
Math 337 HW Linear ODEs Solutions

This is a collection of some of the HW problems worked as examples.

1. Consider
dy

dx
= xy + 4x+ 2y + 8 = (x+ 2)(y + 4),

which is both linear and separable. As a linear problem, we write

dy

dx
−(x+2)y = 4(x+2), with integrating factor µ(x) = exp

(
−
∫

(x+ 2)dx

)
= e
−
(

x2

2
+2x

)
.

Thus,

d
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(
e
−
(
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2
+2x

)
y

)
= 4(x+ 2)e

−
(
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2
+2x

)
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−
(

x2

2
+2x

)
y(x) = −4e

−
(

x2

2
+2x

)
+ k.

It follows that

y(x) = −4 + ke

(
x2

2
+2x

)
.

With separation of variables, we have∫
dy

y + 4
=

∫
(x+ 2)dx or ln |y + 4| = x2

2
+ 2x+ C.

Solving we obtain the same solution as above with k = eC .

2. Consider the following IVP:

t
dy

dt
= 60t− 5y − 45, y(1) = 10.

Dividing by t and rearranging gives the standard form:

dy

dt
+

5

t
y = 60− 45

t
, so µ(t) = e

∫
5
t
dt = t5.

It follows that

d

dt

(
t5y
)

= 60t5 − 45t4, or t5y(t) =

∫ (
60t5 − 45t4

)
dt = 10t6 − 9t5 + C.

The IC gives 10 = 10 +−9 + C or C = 9, so the unique solution is

y(t) = 10t− 9 +
9

t5
.

3. Consider the following IVP:

dy

dt
= 12t+ 6.3e0.9t, y(0) = 3.



The right hand side of this ODE is only a function of t, so we just integrate to obtain the
solution. Thus, we have:

y(t) =

∫ (
12t+ 6.3e0.9t

)
dt = 6t2 + 7e0.9t + C.

The IC gives 3 = 7 + C or C = −4, so the unique solution is

y(t) = 6t2 + 7e0.9t − 4.

4. Consider the following IVP:

t
dy

dt
− 3y = 36t4 cos(4t), y(1) = 7.

Dividing by t gives the standard form:

dy

dt
− 3

t
y = 36t3 cos(4t), so µ(t) = e−

∫
3
t
dt = t−3.

It follows that

d

dt

(
t−3y

)
= 36 cos(4t), or t−3y(t) = 36

∫
cos(4t)dt = 9 sin(4t) + C.

The IC gives 7 = 9 sin(4) + C or C = 7− 9 sin(4), so the unique solution is

y(t) = t3
(
9 sin(4t) + 7− 9 sin(4)

)
.

5. The equation dy
dt = 3t2 + 12 is an integrable differential equation, so

y(t) =

∫
(3t2 + 12)dt = t3 + 12t+ C.

With the initial condition, y(0) = 8 = C. It follows that

y(t) = t3 + 12t+ 8.

6. Consider the following IVP:

dy

dt
− 4 tan(4t)y = 40 sin4(4t), y(0) = 14.

The integrating factor satisfies:

µ(t) = e−4
∫

tan(4t)dt = e
−
∫

4 sin(4t)
cos(4t)

dt
= eln(cos(4t)) = cos(4t).

It follows that

d

dt

(
cos(4t)y

)
= 40 sin4(4t) cos(4t), or cos(4t)y(t) = 40

∫
sin4(4t) cos(4t)dt.



Use u = sin(4t) and du = 4 cos(4t)dt, then

cos(4t)y(t) = 10

∫
u4du = 2 sin5(4t) + C, or y(t) = sec(4t)

(
2 sin5(4t) + C

)
.

The IC gives 14 = C, so the unique solution is

y(t) = sec(4t)
(
2 sin5(4t) + 14

)
.

7. a. According to the von Bertalanffy equation, the fish growth satisfies dL
dt = k(34 − L(t)) =

−k(L(t)− 34), L(0) = 2. To solve this we make the substitution, z(t) = L(t)− 34, which has
z(0) = −32 and dz

dt = dL
dt . The modified differential equation becomes z ′ = −kz, which has the

solution z(t) = −32e−kt = L(t)− 34. Thus, the length of the fish satisfies:

L(t) = 34− 32e−kt.

b. If L(4) = 10, then 34 − 32e−4k = 10 or e4k = 32
24 = 4

3 . It follows that k = 1
4 ln

(
4
3

)
≈

0.0719205. The length of the fish satisfies:

L(t) = 34− 32e−0.0719205t.

c. When t = 10, L(t) = 34 − 32e−0.0719205·10 ≈ 18.4115 cm. Since the exponential decays to
zero as t→∞, L(t)→ 34 cm.

