
Fall 2018 Math 337

Homework Solutions – Due Mon. 10/04/2018

Proof Problem. (10pts) a. Consider the IVP:

y ′ = f(t, y), y(t0) = y0.

In a closed, bounded region containing (t0, y0), it can be shown that this has a unique solution,
φ(t). By Taylor’s Theorem, it has a solution:

φ(tn+1) = φ(tn) + hφ ′(tn) +
1

2
φ ′′(t̄n)h2, with t̄n ∈ [tn, tn + h].

Euler’s formula gives:
yn+1 = yn + hf(tn, yn).

If we define En = φ(tn)− yn and note that φ ′(t) = f(t, φ), then

En+1 = φ(tn+1)− yn+1,

= φ(tn) + hf(tn, φ(tn)) +
1

2
φ ′′(t̄n)h2 − yn − hf(tn, yn),

= En + h (f(tn, φ(tn))− f(tn, yn)) +
1

2
φ ′′(t̄n)h2.

Since f is assumed to satisfy the Lipschitz condition |f(t, y) − f(t, ȳ)| < L|y − ȳ| and β =
maxt0≤t≤tn+1 |φ(t)|/2, then we have

|En+1| ≤ |En|+ h |f(tn, φ(tn))− f(tn, yn)|+ βh2,

≤ |En|+ hL |φ(tn)− yn|+ βh2,

≤ α|En|+ βh2,

where α = 1 + hL.

b. If E0 = 0, then |E1| ≤ βh2. Continuing

|E2| ≤ α|E1|+ βh2 ≤ βh2 (1 + α) ,

|E3| ≤ α|E2|+ βh2 ≤ βh2
(
1 + α+ α2

)
,

...
...

|En| ≤ βh2
n−1∑
i=0

αi.

This is a finite geometric series, which was shown in Calculus to satisfy:

|En| ≤ βh2
n−1∑
i=0

αi = βh2
αn − 1

α− 1
.

From the definition of α = 1 + hL, it is obvious that

|En| ≤ βh
(1 + hL)n − 1

L
.



This error is clearly increasing exponentially in n.

c. Consider the function g(x) = ln(1 + x) for x > 0, then g ′(x) = 1
1+x < 1. It follows that

ln(1 + x) ≤ x for all x ≥ 0. Thus,

ln(1 + hL) ≤ hL,

ln(1 + hL)n ≤ nhL,

(1 + hL)n ≤ enhL.

Thus,

|En| ≤ βh
enhL − 1

L
.

For T > t0 and taking h such that n steps are required to reach T , then nh = T − t0, so

|En| ≤ βh
e(T−t0)L − 1

L
= Kh,

where K depends on the length of the interval and the constants L and β, which came from
properties of f .

8. (9pts) c. The differential equation, y ′ = y2/3, has a vertical asymptote for finite t (t = 3)
depending on the initial condition, y(0) = 1. (Different versions have different asymptotes.)
The solutions track well for the early part of the interval, but lose accuracy as t approaches
the asymptote. The smaller stepsizes improve the computations. However, Improved Euler’s
method does much better at tracking the actual solution for a longer time.
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f. The graph of this differential equation (P ′ = (1.46−0.54 t)P ) again shows that the Improved
Euler’s method is significantly better at tracking the actual solution. Thus, the maximum is
much better tracked by the Improved Euler’s method with a fair amount of error seen for Euler’s
method. Changing to Improved Euler’s method is better than decreasing the stepsize.
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9. (7pts) c. The solution to the injected drug is:

Ai(t) = A0e
−kt,

where k = ln(2)/th with th being the half-life of the drug. The graphed example has A0 = 10
and th = 24. The polymer released drug satisfies:

Ap(t) =

(
r

q − k

)(
e−kt − e−qt

)
,

where k is from before and q and r are specified. The graphed example has q = 0.16 and r = 1.6
From the graph it is clear that Ap has the longer effective period and does not reach as high a
concentration, so is superior as a drug delivery system.
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e. The graph shows that the Improved Euler method matches very closely the actual solution.
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10. (7pts) b. The differential equation is given by:

dc

dt
=
Q

V
− f

V
c,

which is the concentration entering minus the concentration leaving. Entering is the amount
produced Q divided by V to make a concentration, while leaving is flow rate, f , times con-
centration, c, divided by the total volume, V . This is readily solved with our linear technique
using the integrating factor of eft/V . The solution satifies:

c(t) =
Q

f

(
1− e−ft/V

)
.

0 10 20 30 40
t (days)

0

0.5

1

1.5

C
O

c
(t
)

×10-4

e. With the Improved Euler’s solution, we see the CO growing in a oscillatory manner with the
unsafe level for this example being reached in about 80 hrs. This model is not producing as
much CO, so it grows more slowly and has the distinct cycles every 24 hr.
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