MMMMMMM

Homework — Quadrature Due Wed. 3/21/18

N

x
”E g

4 h X h X h H
or Open Newton-Cotes quadratures with n = 1 gives us the formula
/abf(x)d zgaif(xi)%—hgf# jt(t—l)dt.
ing polynomials,
[oyt o= [0
ba b—h, and h
Al e IS s S
ay = —
S aif(ai) = 2 (Flxo) + ()
S50 v 0[5 250) 20
es the Newton s Trap for
[s =2 (g + sy + 2O

b. Begin by dividing the interval [a,b] into 3N evenly spaced subintervals with h = %5%. With
the formula from Part a, we can write the integral as follows:

[1w = (32h<f<xzo>+f<xﬂ>> L),

where x;0 = a + h(1 + 3i), ;1 = a+ h(2 + 3i), and &; € [z;0 — h,z;1 + h]. The error term for
this integral approximation is the last term. If we assume that f is at least twice differentiable
for x € [a, b], then the Extreme Value Theorem gives that f”(z) has its max and min in [a,],
SO

x€[a,b] z€[a,b]
SO
N N
N min f"(z) < f"(&) < N max f’(x) or min f () (&) < max f"(z),
2€[a,b] (z) ; (&) z€[ab) (z) xe[ab] ; s) z€[ab) (z)

By the Intermediate Value Theorem there exists u € (a,b) so that

1 al " // 1
):N;f(&) or Nf'(Zf (&)-

b—a 4 the error term becomes

However, N = 3%,

3n3 & 3h3 h2(b —
4 Zf”(fi) = TNf”(N) = (4a)f”(,u),
=0

which implies this method is O (h?).

c. We begin with the exact value, so

6
/ e® dr = 402.42879.
0

Below is a composite open Newton-Cotes Trapezoid method MatLab code:

function T = comptraplc(a,b,N)
Composite Trapezoid Rule for function f (x)

o\

% on [a,b] using 3N steps
@(x) exp(x);
(b-a) / (3%N) ;

0:N-1;

© 0 N e C A W N e
H- 0 Fh oo

xi0 = a+hx (1 + 3xi);

x1l = a+h* (2 + 3*1i);

T = (3%h/2)xsum (£ (x10)+f(xil));
10 end

Trap abs —err err/h err/h? err/h3
1 319.67797 | 82.75082 82.75082 82.75082 = 82.75082
0.5 | 378.56793 | 23.86086 47.72172 95.44343 190.88687
0.25 | 396.22483 | 6.20396 24.81585 99.26342 397.05367
0.125 | 400.86211 | 1.56668 12.53347 100.26778 802.14221

From this table above, we see that this numerical integration method is O (h2). The column
with err/h? is roughly constant.

d. Adapting the code above for the Trapezoid Method to include a while loop to test for the
difference between successive iterates, we obtain the following MatLab code:

1 function [T,h] = comptraplctol(a,b,tol)

2 % Composite Trapezoid Rule for function f (x)
3 % on [a,b] using 3xN steps with a tolerance
4 £ = Q(x) exp(x);

5 TO = 0;

6 T = 1;

7 N = 1;

8 j = 0;

9 while (abs(T-T0) > tol)

10 TO0O = T;

11 h = (b-a)/ (3%N);

12 i = 0:N-1;

13 x1i0 = a+h* (1 + 3%1);

14 x1l = a+h* (2 + 3%i);

15 T = (3*h/2)*sum (£ (x1i0)+f (x1il));

16 3= 3 + 1;

17 N = 2"73;

18 end

With this code, we find that starting with h = 2 the stepsize through halving must be re-
duced to h = 3.0517578125 x 1075, yielding an approximation to the original integral of
T = 402.428793399.

2. (20 pts) a. We use our techniques from Calculus to write

1
™ —T
T)

1

2

/ dx = 2 arctan(z)
-1 1+ z?

b. Composite midpoint with h = 0.5:

()1 () o(2) () s

Absolute error = 0.020760288 .
Trapezoid with h = 0.5:

Ap = i (F(=1) + 2£(—0.5) + 2(0) + 2/(0.5) + f(1)) = 3.1.

Absolute error = 0.041592654 .

Simpson’s with h = 0.5:

Ag = é (F(=1) + 4f(=0.5) + 2f(0) + 4f(0.5) + f(1)) = 3.13333333.

