Homework Solutions - Due Mon. 10/04/2018

Proof Problem. (10pts) a. Consider the IVP:

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

In a closed, bounded region containing $\left(t_{0}, y_{0}\right)$, it can be shown that this has a unique solution, $\phi(t)$. By Taylor's Theorem, it has a solution:

$$
\phi\left(t_{n+1}\right)=\phi\left(t_{n}\right)+h \phi^{\prime}\left(t_{n}\right)+\frac{1}{2} \phi^{\prime \prime}\left(\bar{t}_{n}\right) h^{2}, \quad \text { with } \quad \bar{t}_{n} \in\left[t_{n}, t_{n}+h\right]
$$

Euler's formula gives:

$$
y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right)
$$

If we define $E_{n}=\phi\left(t_{n}\right)-y_{n}$ and note that $\phi^{\prime}(t)=f(t, \phi)$, then

$$
\begin{aligned}
E_{n+1} & =\phi\left(t_{n+1}\right)-y_{n+1} \\
& =\phi\left(t_{n}\right)+h f\left(t_{n}, \phi\left(t_{n}\right)\right)+\frac{1}{2} \phi^{\prime \prime}\left(\bar{t}_{n}\right) h^{2}-y_{n}-h f\left(t_{n}, y_{n}\right) \\
& =E_{n}+h\left(f\left(t_{n}, \phi\left(t_{n}\right)\right)-f\left(t_{n}, y_{n}\right)\right)+\frac{1}{2} \phi^{\prime \prime}\left(\bar{t}_{n}\right) h^{2}
\end{aligned}
$$

Since f is assumed to satisfy the Lipschitz condition $|f(t, y)-f(t, \bar{y})|<L|y-\bar{y}|$ and $\beta=$ $\max _{t_{0} \leq t \leq t_{n+1}}|\phi(t)| / 2$, then we have

$$
\begin{aligned}
\left|E_{n+1}\right| & \leq\left|E_{n}\right|+h\left|f\left(t_{n}, \phi\left(t_{n}\right)\right)-f\left(t_{n}, y_{n}\right)\right|+\beta h^{2} \\
& \leq\left|E_{n}\right|+h L\left|\phi\left(t_{n}\right)-y_{n}\right|+\beta h^{2} \\
& \leq \alpha\left|E_{n}\right|+\beta h^{2}
\end{aligned}
$$

where $\alpha=1+h L$.
b. If $E_{0}=0$, then $\left|E_{1}\right| \leq \beta h^{2}$. Continuing

$$
\begin{aligned}
\left|E_{2}\right| & \leq \alpha\left|E_{1}\right|+\beta h^{2} \leq \beta h^{2}(1+\alpha) \\
\left|E_{3}\right| & \leq \alpha\left|E_{2}\right|+\beta h^{2} \leq \beta h^{2}\left(1+\alpha+\alpha^{2}\right) \\
\vdots & \vdots \\
\left|E_{n}\right| & \leq \beta h^{2} \sum_{i=0}^{n-1} \alpha^{i}
\end{aligned}
$$

This is a finite geometric series, which was shown in Calculus to satisfy:

$$
\left|E_{n}\right| \leq \beta h^{2} \sum_{i=0}^{n-1} \alpha^{i}=\beta h^{2} \frac{\alpha^{n}-1}{\alpha-1}
$$

From the definition of $\alpha=1+h L$, it is obvious that

$$
\left|E_{n}\right| \leq \beta h \frac{(1+h L)^{n}-1}{L}
$$

This error is clearly increasing exponentially in n.
c. Consider the function $g(x)=\ln (1+x)$ for $x>0$, then $g^{\prime}(x)=\frac{1}{1+x}<1$. It follows that $\ln (1+x) \leq x$ for all $x \geq 0$. Thus,

$$
\begin{aligned}
\ln (1+h L) & \leq h L \\
\ln (1+h L)^{n} & \leq n h L \\
(1+h L)^{n} & \leq e^{n h L} .
\end{aligned}
$$

Thus,

$$
\left|E_{n}\right| \leq \beta h \frac{e^{n h L}-1}{L} .
$$

For $T>t_{0}$ and taking h such that n steps are required to reach T, then $n h=T-t_{0}$, so

$$
\left|E_{n}\right| \leq \beta h \frac{e^{\left(T-t_{0}\right) L}-1}{L}=K h,
$$

where K depends on the length of the interval and the constants L and β, which came from properties of f.
8. (9pts) c. The differential equation, $y^{\prime}=y^{2} / 3$, has a vertical asymptote for finite $t(t=3)$ depending on the initial condition, $y(0)=1$. (Different versions have different asymptotes.) The solutions track well for the early part of the interval, but lose accuracy as t approaches the asymptote. The smaller stepsizes improve the computations. However, Improved Euler's method does much better at tracking the actual solution for a longer time.

f. The graph of this differential equation $\left(P^{\prime}=(1.46-0.54 t) P\right.$) again shows that the Improved Euler's method is significantly better at tracking the actual solution. Thus, the maximum is much better tracked by the Improved Euler's method with a fair amount of error seen for Euler's method. Changing to Improved Euler's method is better than decreasing the stepsize.

9. (7pts) c. The solution to the injected drug is:

$$
A_{i}(t)=A_{0} e^{-k t}
$$

where $k=\ln (2) / t_{h}$ with t_{h} being the half-life of the drug. The graphed example has $A_{0}=10$ and $t_{h}=24$. The polymer released drug satisfies:

$$
A_{p}(t)=\left(\frac{r}{q-k}\right)\left(e^{-k t}-e^{-q t}\right)
$$

where k is from before and q and r are specified. The graphed example has $q=0.16$ and $r=1.6$ From the graph it is clear that A_{p} has the longer effective period and does not reach as high a concentration, so is superior as a drug delivery system.

e. The graph shows that the Improved Euler method matches very closely the actual solution.

10. (7pts) b. The differential equation is given by:

$$
\frac{d c}{d t}=\frac{Q}{V}-\frac{f}{V} c,
$$

which is the concentration entering minus the concentration leaving. Entering is the amount produced Q divided by V to make a concentration, while leaving is flow rate, f, times concentration, c, divided by the total volume, V. This is readily solved with our linear technique using the integrating factor of $e^{f t / V}$. The solution satifies:

$$
c(t)=\frac{Q}{f}\left(1-e^{-f t / V}\right) .
$$

e. With the Improved Euler's solution, we see the CO growing in a oscillatory manner with the unsafe level for this example being reached in about 80 hrs . This model is not producing as much CO, so it grows more slowly and has the distinct cycles every 24 hr .