8. a. Let a(t) be the amount of pollutant, and the concentration c(t) is the concentration
of pollutant (in ppb). The change in amount = the amount entering - the amount leaving.
The change in amount, a ′(t), has units (mass/day). The amount entering is f1Q1 + f2Q2 =
4000 ·18+2500 ·4 = 82, 000 ppb·m3/day (mass/day), while the amount leaving is (f1+f2)c(t) =
6500c(t) ppb·m3/day (mass/day). Thus, the differential equation for the change in amount is

da(t)

dt
= 82, 000− 6500c(t).

The relation between the amount and concentration is c(t) = a(t)
V = a(t)

3000000 and c ′(t) = a ′(t)
3000000 ,

so the concentration differential equation:

dc(t)

dt
=

82, 000− 6500c(t)

3, 000, 000
− 13

6000

(
c− 164

13

)
≈ −0.0021667(c− 12.615).

With the initial condition c(0) = 0, we make the substitution z(t) = c(t)− 12.615, so
z(0) = −12.615 and the differential equation is

dz

dt
= −0.0021667z, z(0) = −12.615,

which gives z(t) = −12.615e−0.0021667t = c(t)− 12.615. Thus,

c(t) = 12.615
(
1− e−0.0021667t

)
.

b. We solve c(t) = 12.615
(
1− e−0.0021667t

)
= 4, so e0.0021667t = 12.615

8.615 = 1.4643. Thus, t =
ln(1.4643)
0.0021667 ≈ 176.01 days. Hence, the concentration reaches 4 ppb at t ≈ 176.01 days. The
limiting concentration is

lim
t→∞

c(t) = 12.615 ppb.



This easily follows because the exponential tends to zero for large t.

9. The electric circuit with R = 10Ω, C = 0.1F, and E(t) = 40V is a linear differential equation:

10
dQ

dt
+

1

0.1
Q = 40 or

dQ

dt
+Q = 4,

which has an integrating factor µ(t) = et. Thus,

d

dt

(
etQ

)
= 4et, so etQ(t) = 4et + C.

With the initial condition, Q(0) = 0, the solution becomes

Q(t) = 4− 4e−t.

10. Programs are provided to solve this problem along with solutions expected in the written
work.

a. The least squares best fit to the data is found with MatLab. The sum of square errors is
computed with:

1 function J = sum vonB(p,tdata,ldata)
2 % von Bertalanffy eqn
3 model = p(1)*(1 - exp(-p(2)*tdata)); % Model eqn with parameters
4 error = model - ldata; % Error between model and data
5 J = error*error'; % Sum of square errors
6 end

The least sum of square errors uses the command line:
[p1,J,flag] = fminsearch(@sum vonB,[1.9,0.2],[],tdfish,ldfish)

where tdfish and ldfish are the age and length data for the fish.

Below is a MatLab program that finds all values needed for this problem and creates all the
graphs.

1 % von Bertalanffy problem
2

3 clear;clc;
4

5 td = [1 2 3 4 5 6 7 8 9 10]; % Age data
6 ld = [0.77 1.3 1.59 1.72 1.8 1.83 1.85 1.86 1.87 1.87]; % Length data
7 [p1,J] = fminsearch(@sum vonB,[1.88,0.5],[],td,ld) % Compute least SSE
8 tt = linspace(0,15,200);
9 ll = p1(1)*(1 - exp(-p1(2)*tt)); % Fish model

10 plot(td,ld,'bo'); % Plot data
11 hold on
12 plot(tt,ll,'r-');grid; % Plot model
13 title('von Bertalanffy Model of Marlin','FontSize',16,'FontName','Times New ...

Roman');
14 xlabel('$t$ (yrs)','FontSize',16,'interpreter','latex');
15 ylabel('Length (m)','FontSize',16,'interpreter','latex');



16 hold off
17

18 print -depsc marlin len gr.eps
19

20 figure(102)
21

22 Ld = [1 1.11 1.16 1.21 1.28 1.38 1.47 1.53 1.68 1.77];
23 Wd = [7 12 15 19 21 31 32 34 52 65];
24 lnLd = log(Ld);
25 lnWd = log(Wd);
26 coef = polyfit(lnLd,lnWd,1) %Linear fit to log of data
27 a = coef(1);
28 k = exp(coef(2));
29 Ll = linspace(0,2,200);
30 Ww = k*Ll.ˆa; % Allometric model
31 plot(Ld,Wd,'ro'); % Plot data
32 hold on
33 plot(Ll,Ww,'m-');grid; % Plot model
34 xlim([0,2]);
35 ylim([0,100]);
36 title('Allometric Model of Marlin','FontSize',16,'FontName','Times New Roman');
37 xlabel('Length (m)','FontSize',16,'interpreter','latex');
38 ylabel('Weight (kg)','FontSize',16,'interpreter','latex');
39 hold off
40

