Spring Homework 10 — Solutions Math 531

8.2.2.b. (7 pts) Consider the nonhomogeneous heat equation:

ou 0%u
Frie k@ + Q(z,t),

with the following IC and nonhomogeneous BCs
u(z,0) = f(x) with w(0,t) = A(t) and wug(L,t) = B(t).

Let u(z,t) = v(x,t) + r(z,t), then vy + 1y = kvgy + kryy + Q with IC v(z,0) + r(2,0) = f(z)
and BCs v(0,t) + r(0,t) = A(t) and v, (L,t) + r(L,t) = B(t), where r(x,t) is a reference
function. We want r(z,t) to be a simple function that satisfies the nonhomogeneous BCs, so
r(0,t) = A(t) and r,(L,t) = B(t). Take

r(x,t) = A(t) + B(t),
then this satisfies the nonhomogeneous BCs.

The v(z,t) problem becomes:

ov 0% / /
5= k@ + Q(z,t) — A'(t) — xB'(¢),

since 74, = 0. The IC and BCs become:
v(x,0) = f(z) — A(0) — 2B(0) with v(0,t) =0 and wvy(L,t)=0.

8.2.5. (15 pts) Consider 2D heat equation:

ou 10 ([ Ou 1 0%u

— =kViu=k(-=(r= —=—

ot ! (r@r <T8T)+r2692>’
with BC u(a, 0,t) = ¢g(0) and IC u(r,0,0) = f(r,0). There is the implicit (homogeneous) BC is
boundedness at the origin or |u(0,0,t)| < co and periodicity in 6.

The equilibrium solution ug(r, ) satisfies V2ug = 0 with ug(a, ) = g(6) and |u(0,0)| < co. If
we let up(r,0) = ¢(r)g(0), then separation gives:

rd (deN_ _g" _,
ddr \ dr) g

This gives the SL problem g” + vg = 0 with periodic BCs (g(—n) = ¢g(r) and ¢g'(—n) = ¢'()),
which we have seen before has e.v.s v, = n?, n = 0,1,2,... and e.f’s go(d) = 1 and g¢,(0) =
Ay, cos(n) + By, sin(nf). The other ODE is 7(r¢’) — n?¢ = 0, which has solutions:

!/

do(r) = by + coIn(r) and Gn(r) = bpr™ + cpr ™.

The boundedness at » = 0 implies ¢; = 0. Superposition gives:

ug(r,0) = Ao+ Z (Ay, cos(nb) + By, sin(nf)) r".

n=1



The IC gives:
ug(a,0) = Ag + Z (A, cos(nf) + By, sin(nf)) a”™ = ¢(0),

n=1

where the Fourier coefficients satisfy:

1 ™
Ay = —
0 o g(9> d07
1 ™
An = ﬁ . g(@) COS(TLH) d9,
1 4 )
B, = — g(0) sin(nd) do.
wa J_.

Let u(r,0,t) = v(r,0,t) + ug(r,d), then %—1; = —” and VZu = V2 + V2up = V2v. It follows
that v satisfies the heat equation:

ov 0 ov 1 0%v
k= k i Enlhding
ot ~ PV (7“87“ (’”ar) t e ae?) !

with BC v(a,0,t) = 0 and IC v(r,0,0) = f(r,0) — ug(r,d). This is a problem solved before
with:

(r,0,1) ZAOnJO ( )\on’l“) —kAont
+ i i A cos(ml) + By, sin(mé)) Jo, (mr> ¢ FAmnt
m=1n=1

where A\, = (zTg")z and 2, is the n'* zero of J,,(2).

The IC gives:

v(r,0,0) = Z AonJo ( )\gnr> + Z (Apn cos(mb) + By, sin(m#)) Jp, <\/ )\mnr)
m=1n=1
= f(r,@) —ug(r,0) = F(r,0).

The double Fourier series coefficients satisfy:

f fo (r,0)Jo (\/Er) rdrdf

Ao = 2w fo J2 ( )\Onr) rdr

y IS F(r,0) cos(m8)Jm (v Amnr) 7 dr d6
e T [y J2 (VAmr) rdr

B B f:r foa (r,0) sin(mb)J, ( mnr) rdrdf
me T fo J2 (VAmr) rdr

The solution is u(r,0,t) = v(r,0,t) + ug(r,0).

