Spring 2018 Math 541

Homework — Taylor’s polynomials — Solutions Due Wed. 1/24

1. (Each part is worth 3 pts) Find the Taylor Series of

(a) f(x) =1/x around xg = 1.
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2. (Each part is worth 3 pts) Find values xg, §, and M such that
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(a) f(x) = sin(x)/z3 for z € [1, 3].
The midpoint of the interval is xp = 2, and the distance from the midpoint to either
end is 1, so 6 = 1. We know that for any z, |sin(z)| < 1. Also, 3 is monotonically
decreasing for x € [1,3], so &y < 1. It follows that
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so M = 1. In fact, sin(z)/2® is monotonically decreasing, so the best bound is
sin(1)/1 ~ 0.8415.

(b) f(x) = /sin?(x) + 8 for = € [2, 6].

The midpoint of the interval is g = 4, and the distance from the midpoint to either
end is 2, so § = 2. We know that for any z, sin?(z) < 1. It follows that
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%, so this function reaches 3 for

so M = 3. In fact, sin?(z) achieves its max at = =
that z.

. (8 pts) Use the Maclaurin series for e*, cos(z), and sin(x) to demonstrate Euler’s formula:
e = cos(z) + i sin(z).

The Maclaurin series for e** is
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. (Each part is worth 3 pts) We cannot exactly find the integral:
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but we can approximate it. To do this,

(a) Using a third order Maclaurin series approximation to find an approximation to the
integral.

The cubic expansion for e =1—224 O(x%), so
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(b) We know that:
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To obtain the 4 Taylor series, we need the derivatives of f(z) = e~*", which are:
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Choosing the Taylor series around xg = i
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The sum of the 4 integrals is approximately 0.7467230.
(c) Matlab says that

1
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The second answer is much better because the approximations fit the curve more
closely than trying to fit the function with only a single quadratic.

5. (Each part is worth 1 pt) In a Matlab command window, type in the following:
X = ['cat'];
Y = ['food'];
Write the output from the following commands

(a) [x Y]
(b) [x'; Y']
(¢) [x' Y'] (and yes, you should get the program yelling at you, why?)
(d) Y(1:2:4)
)



(f) x(end-1)

(g
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) [Y 'is good']
(h) [X [Y "is good']]
)
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Answers are respectively:
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(c¢) Error using Horzcat

Dimensions of matrices being concatenated are not consistent. You have transposed
the two matrices and they no longer have the same number of rows.
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