1. (4pts) For the $2^{\text {nd }}$ order linear nonhomogeneous ODE given by:

$$
y^{\prime \prime}-y^{\prime}-2 y=54 t e^{2 t}-20 t
$$

we begin by examining the homogeneous equation. The characteristic equation satisfies, $\lambda^{2}-\lambda-2=$ $(\lambda+1)(\lambda-2)=0$ or $\lambda_{1}=-1$ and $\lambda_{2}=2$. This gives the solution to the homogeneous equation as:

$$
y(t)=c_{1} e^{-t}+c_{2} e^{2 t}
$$

The right hand side of the nonhomogeneous equation has a linear polynomial times $e^{2 t}$ and a linear polynomial, so by the Table on Slide 24, we guess a particular solution of the form:

$$
y_{p}(t)=t\left(A_{1} t+A_{0}\right) e^{2 t}+\left(B_{1} t+B_{0}\right)
$$

where the additional t is multiplying the first expression, so that it does NOT match any term in the homogeneous solution. Next find $y_{p}{ }^{\prime}$ and $y_{p}{ }^{\prime \prime}$, so

$$
\begin{aligned}
y_{p}{ }^{\prime} & =\left(\left(2 t^{2}+2 t\right) A_{1}+(2 t+1) A_{0}\right) e^{2 t}+B_{1} \\
y_{p}{ }^{\prime \prime} & =\left(\left(4 t^{2}+8 t+2\right) A_{1}+(4 t+4) A_{0}\right) e^{2 t}
\end{aligned}
$$

This is substituted into the original ODE to give:
$\left(\left(4 t^{2}+8 t+2\right) A_{1}+(4 t+4) A_{0}\right) e^{2 t}-\left(\left(2 t^{2}+2 t\right) A_{1}+(2 t+1) A_{0}\right) e^{2 t}+B_{1}-2\left(t\left(A_{1} t+A_{0}\right) e^{2 t}+\left(B_{1} t+B_{0}\right)\right)=54 t e^{2 t}-20 t$.
This simplifies to:

$$
\left((6 t+2) A_{1}+3 A_{0}\right) e^{2 t}-(2 t+1) B_{1}-2 B_{0}=54 t e^{2 t}-20 t
$$

Next we equate coefficients, so

$$
\begin{array}{ll}
t e^{2 t}: & 6 A_{1}=54, \quad \text { or } \quad A_{1}=9 \\
e^{2 t}: & 2 A_{1}+3 A_{0}=0, \quad \text { or } A_{0}=-6, \\
t: & -2 B_{1}=-20, \quad \text { or } \quad B_{1}=10 \\
1: & -B_{1}-2 B_{0}=0, \quad \text { or } \quad B_{0}=-5 .
\end{array}
$$

It follows that the particular solution is $y_{p}(t)=\left(9 t^{2}-6 t\right) e^{2 t}+10 t-5$, so the general solution is given by:

$$
y(t)=c_{1} e^{-t}+c_{2} e^{2 t}+\left(9 t^{2}-6 t\right) e^{2 t}+10 t-5
$$

2. (4 pts) For the $2^{\text {nd }}$ order linear nonhomogeneous ODE given by:

$$
y^{\prime \prime}+4 y^{\prime}+4 y=24 t e^{-2 t}+40 \cos (2 t)
$$

we begin by examining the homogeneous equation. The characteristic equation is $\lambda^{2}+4 \lambda+4=$ $(\lambda+2)^{2}=0$, which gives the homogeneous solution:

$$
y_{h}(t)=c_{1} e^{-2 t}+c_{2} t e^{-2 t}
$$

The Method of Undetermined Coefficients based on the RHS of the ODE above suggests the following particular solution:

$$
y_{p}(t)=A_{0} \cos (2 t)+B_{0} \sin (2 t)+t^{2}\left(C_{1} t+C_{0}\right) e^{-2 t}
$$

We differentiate this particular solution twice giving:

$$
\begin{aligned}
& y_{p}^{\prime}(t)=-2 A_{0} \sin (2 t)+2 B_{0} \cos (2 t)+\left(-2 C_{1} t^{3}+\left(3 C_{1}-2 C_{0}\right) t^{2}+2 C_{0} t\right) e^{-2 t} \\
& y_{p}^{\prime \prime}(t)=-4 A_{0} \cos (2 t)-4 B_{0} \sin (2 t)+\left(4 C_{1} t^{3}+\left(4 C_{0}-12 C_{1}\right) t^{2}+\left(6 C_{1}-8 C_{0}\right) t+2 C_{0}\right) e^{-2 t}
\end{aligned}
$$

Substituting the trig parts back in the original equation gives,
$-4 A_{0} \cos (2 t)-4 B_{0} \sin (2 t)+4\left(-2 A_{0} \sin (2 t)+2 B_{0} \cos (2 t)\right)+4\left(A_{0} \cos (2 t)+B_{0} \sin (2 t)\right)=40 \cos (2 t)$.
This simplifies to

$$
8 B_{0} \cos (2 t)-8 A_{0} \sin (2 t)=40 \cos (2 t)
$$

which implies $B_{0}=5$ and $A_{0}=0$. Substituting the exponential parts back in the original equation gives,

$$
\begin{gathered}
\left(4 C_{1} t^{3}+\left(4 C_{0}-12 C_{1}\right) t^{2}+\left(6 C_{1}-8 C_{0}\right) t+2 C_{0}\right) e^{-2 t}+ \\
4\left(-2 C_{1} t^{3}+\left(3 C_{1}-2 C_{0}\right) t^{2}+2 C_{0} t\right) e^{-2 t}+4\left(C_{1} t^{3}+C_{0} t^{2}\right) e^{-2 t}=24 t e^{-2 t}
\end{gathered}
$$