Absolute error = 0.00825932 .

c. We use our Legendre program to obtain the points and weights for the Gaussian quadrature.
Below are our approximations and absolute errors:

Gaussian 4 point:
Ags = 0.3478548451f(—0.8611363116) + 0.6521451549 f(—0.3399810436)
+ + 0.6521451549 f(0.3399810436) + 0.3478548451 f(0.8611363116)
= 3.1372549020.
Absolute error = 0.004337752 .
Gaussian 5 point:
Ags = 0.2369268851f(—0.9061798459) + 0.4786286705 f (—0.5384693101)
+0.5688888889 f(0) + 0.4786286705 f(0.5384693101)
+0.2369268851 f(0.9061798459) = 3.1423423423.
Absolute error = 0.000749689 .

Since the Gaussian quadrature is optimal it does substantially better than the other routines.
We see that the ordering of accuracy from worst to best is Trapezoid rule, Midpoint rule (which
is a composite Gaussian with 1 point), Simpson’s rule, then Gaussian with 4 point and 5 point
being the best. None of the methods is doing particularly well, but we have over an order of
magnitude improvement with the Gaussian routines.

d. We decrease the stepsize in half and the Table below shows us the results.

Method | Midpoint Trapezoid Simpson’s Gaussian (9)
Integral | 3.146800518 | 3.131176471 3.141568627 3.14159331186
Error | 0.005207865 | 0.010416183 | 2.40261 x 10~° | 6.58268 x 10~7

Halving the stepsize quarters the error in the Midpoint and Trapezoid rules, while Simpson’s
rule improves by over 2 orders of magnitude with only doubling the points, which is quite sub-
stantial. However, the Gaussian quadrature increased its accuracy over 3 orders of magnitude
with less than doubling the points. Thus, it proves to be an excellent method of approximate
integration.

3. (10 pts) a. Students can modify the AdaptiveCSR.m in a number of ways. The ACSR.m is
not changed. Below shows a number of lines of the AdaptiveCsR.m that would satisfy this
problem.

1%

2 % Adaptive CSR

3 %

4 % This is the setup/driver part...

5 % Play with the tolerance for different results.
6 %

7

8 tol = 107 (-6);

9 a = 0;

,_.
o
o

1;

11

12 £ = Q@(x) 1-((x-pi/2/exp(l))."2).7(1/3);

13

14 figure(l); xv = 0:0.001:1;

15 plot(xv,f(xv),'-', 'linewidth', 3)

16 title('Adaptive CSR —-—- The Function', 'fontweight', 'bold', 'fontsize',14)
17 axis ([0 1 0 11)

18 xlabel('x', 'fontweight', '"bold', 'fontsize',14)

19 ylabel ('f(x)', ' 'fontweight', "bold', 'fontsize',14)

b. Students may choose any number of possible integrals. Probably the easiest would be

L da

o ar’
where 0 < p < 1. For example, if p = %, then this integral is 2, but it is singular at a = 0.

WeBWorK problems in Quad

1. No write-up for this problem.

2. (8 pts) b. Consider the function:
f(z) = 2% cos(1.2x) — 2.7x.
This has the linear interpolating polynomial through x¢ = 0.1 and x; = 0.2 giving
Py(x) = —2.4107x — 0.018997.

At x = 0.18, the absolute error is 0.00142. This has the quadratic interpolating polynomial
through zg = 0.1, 1 = 0.2, and x5 = 0.3 giving

Py(x) = 0.822592% — 2.65752 — 0.0025456.

At £ = 0.18, the absolute error is 0.0001052.

The error for the linear polynomial is

)

Ey(z) 5

(z —0.1)(z—0.2), ¢€][0.1,0.2],

and for the quadratic polynomial is

()
6

It can be shown for & € [0.1,0.2] that |f”(£)] < 1.914. In this interval, [(x —0.1)(z — 0.2)] <
0.0025, so we have
f'(€)

2

Es(z)

(x —0.1)(x —0.2)(x — 0.3), €& €[0.1,0.3].

(z — 0.1)(z — 0.2)| < 0.0024,

which is roughly twice the absolute error for |f(z) — Pi(z)| at x = 0.18.

It can be shown for £ € [0.1,0.3] that | f"”'(£)| < 4.91. In this interval, |(x —0.1)(z — 0.2)(x —
0.3)| < 0.000385, so we have

’ f”’6(§) (x —0.1)(x — 0.2)(x — 0.3)‘ < 0.00032,

which is roughly three times the absolute error for |f(x) — P(z)| at x = 0.18.

