1.5.21. Using (1.5.23) and (1.5.24), derive the Laplacian in an orthogonal curvilinear coordinate system:

$$\nabla^2 T = \frac{1}{h_u h_v h_w} \left[\frac{\partial}{\partial u} \left(\frac{h_v h_w}{h_u} \frac{\partial T}{\partial u} \right) + \frac{\partial}{\partial v} \left(\frac{h_u h_w}{h_v} \frac{\partial T}{\partial v} \right) + \frac{\partial}{\partial w} \left(\frac{h_u h_v}{h_w} \frac{\partial T}{\partial w} \right) \right]. \tag{1.5.25}$$

- (5) 1.5.22. Using (1.5.25), derive the Laplacian for cylindrical coordinates.
- 2.2.4. In this exercise we derive superposition principles for nonhomogeneous prob-
 - (a) Consider L(u) = f. If u_p is a particular solution, $L(u_p) = f$, and if u_1 and u_2 are homogeneous solutions, $L(u_i) = 0$, show that $u = u_p + c_1u_1 + c_2u_2$ is another particular solution.
 - (b) If $L(u) = f_1 + f_2$, where u_{pi} is a particular solution corresponding to f_i , what is a particular solution for $f_1 + f_2$?
- 2.3.1. For the following partial differential equations, what ordinary differential equations are implied by the method of separation of variables?

* (a)
$$\frac{\partial u}{\partial t} = \frac{k}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right)$$

$$\widehat{\left(\ast\left(\mathbf{c}\right)\right)} \frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} = 0$$

(d)
$$\frac{\partial u}{\partial t} = \frac{k}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right)$$

* (e)
$$\frac{\partial u}{\partial t} = k \frac{\partial^4 u}{\partial x^4}$$

$$\overbrace{*(f)} \quad \frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

*2.3.8. Consider

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} - \alpha u.$$

This corresponds to a one-dimensional rod either with heat loss through the lateral sides with outside temperature 0° ($\alpha > 0$, see Exercise 1.2.4) or with insulated lateral sides with a heat sink proportional to the temperature. Suppose that the boundary conditions are

$$u(0,t) = 0$$
 and $u(L,t) = 0$.

- (a) What are the possible equilibrium temperature distributions if $\alpha > 0$?
- (b) Solve the time-dependent problem [u(x,0)=f(x)] if $\alpha>0$. Analyze the temperature for large time $(t\to\infty)$ and compare to part (a).