41 print -depsc marlin allo gr.eps
42

43 figure(103)
44

45 Wt = 82.7983*(1-exp(-.5764*tt)).ˆ3.6166; % Composite function
46 plot(tt,Wt,'b-'); % Plot composite function
47 grid;
48 xlim([0,15]);
49 ylim([0,100]);
50 title('Weight of Marlin','FontSize',16,'FontName','Times New Roman');
51 xlabel('Age (yr)','FontSize',16,'interpreter','latex');
52 ylabel('Weight (kg)','FontSize',16,'interpreter','latex');
53 hold off
54

55 print -depsc marlin wt gr.eps
56

57 figure(104)
58

59 % Insert function for derivative/growth of fish
60 Wpt = 172.6020184*(1-exp(-.5764*tt)).ˆ2.6166.*exp(-.5764*tt);
61 plot(tt,Wpt,'-','color',[0,0.6,0]); %Plot growth
62 grid;
63 xlim([0,15]);
64 ylim([0,25]);
65 title('Growth of Marlin','FontSize',16,'FontName','Times New Roman');
66 xlabel('Age (yr)','FontSize',16,'interpreter','latex');
67 ylabel('Growth Rate (kg/yr)','FontSize',16,'interpreter','latex');
68 hold off
69

70 print -depsc marlin wpt gr.eps

The L-intercept is L(0) = 0, and the horizontal asymptote is L∞.

b. The graph of the best fitting model using the von Bertalanffy model for the Striped Marlin



with the data set is seen below, fitting the model

L(t) = 1.8898
(
1− e−0.5764t

)
.
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The graph shows that the rate of growth of the fish is very fast in the early years and then
slows down, approaching an asymptote, as the fish ages. The model quite clearly matches the
data very well. The graph shows that the maximum length the fish is the asymptotic limit,
which is about 1.89 m.

c. The Matlab script in Part a shows how to obtain the allometric model by finding the linear
least squares best fit to the logarithms of the data.

d. The graph of the best fitting allometric model for the Striped Marlin with the data set is
seen below, using the model:

W (L) = 8.2861L3.6166.
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The graph and the model show that the allometric model roughly follows a cubic relationship
between the length and the weight, which is expected based on dimensional analysis (between
length and volume). The model quite clearly matches the data very well with a little more



variation than seen in the previous graph. With the asymptotic limit of the length of the
Striped Marlin from Part a, this model would indicate that the Striped Marlin has a limit in
weight of approximately 82.8 kg.

e. The composite function simply combines the von Bertalanffy model with the allometric
model, yielding:

W (t) = a
(
L∞(1− e−bt)

)k
.

f. The functions above are combined in a composite function to give W (t) for the Striped Marlin,

W (t) = 82.7983
(
1− e−0.5764t

)3.6166
.

The growth function satisfies the derivative of W (t) with

W ′(t) = 172.6020184
(
1− e−0.5764 t

)2.6166
e−0.5764 t.
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The graph of W (t) shows the increase in weight as the fish ages with the increase accelerating
for the first 2-3 years then slowing down as it approaches a maximum weight for large time.
The point of inflection for the first graph matches the maximum of the growth curve on the
right. The growth curve shows the increasing growth rate until approximately the age of 2.25
before growth slows to almost zero for older Marlin. This maximum growth shows the 2 year
old Marlin putting on almost 20 kg/yr.

11. The graphs and discussions for this problem are found with the written solutions to this
problem. Here the techniques for solving the three different differential equations are shown.

a. We consider the linear DE with initial condition (IVP):

dA

dt
+ kA = be−qt, A(0) = 0 and k 6= q.

It is clear that the integrating factor is µ(t) = ekt, so

d

dt

(
ektA

)
= be(k−q)t, so ektA(t) =

be(k−q)t

k − q
+ C.



This is readily solved to give:

A(t) =
b

k − q
e−qt + Ce−kt.

The initial condition gives C = − b
k−q , so

A(t) =
b

k − q

(
e−qt − e−kt

)
.

c. The accumulation of lead is the simplest DE, requiring only integration. The DE satisfies:

dP

dt
=

Kb

k − q

(
e−qt − e−kt

)
, with P (0) = 0.

Upon integration we have

P (t) =
Kb

k − q

(
e−kt

k
− e−qt

q

)
+ C,

where the initial condition gives C = Kb
k−q

(
1
q −

1
k

)
. It follows that the solution satisfies:

P (t) =
Kb

k − q

(
e−kt

k
− e−qt

q
+

1

q
− 1

k

)
.

e. With the linear ODE describing the weight of the boy is written:

dw

dt
= −r(w − w∞) with w(0) = w0.

Make the substitution z(t) = w(t) − w∞, where z(0) = w0 − w∞. This creates the easier
problem:

dz

dt
= −rz with z(0) = w0 − w∞.

The solution is
z(t) = w(t)− w∞ = (w0 − w∞) e−rt.

It follows that
w(t) = w∞ + (w0 − w∞) e−rt.