It is readily seen that the $t^{3} e^{-2 t}$ and $t^{2} e^{-2 t}$ cancel, leaving only

$$
\left(\left(6 C_{1}-8 C_{0}\right) t+2 C_{0}\right) e^{-2 t}+8 C_{0} t e^{-2 t}=24 t e^{-2 t}
$$

The coefficient of $e^{-2 t}$ gives $C_{0}=0$, so $6 C_{1}=24$ or $C_{1}=4$. The particular solution is combined with the homogeneous solution to give the general solution:

$$
y(t)=c_{1} e^{-2 t}+c_{2} t e^{-2 t}+5 \sin (2 t)+4 t^{3} e^{-2 t}
$$

3. (4pts) For the $2^{\text {nd }}$ order linear nonhomogeneous ODE given by:

$$
y^{\prime \prime}+2 y^{\prime}+4 y=8 t e^{-2 t}+12 t^{2}
$$

we begin by examining the homogeneous equation. The characteristic equation is $\lambda^{2}+2 \lambda+4=$ $(\lambda+1)^{2}+3=0$ or $\lambda=-1 \pm i \sqrt{3}$, which gives the homogeneous solution:

$$
y_{h}(t)=e^{-t}\left(c_{1} \cos (\sqrt{3} t)+c_{2} \sin (\sqrt{3} t)\right)
$$

The Method of Undetermined Coefficients based on the RHS of the ODE above suggests the following particular solution:

$$
y_{p}(t)=\left(A_{1} t+A_{0}\right) e^{-2 t}+B_{2} t^{2}+B_{1} t+B_{0}
$$

We differentiate this particular solution twice giving:

$$
\begin{aligned}
& y_{p}^{\prime}(t)=-2\left(A_{1} t+A_{0}\right) e^{-2 t}+A_{1} e^{-2 t}+2 B_{2} t+B_{1}=\left(-2 A_{1} t+A_{1}-2 A_{0}\right) e^{-2 t}+2 B_{2} t+B_{1}, \\
& y_{p}^{\prime \prime}(t)=-2\left(-2 A_{1} t+A_{1}+A_{0}\right) e^{-2 t}-2 A_{1} e^{-2 t}+2 B_{2}=\left(4 A_{1} t-4 A_{1}-2 A_{0}\right) e^{-2 t}+2 B_{2} .
\end{aligned}
$$

Substituting y_{p} back in the original equation gives,

$$
\begin{array}{r}
\left(4 A_{1} t-4 A_{1}-2 A_{0}\right) e^{-2 t}+2 B_{2}+2\left(\left(-2 A_{1} t+A_{1}+A_{0}\right) e^{-2 t}+2 B_{2} t+B_{1}\right) \\
4\left(\left(A_{1} t+A_{0}\right) e^{-2 t}+B_{2} t^{2}+B_{1} t+B_{0}\right)=8 t e^{-2 t}+12 t^{2} .
\end{array}
$$

Next we equate coefficients, so

$$
\begin{array}{rl|ll}
t e^{-2 t}: & 4 A_{1}-4 A_{1}+4 A_{1}=8, \\
e^{-2 t}: & -4 A_{1}-2 A_{0}+2 A_{1}+2 A_{0}+4 A_{0}=0, & \begin{aligned}
t^{2}: & 4 B_{2}=12, \\
t: & 4 B_{2}+4 B_{1}=0 \\
t^{0}: & 2 B_{2}+2 B_{1}+4 B_{0}=0 .
\end{aligned}
\end{array}
$$

From $t e^{-2 t}$, we have $A_{1}=2$, so from $e^{-2 t}$, we have $A_{0}=1$. The cascade from the powers of t yield $B_{2}=3, B_{1}=-3$, and $B_{0}=0$. Thus, it follows that:

$$
y_{p}(t)=(2 t+1) e^{-2 t}+3 t^{2}-3 t,
$$

so the general solution is:

$$
y(t)=e^{-t}\left(c_{1} \cos (\sqrt{3} t)+c_{2} \sin (\sqrt{3} t)\right)+(2 t+1) e^{-2 t}+3 t^{2}-3 t .
$$

4. (4pts) For the following nonhomogeneous differential equation we give the form of the particular solution that you would guess in using the method of undetermined coefficients. We (DO NOT solve for the undetermined coefficients.) For

$$
y^{\prime \prime}-2 y^{\prime}+y=5 t e^{t} \sin (2 t)+20 t^{2} e^{t},
$$

We examine the homogeneous equation. The characteristic equation is $\lambda^{2}-2 \lambda+1=(\lambda-1)^{2}=0$, which gives the homogeneous solution:

$$
y_{h}(t)=c_{1} e^{t}+c_{2} t e^{t} .
$$

The Method of Undetermined Coefficients based on the RHS of the ODE above suggests the following particular solution:

$$
y_{p}(t)=e^{t}\left(\left(A_{1} t+A_{0}\right) \sin (2 t)+\left(B_{1} t+B_{0}\right) \cos (2 t)\right)+t^{2}\left(C_{2} t^{2}+C_{1} t+C_{0}\right) e^{t}
$$