5
1.9
/Zxda:
3$+1

With the MatLab Midpoint rule program below, we find

3. (5 pts) For the integral

the exact value is 0.907735872776064.

function M = compmidpt4 (a,b,N)

% Composite Midpoint Rule for function f (x)
$ on [a,b] using N steps

@(x) 1.9*x./(x.72+1);

(b-a) /N;

1:N;

i = a+0.5%x(2%1i-1) *h;

= hxsum(f (ci));

end

il
h
i
C
M

© 0w N Ot s W N

h M abs — err err/h err/h? err/h® err/h?
0.5 0.9068568 | 0.0008791 0.001758 0.003516 0.007033 0.01407
0.25 | 0.9075158 | 0.0002201 | 0.0008803 0.003521 0.01408 0.05634

0.125 | 0.9076808 | 5.5073E-05 | 0.00044058 0.003525 0.02820 0.2256
0.0625 | 0.9077221 | 1.3773E-05 | 0.0002204 0.003526 0.05641 0.90266

3
2.7x
2Ty
/1 2425

With the MatLab Trapezoid rule program below, we find

4. (5 pts) For the integral

the exact value is 0.362156381902817.

function T = comptrap5(a,b,N)
Composite Trapezoid Rule for function f (x)

o\

% on [a,b] using 3%«N steps

1

2

3 2

4 £ = @(x) 2.7*x./(x.72+425);

5 h = (b-a)/N;

6 1 = 0:N-1;

7 xi0 = a+h«*i;

8 x11 = a+hx (i+1);

9 T = (h/2)*sum(f(xi0)+£f (x1il));

—
o
(0]
ol
o,

h T abs — err err/h err/h? err/h3 err/h?
0.5 0.3609357 | 0.0012207 | 0.0024414 0.004883 0.009765 0.01953
0.25 | 0.3618516 | 0.0003048 | 0.0012191 0.004877 0.019506 0.07802

0.125 | 0.3620802 | 7.618E-05 | 0.0006095 0.004876 0.039005 0.3120
0.0625 | 0.3621373 | 1.908E-05 | 0.0003053 0.004885 0.078159 1.2506

3
2.1z

d

/1 22 4+4 v

With the MatLab Simpson’s rule program below, we find

5. (5 pts) For the integral

the exact value is 1.003287017278808.

function S = compsimp8 (a,b,N)
% Composite Simpson's Rule for function f (x)
% on [a,b] using 2N steps

1
2
3
4 £ = Q@(x) 2.1*x./(x.72 + 4);
5 h = (b-a)/(2%N);
6 1 = 0:N-1;
7 xi1 = a+2*ixh;
8 x11l = a+2x (i+0.5) xh;
9 x12 = a+2*(i+1) +h;
10 S = (h/3)*sum(f (x1)+4~f(xil)+f(x1i2));
11 end
h S abs —err | err/h? err/h3 err/h* err/h’

0.5 1.00328476 | 2.260E-06 | 9.040E-06 1.808E-05 3.616E-05 7.232E-05
0.25 | 1.00328689 | 1.253E-07 | 2.005E-06 8.019E-06 3.207E-05 1.283E-04
0.125 | 1.00328701 | 7.591E-09 | 4.858E-07 3.887E-06 3.109E-05 2.488E-04

0.0625 | 1.00328702 | 4.708E-10 | 1.205E-07 1.928E-06 3.085E-05 4.936E-04

6. (8 pts) For the integral

8
/ 280587 5in(0.39x) dx
0

the exact value is 22.56305245.

We can use the Composite Midpoint rule including a while loop to check against a tolerance
level.

1 function [M,h] = compmid9tol (a,b,tol)

2 % Composite Trapezoid Rule for function f (x)
3 % on [a,b] using N steps with a tolerance

4 £ = @(x) 28xexp(-0.58%x).xsin(0.39*x);

5 MO = 0;

6 M= 1;

7 N = 1;

8 3 = 0;

9 while (abs(M-MO) > tol)

10 MO = M;

11 h = (b-a)/N;

12 1 = 1:N;

13 ci = a+0.5%(2%1i-1) xh;
14 M = hxsum(f(ci));

15 j =3+ 1;

16 N = 277;

17 end

We can use the Composite Trapezoid rule including a while loop to check against a tolerance
level.

