- 10.3.1. Show that the Fourier transform is a linear operator; that is, show that
 - (a) $\mathcal{F}[c_1 f(x) + c_2 g(x)] = c_1 F(\omega) + c_2 G(\omega)$
 - (b) $\mathcal{F}[f(x)g(x)] \neq F(\omega)G(\omega)$
- 5 10.3.5. If $F(\omega)$ is the Fourier transform of f(x), show that the inverse Fourier transform of $e^{i\omega\beta}F(\omega)$ is $f(x-\beta)$. This result is known as the shift theorem for Fourier transforms.
- *10.3.6. If $\dot{f}(x) = \left\{ \begin{array}{ll} 0 & |x| > a \\ 1 & |x| < a, \end{array} \right.$

determine the Fourier transform of f(x). [The answer is given in the table of Fourier transforms in Section 10.4.4.]

2 10.4.1. Using Green's formula, show that

$$\mathcal{F}\left[\frac{d^2f}{dx^2}\right] = -\omega^2 F(\omega) + \frac{e^{i\omega x}}{2\pi} \left(\frac{df}{dx} - i\omega f\right)\Big|_{-\infty}^{\infty}.$$

20 10.4.3. *(a) Solve the diffusion equation with convection:

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} + c \frac{\partial u}{\partial x} - \infty < x < \infty$$

$$u(x,0) = f(x).$$

[Hint : Use the convolution theorem and the shift theorem (see Exercise 10.4.5).]

(b) Consider the initial condition to be $\delta(x)$. Sketch the corresponding u(x,t) for various values of t>0. Comment on the significance of the convection term $c \ \partial u/\partial x$.