Spring Lecture Activity 1 (Soln) — ODEs Math 531
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1. a. (2pts) We have y; = €, so y] = €' and y] = e'. It follows that y] —y; = et —e! = 0.
Similarly, yo = ™! with y4 = —e~ " and y§ = e~*. Thus, it follows that y§ —ys = et —e~t = 0.
Thus, y1(t) and y2(t) are solutions to the differential equation.

Take a linear combination: ciet + coe™ = 0, which is equivalent to ¢; = —coe™2t. With the
decaying exponential, this equality only holds for ¢; = ¢o = 0. Thus, the two solutions are
linearly independent. (Also, can be shown using the Wronskian.)

b. (2pts) We have y;(t) = sinh(¢), so v} = cosh(t) and y{ = sinh(¢). It follows that y{ —y1 =
sinh(t) — sinh(¢) = 0. Similarly, y2(¢) = sinh(1 — ), so y, = — cosh(1 —t) and 34 = sinh(1 — ¢).
It follows that vy — yo = sinh(1 — ¢) — sinh(1 — ¢) = 0. Thus, y1(¢) and ya(t) are solutions to
the differential equation.

To show that this pair forms another linearly independent set, consider ¢; sinh(t) 4 ¢ sinh(1 —
t) = 0. We could apply the Wronskian, but it is easier to take advantage of the fact that this
must hold for all t. At ¢ = 0, we have casinh(1) =0, so co = 0. At t = 1, we have ¢; sinh(1) = 0,
so ¢; = 0. Thus, ¢; = co = 0, and the two solutions are linearly independent.

2. a. (2pts) For the differential equation:
" / 2 2\, _
y" —2ay’'+ (a®+b°)y =0,
the characteristic equation satisfies:
M —2a\ + (a® + %) =0 or A =a+ib.
This gives the general solution

y(t) = c1e™ cos(bt) + cae™ sin(bt) = e™(c1 cos(bt) + co sin(bt)).

b. (3pts) The initial condition, y(0) = yo, gives y(0) = yo = c1. Differentiating (product rule),
we have
y'(t) = e™(—c1bsin(bt) + cabcos(bt)) 4 ae™(cy cos(bt) + co sin(bt)).

With y/(0) = 29, we obtain:

(20 — ayo).

zop = cab + acy = bea + ayp or Cy = 5

It follows that the solution is:

y(t) = e™ <yg cos(bt) + (Zo—bayo) Sin(bt)> .

c. (6pts) We consider the ODE with boundary conditions:

y(0)=A and  y(xo) = B.



From above we see that ¢; = A, so
y(t) = e (Acos(bt) + cosin(bt)).
The other BC implies that
y(zp) = B = "0 (A cos(bxg) + cosin(bxy)).
Provided sin(bzg) # 0 or equivalently, zo # %F,n = 1,2, ..., we can uniquely solve for ¢y with

B — Ae®0 cos(bxg)
Co2 = :
€0 gin(bxg)

)

which gives the unique solution:

B — Ae®*0 cos(bxy))
e®o gin(bx)

y(t) = e™ <A cos(bt) + ( sin(bt)) :

ii) If sin(bzg) = 0 or zy = @, then there are infinitely many solutions provided B —

Ae®0 cos(bxg) = 0, which is equivalent to

B = Ae™ /Y cos(nm), n=1,2,..

)

iii) If sin(bzg) = 0 or zo = (nTW, then there is no solution if

B +# Ae“m/bcos(mr), n=12, ..



