Consider the heat equation with time-dependent sources and boundary conditions:

7pts.

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} + Q(x, t)$$

$$u(x, 0) = f(x).$$

Reduce the problem to one with homogeneous boundary conditions if

(b)
$$\dot{u}(0,t) = A(t)$$

and

$$\frac{\partial u}{\partial x}(L,t) = B(t)$$

Solve the initial value problem for a two-dimensional heat equation inside a 8.2.5. circle (of radius a) with time-independent boundary conditions:

15pts

$$\begin{array}{rcl} \frac{\partial u}{\partial t} & = & k \nabla^2 u \\ u(a, \theta, t) & = & g(\theta) \\ u(r, \theta, 0) & = & f(r, \theta). \end{array}$$

Solve the initial value problem for the heat equation with time-dependent 8.3.1.

10pts

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} + Q(x, t)$$

$$u(x, 0) = f(x)$$

subject to the following boundary conditions:

(a)
$$u(0,t) = 0$$
,

$$\frac{\partial u}{\partial x}(L,t) = 0$$

Use the method of eigenfunction expansions to solve, without reducing to 8.4.2. homogeneous boundary conditions:

15pts

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

$$u(x,0) = f(x)$$
 $\begin{pmatrix} u(0,t) &= A \\ u(L,t) &= B \end{pmatrix}$ constants.

9.2.1.Consider

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} + Q(x, t)$$

$$u(x, 0) = g(x).$$

20pts

In all cases obtain formulas similar to (9.2.20) by introducing a Green's function.

(c) Solve using any method if

$$\frac{\partial u}{\partial x}(0,t) = 0$$
 and $\frac{\partial u}{\partial x}(L,t) = 0.$

$$\frac{\partial u}{\partial x}(L,t) = 0$$

*(d) Use Green's formula instead of term-by-term differentiation if

$$\frac{\partial u}{\partial x}(0,t) = A(t)$$

$$\frac{\partial u}{\partial x}(0,t) = A(t)$$
 and $\frac{\partial u}{\partial x}(L,t) = B(t)$.