8.3.1.a. (10 pts) Consider the nonhomogeneous heat problem:
0 0%u
U

a: 82+Q($t>



with the IC u(z,0) = f(x) and BCs u(0,t) = 0 and u,(L,t) = 0. The related homogeneous
problem is:

ow 0w
_— = _ 1 h = T L, == .
5 k 52 with w(0,t) =0 and w,(L,t)=0

The associated eigenvalues and eigenfunctions for this problem are:

_(@2n—-1)m 2 . ((@2n—-1)mx B
Ap = <2L> and ¢n(x) = sin <2L> , n=12 ..

Let
Zan ) (x Zan sm( (2n ;Ll)wx> .

It follows that:

i an oOn( and Z an () Andn(x

We assume that Q(z,t) has an eigenfunction expansion:

0= Y ao@)  whae g0 =7 [ Qton()ds
n=1 0

From the original heat equation:

ou 0%u

Zan n = _Zan n¢n ) +ZQn(t)¢n(x)
n=1

By orthogonality of ¢, (x) = sin (W), we obtain an ODE for the Fourier coefficients a,,(t):

(€79 /(t) + )\nan(t) = Qn(t)'

The ICs for this problem give the ICs for the ODE in a,(t), since

u(a;,O) - f((]?) - Zan(0)¢n(x)
n=1

/f sm( 1)”> da.

The ODE in a,(t) is a linear nonhomogeneous equation with an integrating factor of e
its solution is given by:

where

)\nk:t, and

t
an(t) = an(0)e F 4 e’\”kt/ qn(s)e™*s ds.
0

With these time-dependent Fourier coefficients, the solution satisfies:

Z an(#) sin (2n —D)mz
" 2L ‘



8.4.2. (15 pts) Consider the heat problem with nonhomogeneous BCs:
o _ 0
ot Ox?
with IC, u(z,0) = f(x) and BCs u(0,t) = A and u(L,t) = B. The eigenfunctions of the

related homogeneous problem have the form ¢, (z) = sin (”zg”) with eigenvalues A\, = (%)2 for

n=12...

We assume a solution of the form:

= ibn(t Zb sin (mr:t) .

n=1

The partial w.r.t. t gives:
i E by, _
0x?’

From the orthogonality of the eigenfunctions (and fo ¢%(z) = &), we have:

: 2k [
b,(t) = / Ugy On () d.
L 0
Apply Green’s formula:
L d2¢n o%u ¢ du
0 X dx 0

where ¢,(0) =0, ¢, (L) =0, and d;j; = —A\y0p. This gives:

L do do
| wtnt@rae = / — (L) 52 (E) + (0,0 52 0),
- / v)de— B (1) + 420,
= (1) - ff’( )+ 4% 0).
Since ¢n(z) = sin (%), so 2
@ = e ()
It follows that
Lo+ 0 = 7 [afo-sEw).
/ n?m? 2knm
b, (t) + kﬁbn(t) = [A — Bcos(nm)],



which is a linear nonhomogeneous ODE in b,,(t). The variation of parameters formula gives the
solution:

ba(t) — e H(E) [b<o>+ T (A By /t ()’ d]
0

nmwxr

u(z,0) = f(z) = ibn(()) sin (T) ,

3
Il
_

which gives the initial values for the ODE in b, (t):

= z/oLf(m) sin (?) dx.

Zb Sm(nmz))

Thus, the solution satisfies:

where b, (t) and b,(0) are given above.

9.2.1.c. (20 pts) Consider the nonhomogeneous heat equation:

ou 0%u
E k@ +Q(z,1),

with the following IC and homogeneous BCs

. ou ou
u(z,0) = g(z) with %(O,t) =0 and %(L,t) =0.

The related SL problem is ¢” + A¢ = 0 with BCs ¢/(0) = 0 and ¢'(L) = 0, which we have
solved before (Neumann BCs) with eigenvalues and eigenfunctions:

A =0 with ¢g(z) =1 and Ap = with ¢, (z) = cos (%F%), n=1,2,..

