:

u(x,0) = angn(z) = f(x).
n=1
We multiply by ¢,,(x) and integrate from 0 to 1. Using orthogonality, we obtain:

_ Jo J@)om(@) da
Jo P () da

in [ Gt = [ J@on@ds o an

5.8.11. (bpts) Consider the SL problem:
" + 56 =—\g, with ¢(0) =0 and ¢(7) = 0.
Let 4 = A+ 5, then we are solving the SL problem:
6" +up=0  with ¢(0)=0 and ¢(7)=0.
We have seen before that this problem has eigenvalues, p,, and eigenfunctions ¢, (x) given by:
fin = 1 with on(z) =sin(nzx), n=1,2,3,...
However, A\, = fin, — 5 = n? — 5, so the first eigenvalues are

M o= 1-5 = —4,
Ao = 4-5 = —1,
A3 = 9-5 = 4,
An > 0, for n>3.

The negative eigenvalues are A\ = —4 and Ay = —1.

WeBWorK 2. a. (5pts) Consider the SL problem (h > 0):

¢" 4+ Xp =0, with  ¢’(0) =0 and %(L)Jrhqb(L):O,

where p(z) =1, ¢(z) =0, and o(z) = 1. The Rayleigh quotient satisfies:

N e L
a fOL P20 dx '
We use the information on p, ¢, and o with ¢'(L) = —h¢(L) (h > 0) to reduce the expression
above to . ) . )
U R R i Y A R A Gl
S o2 da S92 da N

If A =0, then ¢’ = 0, which implies ¢(z) = C. However, ¢'(L) =0 = —h¢(L) gives ¢(z) =0,
which is not an eigenfunction. Thus, A > 0.




c. (5pts) From Problem 5.8.5 above we find the eigenfunctions are:

on(x) = cos (@x) ,

where the eigenvalues A, solve the transcendental equation:

tan (\F)\L) = \;ZXLL

The graph above shows that each eigenvalue lies in an interval:

\/)\n€<(n—1)7r7(2n—1)7r> with \/)\n—>@ as n — 00o.

L 2L L’

Below we graph the eigenfunction:

b(x) = cos(v/)
1 \ 1
cos(vVAzx) \
051 1
> 0
-05r
10 VoL /%L L UL
0 ™ 2r 3T An
VAz

We see that the eigenfunction, ¢1(x) has no zeros for x € [0,y/A1L]. For the eigenfunction,
¢2(x) there is one zero for x € [0,/ AoL]. Similarly, we see that the eigenfunction, ¢3(z) there
are two zeros for € [0,4/A3L]. Asymptotically, we have /A, — 2Z, and we know that
¢n () ~ cos (“F£) has n — 1 zeros for x € [0, L], which was the desired result.