1 function [T,h] = comptrap9tol(a,b,tol)

2 % Composite Trapezoid Rule for function f (x)
3 % on [a,b] using 3xN steps with a tolerance
4 £ = @(x) 28%exp(-0.58%x).xsin(0.39%x);

5 TO = 0;

6 T = 1;

7 N = 1;

8 3 = 0;

9 while (abs(T-T0) > tol)

10 TO = T;

11 h = (b-a)/ (3%N);

12 1 = 0:N-1;

13 xi0 = a+h* (1 + 3%1i);

-
'S

xil = a+h* (2 + 3%i);
T = (3xh/2)xsum(f(x10)+f(xil));

[
wt

16 Jj =3+ 1;
17 N = 2"7;
18 end

We can use the Composite Simpson’s rule including a while loop to check against a tolerance
level.

1 function [h,S] = compsimp9tol (a,b,tol)

2 % Composite Simpson's Rule for function f (x)
3 % on [a,b] doubling steps til within tolerance
4 f = Q@(x) 28xexp(-0.58%x).xsin(0.39xx);

5 SO0 = 0;

6 N = 1;

7 3 = 0;

8 h = (b-a)/2;

9 S = f(h)x*(b-a);

10 while (abs(S-S0)>tol)

11 S0 = S;

12 h = (b-a)/ (2%N);

13 1 = 0:N-1;

14 xi = a+2xix*h;

15 xil = a+2* (1i+0.5) *h;

16 x1i2 = a+2+% (i+1) xh;

17 S = (h/3)*sum(f (x1)+4xf (xil)+£f (x12));

18 j =3+ 1;

19 N = 2"73;

N
=}
D
=]
Q.

7. (6 pts) For the integral

3
/ 522 cos(0.64x) dx
-1

the exact value is 6.631210452129920.

We can use Gaussian Quadrature rule with N points

© 00 N O W N

- e
~= o

function S = GQwwlO0 (N)

% using N points for the Gaussian Quadrature
[L,Lroots,GQw] = LegendrePolynomials (N);

gr = Lroots{N};

wt = GQw{N};

a=-1; b = 3;

f = Q(x) 5*x.72.xcos(0.64.*x);
gx = ((b-a)*gr + (b+a))/2;

wx = wt*(b-a)/2;

S = sum(wx.x*f (gx))

end

which calls the LegendrePolynomials program given from the class.

We can use the Composite Simpson’s rule

© 0 N O U R W N =

==
= O

function S = compsimplOb (a,b,N)
Composite Simpson's Rule for function f (x)
on [a,b] using 2N steps

o°

o\

f = @(x) 5.0%xx.72.%xcos(0.64xx);

h = (b-a)/(2x*N);

i = 0:N-1;

X1 = a+2*ixh;

x1il = a+2* (1i+0.5) xh;

X12 = a+2* (i+1) xh;

S = (h/3)*sum(f (xi)+4*f (xil)+f(x1i2));
end

Comparing the Gaussian Quadrature error and that for the Composite Simpson rule, we see that
the optimal accuracy of the Gaussian quadrature is superior. It only takes a 3 point evaluation
to exceed the Composite Simpson’s rule using 5 points. The 5 point Gaussian quadrature is
more than 2 orders of magnitude improved over the Composite Simpson’s rule using 5 points.

8. (6 pts) For the integral

7
/ 6.8z In(z% 4 12.96) dz
3

the exact value is 6.631210452129920.

We can use Gaussian Quadrature rule with N points

W N e

function S = GQeg2 (N)

[L,Lroots, GQw] = LegendrePolynomials (N);
gr = Lroots{N};

wt GOw{N};

© 0 N O »

a=3; b=17;

f = @(x) 6.8xx.xlog(x."2 + 12.96);
gx = ((b-a)*gr + (b+a))/2;

wx = wtx(b—-a)/2;

S = sum(wx.x*f (gx))

end

which calls the LegendrePolynomials program given from the class.

We can use the Composite Simpson’s rule

© 00 N O s W N =

==
=]

function S = compsimpllb(a,b,N)
Composite Simpson's Rule for function f (x)
on [a,b] using 2N steps

o

o\

f = @(x) 6.8xx.xlog(x."2 + 12.96);
h = (b-a)/(2*N);

i = 0:N-1;

X1 = a+2*ixh;

xil = a+2* (i+0.5) *h;

x12 = a+2* (i+1l) *h;

S = (h/3)*sum(f (xi)+4*f (xil)+f(x1i2));
end

Comparing the Gaussian Quadrature error and that for the Composite Simpson rule, we see that
the optimal accuracy of the Gaussian quadrature is superior. It only takes a 3 point evaluation
to exceed the Composite Simpson’s rule using 5 points. The 5 point Gaussian quadrature is
more than 2 orders of magnitude improved over the Composite Simpson’s rule using 5 points.