Using eigenfunction expansions gives:

U(l’, t) = bO(t) + Z bn(t)¢n(x)
n=1

Term by term differentiation in ¢ is justified, and because of the homogeneous BCs we can term
by term differentiate twice in x, so

a“—bo +Zb and Zb Yo" (2



We assume that Q(z,t) has an eigenfunction expansion with:

Q( = QO +ZQn ¢n

where

L L
t) = 2/0 Q(z,t)dr and g,(t) = i/{) Q(z,t)on(z)dx

The information above is substituted into the PDE to give:

/t)—i-an/(t)d)n(.I) = kZb +QO +ZQn d’n
n=1
= kZb ~Andn () + qo(t +an ) (@

Using orthogonality we have the following ODEs in the time dependent Fourier coefficients:

bo'(t) = qo(t),

by, /(t) + Anbn(t) = qnlt)
The IC gives:
u(z,0) = g(x) = bo(0) + D ba(0) cos ("F*) ,
n=1

which has the Fourier coefficients:

b(t) = efk(nLl)Qt (bn(O) + /Ot qn(s)ek(nLﬂ)zsds) , n=0,1,2,..

The solution is given by:

[e.e]

w(z,t) = [bo(O)Jr/tho(s)ds] + 3 e k) (bn(O)Jr/Ot g (5)eF(E)s ds) cos (1)
n=1

Thus,
L 00 ) L
u(x,t) = 2/0 g({)df—i—ze*k(%ﬂ) ti/o g(&) cos (mg) dgcos( )
n=1

1 [t L oo o immn2, 2 t L - a2,
+L/;[) Q(fys)dfd&"F;e k(L)tL/O/O Q(fas)cos(fg>dfek(14) dSCOS(T),



We exchange the integral and sum to give:

u(o,t) = / Lg(f)

In Green’s function notation we have:
u(i, ) —/ 9O, 1:€,0) d£+/ / Q&,5)G (€, 5)ds dE,
0

where G(z,t;€,8) = 7+ 25°° e~ K(E) - 8)cos< T )cos (m7z).

d. Consider the nonhomogeneous heat equation:

ou 0u

— =k— t

5 = Fama T Q1)
with the following IC and nonhomogeneous BCs

. ou ou
u(z,0) = g(x) with %(O,t) = A(t) and %(L,t) = B(t).

The related SL problem is ¢” + A\¢ = 0 with BCs ¢’(0) = 0 and ¢'(L) = 0, which we have
solved before (Neumann BCs) with eigenvalues and eigenfunctions:

n?n?

A =0 with ¢g(z) =1 and Ap = i with ¢, (z) = cos (%F%), n=1,2,..

We seek solutions of the form:
u(z,t) = bo(t) + Z by (t)pn () with b(t) = / u(z, t)on(z)dx
n=1 L 0
Differentiating the coefficient formula gives:

L o L 82
ba'(t) = % 8—1:q5n(x)da: - z/o (k:a;; + Q(a:,t)) b (z)da

0
We apply Green’s formula to the integral with wu,,:

L

' 82 r " 8 ,
/0 axg¢n(x)d:v:/o u(x, t)op " (x)dx + [azd)n_wb]

0

The BCs and eigenvalue problem imply that

L 1" ou / L . L
/O w(z, b " (2)dz + {w%—w} = /0 (@, £) (@) + B(E) cos(n) — A(t) cos(0).

However, fOL u(z, t)pn(x)dz = Lb,(t), so

b'(t) + k (%)an(t) _ B(t) cos(nm) — / Q(z,t)dn(x



The IC gives:
g(x) = bo(0) + D bs(0) cos (%) ,

u(z,0) = =
n=1
which has the Fourier coefficients:
I 2 [k
W(0) =7 [ a@ds awd b0 = 7 [ ate)eos (%) ae. n=1.2

