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1.5.21. Using (1.5.23) and (1.5. 24) derive the Laplaman in an ort;hogonal curvi-
linear coordinate system:
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é} 1.5.22. Using (1.5.25), derive the Lapla.cian for cylindrical coordinates.
@ﬁ) 224. In thls exercise we denve supcrposmon pnnmples for nonhomogeneous pz.ob~
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(a) Oonsider L(u) = f. If u, is a particular solution, L(u,) = f, and'
if vy and uy are homogeneous solutions, L{u;) = 0, show that u w;
Up + C1U1 + Cauty I8 another particular solution.

(b) If L{u) = fi + fz, where up is a particular solution corresponding to
fi, what is a particular solution for fi + fa?

( ; 3) 9.3.1. For the fo]iomdng partial differential equations, ﬁv]iat ordinary differential
-y ‘ equations are implied by the method of separation of variables?
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"This corresponds to a one-dimensional rod either with heat loss through the
lateral sides with outside temperature 0° (a > 0, see Exercise 1.2.4) or with
insulated lateral sides with a heat sink proportional to the temperature. -

Suppose that the boundary conditions are x
u(0,t) =0 and u(L, ) = 0.

{
a) What are the possible equilibrium temperature distributions if & > 07

(
(b) Solve the time-dependent problem [u(z,0) = f(z)] if & > 0. Aﬂalyze
the temperature for large time (¢ — co) and compare to part (a).