The solution to the ODEs for b, (t):

ba(t) = e—F(E)"t (bn(0)+i /0 t [kB(s) cos(nm) — kA(s) + /0 ' Q(S,s)qﬁn(g)df} ek("E>28ds>,

forn=1,2,..., and

) =000+ [ [k~ kats) + [ e onae]as

The solution is given by:

w(o ) = 1/()Lg(§)d§+i/0t [k:B(s)—kA(s)Jr/OL Q(g,s)dg] ds +

L
gek(’f)2t @ /OL 9(€) cos (”T”f) e+
2 /0 t [k:B(S) cos(nm) — kA(s) + /0 " Q(f,s>¢n<5>df] ) 5 ds cos (ﬁ‘)) -

We exchange the integral and sum to give:

% + % Z e~H(E) (=9 cog (TS) cos (“7* )] ds d§

n—=

1
! + 2 Ze_k(%)z(t %) cos(n) cos (7L )] ds

! 1 2 _p(nx)?
i - (t—s) nmxT
k/o A(s) I+tT ,;1 (%) cos (27E )] ds

In Green’s function notation we have:

u(z,t) = /0 9(&) xt§0d§+/ /Qf, G(z,t; €, s)ds d€

—i—k/B( (x,t; L, s) /A G(z,t;0,s),
0
ﬂx).

where G(z,t;¢,8) = 1+ + 232 o) (1=5) (o ("f) cos ("7Z



WWS8.2.1 (10pts) We consider the nonhomogeneous heat equation:

ou 9%y

— =k L, t
R 8x2+q’ O<z<L, > 0,

with nonhomogeneous boundary conditions and initially zero temperature, so

u(0,t) = A, u(L,t) = B, and u(z,0) = 0.

WeBWorK randomizes the values k, ¢, A, and B and checks to see that the correct equilibrium
solution is found and that once subtracted from the nonhomogeneous problem above, the result-
ing homogeneous problem is solved with our standard techniques. The graph is representative
of the type of graph all solutions have. The plot begins with the temperature approximating 0
with the hundred terms. Immediately, the boundaries at x = 0 and x = L jump to two nonzero
values and stay at that level for the rest of the time (Dirichlet BCs. The equilibrium solution is
a quadratic, as heat is generated throughout the bar and diffuses. The result is a surface that

shows a growing solution approaching this quadratic equilibrium curve in ¢.

The MatLab program producing the 50-term graph is presented below.

1 %$format compact;

2 NptsX = 151; % number of x pts

3 NptsT = 151; % number of t pts

4 Nf = 100; % number of Fourier terms

5 x = linspace (0, 6,NptsX);

6 t = linspace(0,20,NptsT);

7 [X,T] = meshgrid(x,t);

8

9 fs=8;

10 figure(101)

11 clf

12

13 b = zeros(l,Nf);

14 U = zeros (NptsT,NptsX);

15 Ue = —-15/8*X."2 + 125/12+xX + 7;

16 kh = 0.4xpi~2/36;

17 for n=1:Nf

18 b(n) = (4*n"2+xpi~2+cos(n*xpi) - 14*n"2%pi~2 ...
19 + 270%cos (n*xpi) - 270)/(n"3%xpi~3); % Fourier coefficients

n
o

Un=b (n) *sin (n*pi*X/6) .xexp (-kh*n"2*T) ; % Temperature (n)
U=U+Un;

[
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end

U = U + Ue;

set (gca, 'FontSize', [fs]);

surf (X, T,U);

shading interp

colormap (jet)

fontlabs = 'Times New Roman';

xlabel ('$x$', '"Fontsize', fs, '"FontName', fontlabs, "interpreter', 'latex');
ylabel ('$t$', 'Fontsize', fs, '"FontName', fontlabs, 'interpreter', 'latex');
zlabel ('Su(x,t)$"', 'Fontsize', fs, 'FontName', fontlabs, 'interpreter', 'latex"');
%axis tight

colorbar

view ([60 35])

print -depsc WW8_2a.eps

figure (102)
clf

set (gca, 'FontSize', [fs]);

surf (X, T,U);

shading interp

colormap (jet)

view ([0 9017) $create 2D color map of temperature
xlabel ('x', "Fontsize', fs);

ylabel ('t', 'Fontsize', fs);

zlabel ('u(x,t) ', 'Fontsize', fs);axis tight

colorbar

set (gca, 'FontSize', [fs]);

print -depsc WW8_2b.eps




